S. S. Podkorytov

HOMOTOPY SIMILARITY OF MAPS

Abstract. Given based cellular spaces X and Y, X compact, we define a sequence of increasingly fine equivalences on the based-homotopy set [X,Y].

§1. Introduction

Let X and Y be based cellular spaces (i. e., CW-complexes), with X compact. Let Y^X be the set of based continuous maps $X \to Y$ and $\langle Y^X \rangle$ be the free abelian group associated with Y^X . An element $A \in \langle Y^X \rangle$ is called an *ensemble* and has the form

$$A = \sum_{i} u_i \langle a_i \rangle, \tag{1}$$

where $u_i \in \mathbb{Z}$ and $a_i \in Y^X$. A *subspace* of X is a subset containing the basepoint. Let $\operatorname{Sub}_r(X)$ be the set of subspaces $T \subseteq X$ containing at most r points distinct from the basepoint. Introduce the subgroup

$$\langle Y^X \rangle^{(r+1)} = \{ A : A|_T = 0 \text{ in } \langle Y^T \rangle \text{ for all } T \in \operatorname{Sub}_r(X) \} \subseteq \langle Y^X \rangle.$$

We have

$$\langle Y^X \rangle = \langle Y^X \rangle^{(0)} \supseteq \langle Y^X \rangle^{(1)} \supseteq \dots$$

For ensembles $A, B \in \langle Y^X \rangle$, let

$$A \stackrel{r}{=} B$$

mean that $B - A \in \langle Y^X \rangle^{(r+1)}$.

For maps $a, b \in Y^X$, we say that a is r-similar to b, written

$$a \stackrel{r}{\sim} b$$
.

if there exists an ensemble $A \in \langle Y^X \rangle$ of the form (1) with all $a_i \sim a$ (' \sim ' stands for 'based homotopic') and such that $A \stackrel{r}{=} \langle b \rangle$. A simple example is given in Section 3.

Our main results state that the relation $\stackrel{\tau}{\sim}$ is an equivalence (Theorem 8.1) and respects homotopy (Theorem 5.2). It follows that we get a sequence of increasingly fine equivalences on the based-homotopy set [X,Y].

We conjecture that, for 0-connected Y, a map is r-similar to the constant map if and only if it lifts to the classifying space of the (r+1)th term of the lower central series of the loop group of Y.

A related notion is that of a homotopy invariant of finite order [4, 5]. A function $f: [X,Y] \to L$, where L is an abelian group, is called an invariant of *order* at most r if whenever an ensemble $A \in \langle Y^X \rangle$ of the form (1) satisfies $A \stackrel{r}{=} 0$ we have

$$\sum_{i} u_i f([a_i]) = 0.$$

It is clear that f([a]) = f([b]) if $a \stackrel{r}{\sim} b$ and f has order at most r. In §11, we give an example of two maps that are not 2-similar but cannot be distinguished by invariants of order at most 2. In the stable dimension range, invariants of order at most r were characterized in a way similar to our conjecture about r-similarity [4].

The relation between r-similarity and finite-order homotopy invariants is similar to that between n-equivalence and finite-degree invariants in knot theory [1, 2]. The example of §11 is similar to that of [2, Remark 10.8].

§2. Preliminaries

By a *space* we mean a based space (unless the contrary is stated explicitly). The basepoint of a cellular space is a vertex. The basepoint of a space X is denoted by $\mathrel{^{\triangleleft}}_X$ or $\mathrel{^{\triangleleft}}$. A *subspace* is a subset containing the basepoint. A *cover* is a cover by subspaces. A *map* is a based continuous map. The constant map $X \to Y$ is denoted by $\mathrel{^{\triangleleft}}_Y^X$ or $\mathrel{^{\triangleleft}}$. A *homotopy* is a based homotopy.

For a subspace $Z \subseteq X$, in: $Z \to X$ is the inclusion. A wedge of spaces comes with the inclusion maps (i.e., coprojections):

$$\operatorname{in}_k \colon X_k \to X_1 \vee \ldots \vee X_n$$
.

Maps $a_k : X_k \to Y$ form the map

$$a_1 \ \overline{\lor} \ldots \overline{\lor} \ a_n \colon X_1 \lor \ldots \lor X_n \to Y.$$

The same notation is used for homotopy classes.

Write $a \sim |_Z b$ to mean $a|_Z \sim b|_Z$. Similarly, equality of restrictions to a subset C is denoted by the symbol '= $|_C$ '.

For a set E, the associated abelian group $\langle E \rangle$ is freely generated by the elements $\langle e \rangle$, $e \in E$. A function $t \colon E \to F$ between two sets induces the

homomorphism

$$\langle t \rangle \colon \langle E \rangle \to \langle F \rangle, \qquad \langle e \rangle \mapsto \langle t(e) \rangle.$$

For a cover Γ of a space X, we put

$$\Gamma(r) = \{ \{ \} \cup G_1 \cup \ldots \cup G_s \subseteq X : G_1, \ldots, G_s \in \Gamma, 0 \leqslant s \leqslant r \}.$$

For ensembles $A, B \in \langle Y^X \rangle$, the formula

$$A \stackrel{r}{=} B$$

means that $A = |_W B$ in $\langle Y^W \rangle$ for all $W \in \Gamma(r)$. The symbol '?' denotes a placeholder for functions: for example, the expression ?2: $\mathbb{R} \to \mathbb{R}$ designates the function $x \mapsto x^2$.

Fix
$$r \ge 0$$
. For $d = (d_1, \dots, d_{r+1}) \in \{0, 1\}^{r+1} \subseteq \mathbb{Z}^{r+1}$, put $|d| = d_1 + \dots + d_{r+1}$.

Consider a wedge of spaces

$$W = U_1 \vee \ldots \vee U_{r+1} \vee V.$$

Introduce the maps

$$\Lambda(d) = \lambda_1(d_1) \vee \ldots \vee \lambda_{r+1}(d_{r+1}) \vee \mathrm{id}_V : W \to W, \qquad d \in \{0, 1\}^{r+1},$$

where the map $\lambda_k(e): U_k \to U_k$, for $e \in \{0, 1\}$, is id if e = 1 and \P if e = 0.

Lemma 3.1. Let X and Y be spaces and $p: X \to W$ and $q: W \to Y$ be maps. Consider the ensemble

$$A = \sum_{d \in \{0,1\}^{r+1}} (-1)^{|d|} {<} a(d) {>} \ \in \langle Y^X \rangle,$$

where a(d) is the composition

$$a(d): X \xrightarrow{p} W \xrightarrow{\Lambda(d)} W \xrightarrow{q} Y.$$

Then $A \stackrel{r}{=} 0$.

Proof. Take $T \in \operatorname{Sub}_r(X)$. There is an index k such that

$$p(T) \cap \operatorname{in}_k(U_k) = \{ \uparrow_W \}.$$

Then $a(d)|_T$ does not depend on d_k . We get

$$A|_{T} = \sum_{d \in \{0,1\}^{r+1}} (-1)^{|d|} \langle a(d)|_{T} \rangle = 0.$$

Example. Consider the wedge

$$W = S^{n_1} \vee \ldots \vee S^{n_{r+1}}$$

 $(n_1,\ldots,n_{r+1}\geqslant 1)$. Put $m=n_1+\ldots+n_{r+1}-r$ and let $p\colon S^m\to W$ be a map with

$$[p] = \lfloor \dots \lfloor [\operatorname{in}_1], [\operatorname{in}_2] \rceil, \dots, [\operatorname{in}_{r+1}] \rceil$$

(the iterated Whitehead product) in $\pi_m(W)$. We show that $\stackrel{r}{\sim} p$. Consider the maps

$$a(d) \colon S^m \xrightarrow{p} W \xrightarrow{\Lambda(d)} W, \qquad d \in \{0, 1\}^{r+1}.$$

Put $1_{r+1} = (1, ..., 1) \in \{0, 1\}^{r+1}$. By Lemma 3.1,

$$\sum_{d \in \{0,1\}^{r+1} \setminus \{1_{r+1}\}} (-1)^{r-|d|} < a(d) > \stackrel{r}{=} < a(1_{r+1}) >.$$

All a(d) on the left side are homotopic to \P . On the right, $a(1_{r+1}) = p$ because $\Lambda(1_{r+1}) = \mathrm{id}$. Thus $\P \stackrel{r}{\sim} p$.

§4. Equipment of a cellular space

Let Y be a compact unbased cellular space. In this section, we turn off our convention that maps and homotopies preserve basepoints.

Lemma 4.1. There exist homotopies

$$q_t: Y^2 \to Y \quad and \quad p_t: Y^2 \to [0, 1], \qquad t \in [0, 1],$$

such that

$$q_0(z,y) = y,$$
 $q_t(z,z) = z,$ $p_0(z,y) = 0,$ $p_t(z,z) = t,$ (2)

and, for any $(z,y) \in Y^2$ and $t \in [0,1]$, one has

$$p_t(z,y) = 0 \quad or \quad q_t(z,y) = z. \tag{3}$$

Roughly speaking, the inclusions $\{z\} \to Y$, $z \in Y$, form a parametric cofibration. We say that (q_t, p_t) is an equipment of Y.

Proof (after [6, Exemple on p. 490]). By [3, Corollary A.10], Y is an ENR. Embed it to \mathbb{R}^n and choose its neighbourhood $U \subseteq \mathbb{R}^n$ and a retraction $r: U \to Y$. Choose $\epsilon > 0$ such that U includes all closed balls of radius ϵ with centres in Y. Consider the homotopy $l_t: (\mathbb{R}^n)^2 \to \mathbb{R}^n$, $t \in [0, 1]$,

$$l_t(z,y) = y + \min(\epsilon t/|z-y|, 1)(z-y), \qquad z \neq y,$$

$$l_t(z,z) = z.$$

Put

$$q_t(z,y) = r(l_t(z,y))$$
 and $p_t(z,y) = \max(t - |z - y|/\epsilon, 0)$.

Corollary 4.2. One can continuously associate to each path $v: [0,1] \to Y$ a homotopy $E_t(v): Y \to Y$, $t \in [0,1]$, such that

$$E_0(v) = id$$
 and $E_t(v)(v(0)) = v(t)$.

Proof. Using Lemma 4.1, put

$$E_t(v)(y) = \begin{cases} q_t(v(0), y) & \text{if } p_t(v(0), y) = 0, \\ v(p_t(v(0), y)) & \text{if } q_t(v(0), y) = v(0). \end{cases}$$

§5. Coherent homotopies

Let X and Y be cellular spaces, X compact.

Lemma 5.1. Consider an ensemble

$$A = \sum_{i} u_i \langle a_i \rangle \in \langle Y^X \rangle,$$

and maps $b, \widetilde{b} \in Y^X$, $b \sim \widetilde{b}$. Then there exist maps $\widetilde{a}_i \in Y^X$, $\widetilde{a}_i \sim a_i$, such that the ensemble

$$\widetilde{A} = \sum_{i} u_{i} < \widetilde{a}_{i} >$$

has the following property: if $A=|_Z < b >$ for some subspace $Z\subseteq X$, then $\widetilde{A}=|_Z < \widetilde{b} >$.

Proof. We have a homotopy $h_t \in Y^X$, $t \in [0,1]$, such that $h_0 = b$ and $h_1 = \tilde{b}$. Replace Y by a compact cellular subspace that includes the images of all a_i and h_t .

For $x \in X$, introduce the path $v_x \colon [0,1] \to Y$, $v_x(t) = h_t(x)$. We have $v_x(0) = b(x)$ and $v_x(1) = \tilde{b}(x)$. For a subspace $Z \subseteq X$, introduce the functions $e_t^Z \colon Y^Z \to Y^Z$, $t \in [0,1]$,

$$e_t^Z(d)(x) = E_t(v_x)(d(x)), \qquad x \in Z, \quad d \in Y^Z,$$

where E_t is given by Corollary 4.2. For $d \in Y^Z$, we have the homotopy $e_t^Z(d) \in Y^Z$, $t \in [0, 1]$. The diagram

$$\begin{array}{c|c} Y^X & \xrightarrow{e_t^X} & Y^X \\ ?|_Z & & & \\ Y^Z & \xrightarrow{e_t^Z} & Y^Z \end{array}$$

is commutative. We have $e_0^Z = id$ because

$$e_0^Z(d)(x) = E_0(v_x)(d(x)) = d(x).$$

We have $e_1^X(b) = \widetilde{b}$ because

$$e_1^X(b)(x) = E_1(v_x)(b(x)) = E_1(v_x)(v_x(0)) = v_x(1) = \widetilde{b}(x).$$

Put $\widetilde{a}_i = e_1^X(a_i)$. Since $a_i = e_0^X(a_i)$, we have $\widetilde{a}_i \sim a_i$. We have

$$(\langle \widetilde{b} \rangle - \widetilde{A})|_Z = \langle e_1^X \rangle (\langle b \rangle - A)|_Z = \langle e_1^Z \rangle ((\langle b \rangle - A)|_Z).$$

Thus $A = |_Z \langle b \rangle$ implies $\widetilde{A} = |_Z \langle \widetilde{b} \rangle$.

Theorem 5.2. Let maps $a, b, \widetilde{a}, \widetilde{b} \in Y^X$ satisfy

$$\widetilde{a} \sim a \stackrel{r}{\sim} b \sim \widetilde{b}.$$

Then $\widetilde{a} \stackrel{r}{\sim} \widetilde{b}$.

Proof. By the definition of similarity, it suffices to show that $a \stackrel{r}{\sim} \widetilde{b}$. We have an ensemble

$$A = \sum_{i} u_i \langle a_i \rangle \in \langle Y^X \rangle,$$

where $a_i \sim a$, such that $A \stackrel{r}{=} \langle b \rangle$. By Lemma 5.1, there is an ensemble

$$\widetilde{A} = \sum_{i} u_i < \widetilde{a}_i > \in \langle Y^X \rangle,$$

where $\widetilde{a}_i \sim a_i$, such that $\widetilde{A} \stackrel{r}{=} \langle \widetilde{b} \rangle$. Since $a_i \sim a$, we have shown that $a \stackrel{r}{\sim} \widetilde{b}$.

§6. Underlaying a cover

Let X and Y be cellular spaces, X compact.

Lemma 6.1. Consider an ensemble

$$A = \sum_{i} u_i \langle a_i \rangle \in \langle Y^X \rangle.$$

Then there exist maps $\widetilde{a}_i \in Y^X$, $\widetilde{a}_i \sim a_i$, such that the ensemble

$$\widetilde{A} = \sum_{i} u_{i} < \widetilde{a}_{i} >$$

has the following property: if $A|_Z = 0$ for some subspace $Z \subseteq X$, then $\widetilde{A}|_V = 0$ for some neighbourhood $V \subseteq X$ of Z.

Proof. Replace Y by a compact cellular subspace that includes the images of all a_i . We will use the equipment (q_t, p_t) given by Lemma 4.1.

Let the index i for a_i runs over $1, \ldots, n$. Define maps $a_i^k \in Y^X$, $1 \le i \le n$, $0 \le k \le n$, by the rules $a_i^0 = a_i$ and

$$a_i^k(x) = q_1(a_k^{k-1}(x), a_i^{k-1}(x)), \qquad x \in X,$$
 (4)

for $k \geqslant 1$. Put $\widetilde{a}_i = a_i^n$. We have $a_i^k \sim a_i^{k-1}$ because $a_i^k = h_1$ and $a_i^{k-1} = h_0$ for the homotopy $h_t \in Y^X$, $t \in [0,1]$,

$$h_t(x) = q_t(a_k^{k-1}(x), a_i^{k-1}(x)), \qquad x \in X.$$

Thus $\widetilde{a}_i \sim a_i$.

Claim 1. If $a_i^{k-1} = |_Q a_j^{k-1}$ for some subspace $Q \subseteq X$, then $a_i^k = |_Q a_j^k$.

This follows from (4).

Claim 2. If $a_i^{i-1} = |_Q a_j^{i-1}$ for some subspace $Q \subseteq X$, then there exists a neighbourhood $W \subseteq X$ of Q such that $a_i^i = |_W a_j^i$.

Indeed, if $a_i^{i-1} = |_Q a_j^{i-1}$, then, by (2),

$$p_1(a_i^{i-1}(x), a_i^{i-1}(x)) = 1$$

for $x \in Q$. There exists a neighbourhood $W \subseteq X$ of Q such that

$$p_1(a_i^{i-1}(x), a_j^{i-1}(x)) > 0$$

for $x \in W$. Then, by (3)

$$q_1(a_i^{i-1}(x), a_i^{i-1}(x)) = a_i^{i-1}(x)$$

for $x \in W$. By (4),

$$a_i^i(x) = q_1(a_i^{i-1}(x), a_i^{i-1}(x)) = a_i^{i-1}(x)$$

(because $q_1(z, z) = z$ by (2)) and

$$a_j^i(x) = q_1(a_i^{i-1}(x), a_j^{i-1}(x)).$$

Thus $a_i^i(x) = a_i^i(x)$ for $x \in W$, as required.

Take a subspace $Z \subseteq X$.

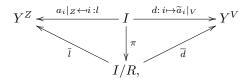
Claim 3. If $a_i = |_Z a_j$, then there exists a neighbourhood $W \subseteq X$ of Z such that $\tilde{a}_i = |_W \tilde{a}_j$.

This follows from the construction of \tilde{a}_i and Claims 1 and 2.

Consider the equivalence

$$R = \{ (i, j) : a_i = |_Z a_j \}$$

on the set $I = \{1, \ldots, n\}$. It follows from Claim 3 that there exists a neighbourhood $V \subseteq X$ of Z such that $\widetilde{a}_i = |_V \widetilde{a}_j$ for all $(i, j) \in R$. We have the commutative diagram



where π is the projection. The function \bar{l} is injective. Consider the elements

$$U = \sum_{i} u_i \langle i \rangle \in \langle I \rangle$$

and

$$\overline{U} = \langle \pi \rangle(U) \in \langle I/R \rangle.$$

We have

$$A|_{Z} = \langle l \rangle(U) = \langle \overline{l} \rangle(\overline{U})$$
 and $\widetilde{A}|_{V} = \langle d \rangle(U) = \langle \overline{d} \rangle(\overline{U}).$

If $A|_{Z}=0$, then $\overline{U}=0$ because $\langle \overline{l} \rangle$ is injective. Then $\widetilde{A}|_{V}=0$.

Corollary 6.2. Consider an ensemble

$$A = \sum_{i} u_i \langle a_i \rangle \in \langle Y^X \rangle$$

such that $A \stackrel{r}{=} 0$. Then there exist maps $\widetilde{a}_i \in Y^X$, $\widetilde{a}_i \sim a_i$, such that the ensemble

$$\widetilde{A} = \sum_{i} u_{i} < \widetilde{a}_{i} > \tag{5}$$

satisfies the condition $\widetilde{A} = \frac{r}{\Gamma} 0$ for some open cover Γ of X.

Proof. Since $A \stackrel{r}{=} 0$, we have $A|_T = 0$ for all $T \in \operatorname{Sub}_r(X)$. By Lemma 6.1, there are maps $\widetilde{a}_i \in Y^X$, $\widetilde{a}_i \sim a_i$, such that the ensemble \widetilde{A} given by (5) satisfies the condition $\widetilde{A}|_{V(T)} = 0$ for some neighbourhood $V(T) \subseteq X$ of each $T \in \operatorname{Sub}_r(X)$. There is an open cover Γ of X such that every $W \in \Gamma(r)$ is included in V(T) for some $T \in \operatorname{Sub}_r(X)$. Then $\widetilde{A}|_W = 0$ for all $W \in \Gamma(r)$, that is, $\widetilde{A} \stackrel{r}{=} 0$.

Lemma 6.3. Consider an ensemble $A \in \langle Y^X \rangle$,

$$A = \sum_{i} u_i \langle a_i \rangle,$$

and a map $b \in Y^X$. Then there exist maps $\widetilde{a}_i \in Y^X$, $\widetilde{a}_i \sim a_i$, such that the ensemble

$$\widetilde{A} = \sum_{i} u_i < \widetilde{a}_i > \tag{6}$$

has the following property: if $A = |_Z < b >$ for some subspace $Z \subseteq X$, then $\widetilde{A} = |_V < b >$ for some neighbourhood $V \subseteq X$ of Z.

Proof. Let Π be the set of subspaces $Z \subseteq X$ such that $A = |_{Z} < b >$. By Lemma 6.1, there are maps $\overline{a}_{i}, \overline{b} \in Y^{X}, \overline{a}_{i} \sim a_{i}$ and $\overline{b} \sim b$, such that the ensemble

$$\overline{A} = \sum_{i} u_i \langle \overline{a}_i \rangle$$

satisfies the condition $\overline{A} = |_{V(Z)} < \overline{b} >$ for some neighbourhood $V(Z) \subseteq X$ of each $Z \in \Pi$. By Lemma 5.1, there are maps $\widetilde{a}_i \in Y^X$, $\widetilde{a}_i \sim \overline{a}_i$, such that the ensemble \widetilde{A} given by (6) satisfies the condition $\widetilde{A} = |_{V(Z)} < b >$ for all $Z \in \Pi$.

Corollary 6.4. Consider an ensemble

$$A = \sum_{i} u_i \langle a_i \rangle \in \langle Y^X \rangle$$

and a map $b \in Y^X$. Suppose that $A \stackrel{r}{=} \langle b \rangle$. Then there exist maps $\widetilde{a}_i \in Y^X$, $\widetilde{a}_i \sim a_i$, such that the ensemble

$$\widetilde{A} = \sum_{i} u_i < \widetilde{a}_i > \tag{7}$$

satisfies the condition $\widetilde{A} \stackrel{r}{\stackrel{r}{\Gamma}} {}^{<} b >$ for some open cover Γ of X.

 ${\it Proof.}$ This follows from Lemma 6.3 as Corollary 6.2 does from Lemma 6.1.

§7. Symmetric characterization of similarity

Let X and Y be cellular spaces, X compact.

Lemma 7.1. Consider a cover Γ of X, an open subspace $G \in \Gamma$, a closed subspace $D \subseteq X$, $D \subseteq G$, and maps $a, b_0, b_1 \in Y^X$ such that $a \sim |_G b_0$, $b_0 \sim b_1 \operatorname{rel} X \setminus D$, and a $\overset{r-1}{\Gamma} b_0$ in the following sense: there is an ensemble

$$A = \sum_{i} u_i \langle a_i \rangle \in \langle Y^X \rangle,$$

where $a_i \sim a$, such that $A \stackrel{r=1}{=} \langle b_0 \rangle$. Then there exists an ensemble

$$C = \sum_{k} w_k \langle c_k \rangle \in \langle Y^X \rangle,$$

where $c_k \sim a$, such that $C \stackrel{r}{=} \langle b_1 \rangle - \langle b_0 \rangle$.

Proof. There is a homotopy $h_t \in Y^X$, $t \in [0,1]$, such that $h_s = b_s$, s = 0,1, and $h_t = |_{X \setminus D} b_0$. Choose a continuous function $\phi \colon X \to [0,1]$ such that $\phi|_E = 1$ and $\phi|_{X \setminus F} = 0$ for some subspaces $E, F \subseteq X$, E open, F closed, such that

$$D \subseteq E \subseteq F \subseteq G$$
.

Let $p \in Y^G$ be a map such that $p \sim b_0|_G$. Choose a homotopy

$$K_t(p) \in Y^G, \quad t \in [0, 1],$$

such that

$$K_0(p) = p, K_1(p) = b_0|_G$$
, and $K_t(p) = b_0|_G$ if $p = b_0|_G$.

Define a homotopy $L_t(p) \in Y^G$, $t \in [-1, 1]$, by the rules

$$L_t(p)(x) = K_{\phi(x)(t+1)}(p)(x), \qquad x \in G_t$$

for $t \in [-1,0]$ and

$$L_t(p)(x) = \begin{cases} h_t(x) & \text{if } x \in E, \\ K_{\phi(x)}(p)(x) & \text{if } x \in G \setminus D \end{cases}$$

for $t \in [0, 1]$. We have

$$L_{-1}(p) = p,$$
 $L_{s}(p) = |_{E} b_{s}, \ s = 0, 1,$
 $L_{0}(p) = |_{G \setminus D} L_{1}(p),$ $L_{t}(p) = |_{G \setminus F} p.$

Moreover, $L_s(b_0|_G) = b_s|_G$, s = 0, 1.

Let $d \in Y^X$ be a map such that $d \sim |_G b_0$. Define a homotopy $l_t(d) \in Y^X$, $t \in [-1, 1]$, by the rules $l_t(d) = |_G L_t(d|_G)$ and $l_t(d) = |_{X \setminus F} d$. We have

$$l_{-1}(d) = d,$$
 $l_s(d) = |_E b_s, \ s = 0, 1,$ $l_0(d) = |_{X \setminus D} l_1(d),$ $l_t(d) = |_{X \setminus F} d.$

Since $a_i \sim a \sim |_G b_0$, the homotopies $l_t(a_i)$ are defined. Put

$$C = \sum_{i} u_{i}(\langle l_{1}(a_{i}) \rangle - \langle l_{0}(a_{i}) \rangle).$$

We have $l_s(a_i) \sim a_i \sim a$. It remains to show that $C \stackrel{r}{=} \langle b_1 \rangle - \langle b_0 \rangle$. Take $T \in \operatorname{Sub}_r(X)$. We check that

$$C = |_{T} < b_{1} > - < b_{0} >. (8)$$

We are in one of the following three cases.

Case 1: $T \cap D = \{ \P_X \}$. We have $l_0(a_i) = |_T l_1(a_i)$ and $b_0 = |_T b_1$. Thus both the sides of (8) are zero on T.

Case 2: $T \cap F = \{ \uparrow_X, x_* \}$, where $x_* \in E$ and $x_* \neq \uparrow_X$. Put $Z = T \setminus \{x_* \}$. We have $Z \in \operatorname{Sub}_{r-1}(X)$ and $Z \cap F = \{ \uparrow_X \}$. Define functions

$$e_s: Y^Z \to Y^T, \quad s = 0, 1,$$

by the rules $e_s(q)|_Z=q$ and $e_s(q)(x_*)=b_s(x_*)$. We have $e_s(b_0|_Z)=b_s|_T$ and $e_s(a_i|_Z)=l_s(a_i)|_T$. Thus

$$\left(\langle b_0 \rangle - \sum_i u_i \langle a_i \rangle\right)\big|_Z \xrightarrow{\langle e_s \rangle} \left(\langle b_s \rangle - \sum_i u_i \langle l_s(a_i) \rangle\right)\big|_T.$$

Since $A \stackrel{r=1}{=} \langle b_0 \rangle$, the expression on the left is zero. Thus the one on the right is also zero, which implies (8).

Case 3: $T \cap G \notin \operatorname{Sub}_1(X)$. There is a decomposition $T = W \cup Z$ for some subspaces $W, Z \subseteq X$ such that $W \cap Z = \{ \uparrow_X \}, W \subseteq G, Z \cap F = \{ \uparrow_X \},$ and $Z \in \operatorname{Sub}_{r-2}(X)$. Consider the subspace $M = G \cup Z \subseteq X$. Define functions $f_s \colon Y^M \to Y^T$, s = 0, 1. Take $q \in Y^M$. If $q \sim |_G b_0$, put $f_s(q) = |_W L_s(q|_G)$

and $f_s(q) = |_Z q$. Otherwise, put $f_s(q) = {}^T_Y$. We have $f_s(b_0|_M) = b_s|_T$ and $f_s(a_i|_M) = l_s(a_i)|_T$. Thus

$$\left(\langle b_0 \rangle - \sum_i u_i \langle a_i \rangle\right)\Big|_M \xrightarrow{\langle f_s \rangle} \left(\langle b_s \rangle - \sum_i u_i \langle l_s(a_i) \rangle\right)\Big|_T.$$

Since M is included in some element of $\Gamma(r-1)$ and $A \stackrel{r=1}{\Gamma} \langle b_0 \rangle$, the expression on the left is zero. Thus the one on the right is also zero, which implies (8).

Lemma 7.2. Let $a, b, \widetilde{b} \in Y^X$ be maps such that $a \stackrel{r-1}{\sim} b \sim \widetilde{b}$ and

$$a \sim |_S b \text{ for any } S \in \operatorname{Sub}_1(X).$$
 (*)

Then there exists an ensemble

$$C = \sum_{k} w_k \langle c_k \rangle \in \langle Y^X \rangle,$$

where $c_k \sim a$, such that $C \stackrel{r}{=} \langle \widetilde{b} \rangle - \langle b \rangle$.

The condition (*) is satisfied automatically if X or Y is 0-connected. It also follows from the condition $a \stackrel{r-1}{\sim} b$ if $r \geqslant 2$ (cf. the proof of Theorem 7.3).

Proof. There is an ensemble

$$A = \sum_{i} u_i \langle a_i \rangle \in \langle Y^X \rangle,$$

where $a_i \sim a$, such that $A \stackrel{r=1}{=} \langle b \rangle$. Using Corollary 6.4, replace each a_i by a homotopic map to get $A \stackrel{r=1}{=} \langle b \rangle$ for some open cover Γ of X.

We say that a subspace $\overset{\Gamma}{G} \subseteq X$ is *primitive* if the map in: $G \to X$ is homotopic to the composition

$$G \xrightarrow{f} S \xrightarrow{\text{in}} X$$

for some subspace $S \in \operatorname{Sub}_1(X)$ and map f. Since X is Hausdorff and locally contractible, for any open subspace $U \subseteq X$ and point $x \in U$, there exists a primitive open subspace $G \subseteq X$ such that $x \in G$ and $G \subseteq U$. We replace the cover Γ by its refinement consisting of primitive open subspaces. Then it follows from (*) that $a \sim |_G b$ for each $G \in \Gamma$.

Choose a finite partition of unity subordinate to Γ :

$$\sum_{j=1}^{m} \phi_j = 1,$$

where each $\phi_j \colon X \to [0,1]$ is a continuous function such that $\phi_j|_{X \setminus D_j} = 0$ for some closed subspace $D_j \subseteq X$ such that $D_j \subseteq G_j$ for some $G_j \in \Gamma$. Choose a homotopy $h_t \in Y^X$, $t \in [0,1]$, such that $h_0 = b$ and $h_1 = \widetilde{b}$. Define maps $b_j \in Y^X$, $0 \leqslant j \leqslant m$, by the rule

$$b_j(x) = h_{\phi_1(x) + \dots + \phi_j(x)}(x).$$

We have $b_0 = b$, $b_m = \tilde{b}$, and $b_{j-1} \sim b_j \operatorname{rel} X \setminus D_j$.

Take $j \geqslant 1$. Applying Lemma 5.1 to the congruence $A \stackrel{r-1}{=} \langle b \rangle$ and the homotopy $b \sim b_{j-1}$, we get an ensemble

$$A_j = \sum_i u_i \langle a_{ji} \rangle \in \langle Y^X \rangle,$$

where $a_{ji} \sim a_i$ ($\sim a$), such that $A_j \stackrel{r=1}{=} \langle b_{j-1} \rangle$. We have $a \sim |_{G_j} b \sim b_{j-1}$. By Lemma 7.1, there is an ensemble

$$C_j = \sum_k w_{jk} \langle c_{jk} \rangle \in \langle Y^X \rangle,$$

where $c_{jk} \sim a$, such that $C_j \stackrel{r}{=} \langle b_j \rangle - \langle b_{j-1} \rangle$. We get

$$\sum_{j=1}^{m} C_j = \langle b_m \rangle - \langle b_0 \rangle = \langle \widetilde{b} \rangle - \langle b \rangle.$$

Theorem 7.3. Consider maps $a, b \in Y^X$ and ensembles $A, B \in \langle Y^X \rangle$,

$$A = \sum_i u_i {<} a_i {>} \quad and \quad B = \sum_j v_j {<} b_j {>},$$

where

$$\sum_{i} u_i = \sum_{i} v_j = 1,$$

 $a_i \sim a$, and $b_j \sim b$, such that $A \stackrel{r}{=} B$. Then $a \stackrel{r}{\sim} b$.

Proof. Induction on r. If $r \leq 0$, the assertion is trivial. Suppose $r \geq 1$. For $S \in \operatorname{Sub}_1(X)$, we have $a \sim |_S b$ because

$$<\![a|_S]> = \sum_i u_i <\![a_i|_S]> = [\![A|_S]\!] = [\![B|_S]\!] = \sum_j v_j <\![b_j|_S]> = <\![b|_S]>$$

in $\langle [S,Y] \rangle$. Here $[?]: \langle Y^S \rangle \to \langle [S,Y] \rangle$ is the homomorphism induced by the projection $[?]: Y^S \to [S,Y]$.

By induction hypothesis, $a \stackrel{r-1}{\sim} b$. Take j. Since $b \sim b_j$, Lemma 7.2 gives an ensemble

$$C_j = \sum_k w_{jk} \langle c_{jk} \rangle \in \langle Y^X \rangle,$$

where $c_{jk} \sim a$, such that $C_j \stackrel{r}{=} \langle b_j \rangle - \langle b \rangle$. We have

$$A - \sum_{j} v_{j} C_{j} \stackrel{r}{=} A - \sum_{j} v_{j} (\langle b_{j} \rangle - \langle b \rangle) = A - B + \langle b \rangle \stackrel{r}{=} \langle b \rangle,$$

which proves the assertion.

§8. Similarity is an equivalence

Let X and Y be cellular spaces, X compact.

Theorem 8.1. The relation $\stackrel{r}{\sim}$ on Y^X is an equivalence.

This was conjectured by A. V. Malyutin.

Proof. Reflexivity is trivial. Symmetry follows from Theorem 7.3. It remains to prove transitivity.

Let maps $a, b, c \in Y^X$ satisfy $a \stackrel{r}{\sim} b \stackrel{r}{\sim} c$. Then there are ensembles $A, B \in \langle Y^X \rangle$,

$$A = \sum_{i} u_i \langle a_i \rangle \quad \text{and} \quad B = \sum_{j} v_j \langle b_j \rangle,$$

where $a_i \sim a$ and $b_j \sim b$, such that $A \stackrel{r}{=} \langle b \rangle$ and $B \stackrel{r}{=} \langle c \rangle$. For each j, we have $b \sim b_j$ and, by Lemma 5.1, there is an ensemble

$$A_j = \sum_i u_i \langle a_{ji} \rangle \in \langle Y^X \rangle,$$

where $a_{ji} \sim a_i \ (\sim a)$, such that $A_j \stackrel{r}{=} \langle b_i \rangle$. We have

$$\sum_{j} v_{j} A_{j} \stackrel{r}{=} \sum_{j} v_{j} \langle b_{j} \rangle = B \stackrel{r}{=} \langle c \rangle.$$

Thus $a \stackrel{r}{\sim} c$.

Using Theorem 5.2, we introduce the relation of r-similarity on [X,Y]:

$$[a] \stackrel{r}{\sim} [b] \Leftrightarrow a \stackrel{r}{\sim} b.$$

It follows from Theorem 8.1 that it is an equivalence.

§9. The Hopf invariant

Let X and Y be spaces. Let $e \in Z^m(Y)$ and $f \in Z^n(Y)$ $(m, n \ge 1)$ be (singular) cocycles and $g \in C^{m+n-1}(Y)$ be a cochain with $\delta g = ef$. Put

$$[X,Y]_{e,f} = \{ a : a^*([e]) = 0 \text{ and } a^*([f]) = 0 \text{ in } H^{\bullet}(X) \} \subseteq [X,Y]$$

and

$$Y_{e,f}^X = \{ a : [a] \in [X,Y]_{e,f} \} \subseteq Y^X.$$

Given $a \in Y_{e,f}^X$, choose a cochain $p \in C^{m-1}(X)$ such that $\delta p = a^{\#}(e)$ and put

$$q = pa^{\#}(f) - a^{\#}(g) \in C^{m+n-1}(X).$$

Then $\delta q = 0$ and the class $[q] \in H^{m+n-1}(X)$ neither depends on the choice of p nor changes if a is replaced by a homotopic map. Putting h([a]) = [q], we get the function

$$h \colon [X,Y]_{e,f} \to H^{m+n-1}(X),$$

which we call the *Hopf invariant* [7].

Lemma 9.1. Let X_0 be a space and $t: X \to X_0$ be a map. We have the Hopf invariants

$$h_0: [X_0, Y]_{e,f} \to H^{m+n-1}(X_0)$$
 and $h: [X, Y]_{e,f} \to H^{m+n-1}(X)$.

Given $a_0 \in Y^{X_0}$, put $a = a_0 \circ t \in Y^X$. If $a_0 \in Y^{X_0}_{e,f}$, then $a \in Y^X_{e,f}$ and $h([a]) = t^*(h_0([a_0]))$ in $H^{m+n-1}(X)$.

Lemma 9.2. Take elements $u \in \pi_m(Y)$ and $v \in \pi_n(Y)$. Put

$$\Delta = \langle \boldsymbol{u}^*([e]), [S^m] \rangle \langle \boldsymbol{v}^*([f]), [S^n] \rangle + (-1)^{mn} \langle \boldsymbol{u}^*([f]), [S^m] \rangle \langle \boldsymbol{v}^*([e]), [S^n] \rangle \in \mathbb{Z}$$

(the last two Kronecker indices vanish unless m = n). Consider the Hopf invariant

$$h: [S^{m+n-1}, Y]_{e,f} \to H^{m+n-1}(S^{m+n-1})$$

and the Whitehead product $\lfloor \boldsymbol{u}, \boldsymbol{v} \rceil \in \pi_{m+n-1}(Y) = [S^{m+n-1}, Y]$. Then $\lfloor \boldsymbol{u}, \boldsymbol{v} \rceil \in [S^{m+n-1}, Y]_{e,f}$ and

$$\langle h(\lfloor \boldsymbol{u}, \boldsymbol{v} \rceil), [S^{m+n-1}] \rangle = (-1)^{mn+m+n} \Delta.$$

Caution: the sign in the last equality is sensitive to certain conventions.

Proof (after [7, §19]). We assume that $S^m \vee S^n \subseteq S^m \times S^n$ in the standard way. We have the commutative diagram

$$S^{m+n-1} \xrightarrow{\phi} S^m \vee S^n$$

$$\downarrow \text{in} \qquad \qquad \downarrow \text{in}$$

$$D^{m+n} \xrightarrow{\chi} S^m \times S^n,$$

where $[\phi] = \lfloor [\text{in}_1], [\text{in}_2] \rfloor$ in $\pi_{m+n-1}(S^m \vee S^n)$. We have the chain of homomorphisms and sendings

$$H_{m+n-1}(S^{m+n-1}) \qquad [S^{m+n-1}] \qquad (9)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{m+n}(D^{m+n}, S^{m+n-1}) \qquad [D^{m+n}] \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$H_{m+n}(S^m \times S^n, S^m \vee S^n) \qquad \operatorname{rel}_*([S^m \times S^n]) \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$H_{m+n}(S^m \times S^n). \qquad [S^m \times S^n]$$

Choose representatives $u\colon S^m\to Y$ and $v\colon S^n\to Y$ of \boldsymbol{u} and \boldsymbol{v} , respectively. Consider the maps

$$a \colon S^{m+n-1} \xrightarrow{\phi} S^m \vee S^n \xrightarrow{w=u\overline{\vee}v} Y.$$

Clearly, $[a] = \lfloor \boldsymbol{u}, \boldsymbol{v} \rceil$ in $\pi_{m+n-1}(Y)$.

Choose cocycles $\hat{e} \in Z^m(S^m \times S^n)$ and $\hat{f} \in Z^n(S^m \times S^n)$ and a cochain $\hat{g} \in C^{m+n-1}(S^m \times S^n)$ such that

$$\widehat{e}|_{S^m \vee S^n} = w^\#(e), \qquad \widehat{f}|_{S^m \vee S^n} = w^\#(f), \quad \text{and} \quad \widehat{g}|_{S^m \vee S^n} = w^\#(g).$$

We have

$$a^{\#}(e) = \phi^{\#}(w^{\#}(e)) = \phi^{\#}(\widehat{e}|_{S^m \vee S^n}) = \chi^{\#}(\widehat{e})|_{S^{m+n-1}}$$

in $Z^m(S^{m+n-1})$. It follows that $a^*([e])=0$ in $H^m(S^{m+n-1})$ (which is automatic unless n=1). Similarly, $a^*([f])=0$ in $H^n(S^{m+n-1})$. Thus $[a]\in [S^{m+n-1},Y]_{e,f}$.

Let $z_k \in H^k(S^k)$ be the class with $\langle z_k, [S^k] \rangle = 1$. One easily sees that

$$[\widehat{e}] = \langle \boldsymbol{u}^*([e]), [S^m] \rangle (z_m \times 1) + \langle \boldsymbol{v}^*([e]), [S^n] \rangle (1 \times z_n)$$

in $H^m(S^m \times S^n)$ and

$$[\widehat{f}] = \langle \boldsymbol{v}^*([f]), [S^n] \rangle (1 \times z_n) + \langle \boldsymbol{u}^*([f]), [S^m] \rangle (z_m \times 1)$$

in $H^n(S^m \times S^n)$. Thus $[\widehat{e}][\widehat{f}] = \Delta(z_m \times z_n)$ in $H^{m+n}(S^m \times S^n)$ and

$$\langle [\widehat{e}][\widehat{f}], [S^m \times S^n] \rangle = (-1)^{mn} \Delta. \tag{10}$$

Choose a cochain $\widetilde{p} \in C^{m-1}(D^{m+n})$ such that $\delta \widetilde{p} = \chi^{\#}(\widehat{e})$. Put

$$\widetilde{q} = \widetilde{p}\chi^{\#}(\widehat{f}) - \chi^{\#}(\widehat{g}) \in C^{m+n-1}(D^{m+n}).$$

Put

$$p = \widetilde{p}|_{S^{m+n-1}} \in C^{m-1}(S^{m+n-1})$$

and

$$q = \widetilde{q}|_{S^{m+n-1}} \in C^{m+n-1}(S^{m+n-1}).$$

We have

$$\delta p = \delta \widetilde{p}|_{S^{m+n-1}} = \chi^{\#}(\widehat{e})|_{S^{m+n-1}} = \phi^{\#}(\widehat{e}|_{S^m \vee S^n}) = \phi^{\#}(w^{\#}(e)) = a^{\#}(e)$$

and

$$q = p\chi^{\#}(\widehat{f})|_{S^{m+n-1}} - \chi^{\#}(\widehat{g})|_{S^{m+n-1}} = p\phi^{\#}(\widehat{f}|_{S^{m}\vee S^{n}}) - \phi^{\#}(\widehat{g}|_{S^{m}\vee S^{n}})$$
$$= p\phi^{\#}(w^{\#}(f)) - \phi^{\#}(w^{\#}(g)) = pa^{\#}(f) - a^{\#}(g).$$

Thus $\delta q = 0$ and h([a]) = [q].

We have

$$\delta \widetilde{q} = \chi^{\#}(\widehat{e})\chi^{\#}(\widehat{f}) - \delta \chi^{\#}(\widehat{g}) = \chi^{\#}(\widehat{e}\widehat{f} - \delta \widehat{g}).$$

We have the chain of homomorphisms and sendings

$$H^{m+n-1}(S^{m+n-1}) \qquad [q]$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$H^{m+n}(D^{m+n}, S^{m+n-1}) \qquad [\chi^{\#}(\widehat{e}\widehat{f} - \delta\widehat{g})]$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$H^{m+n}(S^{m} \times S^{n}, S^{m} \vee S^{n}) \qquad [\widehat{e}\widehat{f} - \delta\widehat{g}]$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$H^{m+n}(S^{m} \times S^{n}). \qquad [\widehat{e}][\widehat{f}]$$

Collating it with (9) and using (10), we get

$$\langle [q], [S^{m+n-1}] \rangle = (-1)^{m+n} \langle [\widehat{e}][\widehat{f}], [S^m \times S^n] \rangle = (-1)^{mn+m+n} \Delta.$$

This is what we need because $h(\lfloor \boldsymbol{u}, \boldsymbol{v} \rceil) = h([a]) = [q]$.

Let Γ be an open cover of X. Consider the differential graded ring $C^{\bullet}(\Gamma)$ of Γ -cochains of X (that is, functions on the set of singular simplices subordinate to Γ). The restriction homomorphism

$$?|_{\Gamma} \colon C^{\bullet}(X) \to C^{\bullet}(\Gamma)$$

is a morphism of differential graded rings; it induces an isomorphism of cohomology rings,

$$?|_{\Gamma} \colon H^{\bullet}(X) \to H^{\bullet}(\Gamma).$$

Lemma 9.3. Given $a \in Y_{e,f}^X$, choose $\widetilde{p} \in C^{m-1}(\Gamma)$ such that $\delta \widetilde{p} = a^{\#}(e)|_{\Gamma}$ and put

$$\widetilde{q} = \widetilde{p}a^{\#}(f)|_{\Gamma} - a^{\#}(g)|_{\Gamma} \in C^{m+n-1}(\Gamma).$$

Then $\delta \widetilde{q} = 0$ and $h([a])|_{\Gamma} = [\widetilde{q}]$ in $H^{m+n-1}(\Gamma)$.

We suppose that X and Y are cellular spaces and X is compact.

Theorem 9.4. Consider an ensemble $A \in \langle Y^X \rangle$,

$$A = \sum_{i} u_i \langle a_i \rangle,$$

where $a_i \in Y_{e,f}^X$, such that $A \stackrel{?}{=} 0$. Then

$$\sum_{i} u_i h([a_i]) = 0$$

in $H^{m+n-1}(X)$.

Thus h may be called a *partial* invariant of order at most 2.

Proof. Using Corollary 6.2, replace a_i by homotopic maps so that $A = \frac{2}{\Gamma} 0$ for some open cover Γ of X.

Let $B \subseteq C^m(\Gamma)$ be the subgroup generated by the coboundaries $a_i^{\#}(e)|_{\Gamma}$. It is free because finitely generated and torsion-free. Thus there is a homomorphism $P \colon B \to C^{m-1}(\Gamma)$ such that $\delta P(b) = b, \ b \in B$. Put

$$\widetilde{q}_i = P(a^{\#}(e)|_{\Gamma})a^{\#}(f)|_{\Gamma} - a^{\#}(g)|_{\Gamma} \in C^{m+n-1}(\Gamma).$$

By Lemma 9.3, $\delta \widetilde{q}_i = 0$ and

$$h([a_i])|_{\Gamma} = [\widetilde{q}_i]$$

in $H^{m+n-1}(\Gamma)$.

Take a singular simplex $\sigma: \Delta^{m+n-1} \to G, G \in \Gamma$. Let

$$\sigma' : \Delta^{m-1} \to G$$
 and $\sigma'' : \Delta^n \to G$

be its front and back faces, respectively.

The group $\operatorname{Hom}(B,\mathbb{Q})$ is formed by homomorphisms $\langle ?,T\rangle$, where T runs over $C_m(\Gamma;\mathbb{Q})$, the group of rational Γ -chains in X. Thus there is a chain $T \in C_m(\Gamma;\mathbb{Q})$ such that

$$\langle P(b), \sigma' \rangle = \langle b, T \rangle, \qquad b \in B.$$

We have

$$T = \sum_{k} c_k \tau_k,$$

where $c_k \in \mathbb{Q}$ and $\tau_k \colon \Delta^m \to G_k$, $G_k \in \Gamma$. Thus

$$\langle P(a_i^{\#}(e)|_{\Gamma}), \sigma' \rangle = \langle a_i^{\#}(e)|_{\Gamma}, T \rangle = \sum_k c_k \langle a_i^{\#}(e)|_{\Gamma}, \tau_k \rangle.$$

We get

$$\begin{split} \langle \widetilde{q}_i, \sigma \rangle &= (-1)^{(m-1)n} \langle P(a_i^\#(e)|_{\Gamma}), \sigma' \rangle \langle a_i^\#(f)|_{\Gamma}, \sigma'' \rangle - \langle a_i^\#(g)|_{\Gamma}, \sigma \rangle \\ &= (-1)^{(m-1)n} \sum_k c_k \langle a_i^\#(e)|_{\Gamma}, \tau_k \rangle \langle a_i^\#(f)|_{\Gamma}, \sigma'' \rangle - \langle a_i^\#(g)|_{\Gamma}, \sigma \rangle \\ &= (-1)^{(m-1)n} \sum_k c_k \langle (a_i|_{G \cup G_k})^\#(e), \tau_k \rangle \langle (a_i|_{G \cup G_k})^\#(f), \sigma'' \rangle \\ &- \langle (a_i|_G)^\#(g), \sigma \rangle. \end{split}$$

We have found functions $R_k \colon Y^{G \cup G_k} \to \mathbb{Q}$ and $S \colon Y^G \to \mathbb{Q}$ such that

$$\langle \widetilde{q}_i, \sigma \rangle = \sum_k R_k(a_i|_{G \cup G_k}) - S(a_i|_G)$$

for all i. Since $A \stackrel{2}{=} 0$, we have $A|_{G \cup G_k} = 0$ and $A|_G = 0$. Thus

$$\sum_{i} u_i \langle \widetilde{q}_i, \sigma \rangle = 0.$$

Since σ was taken arbitrarily, we have

$$\sum_{i} u_{i} \widetilde{q}_{i} = 0.$$

We get

$$\sum_{i} u_i h([a_i])|_{\Gamma} = \sum_{i} u_i[\widetilde{q}_i] = 0.$$

Since restriction to Γ here is an isomorphism, we get

$$\sum_{i} u_i h([a_i]) = 0.$$

Corollary 9.5. Let $a, b \in Y_{e,f}^X$ satisfy $a \stackrel{?}{\sim} b$. Then h([a]) = h([b]). Proof. There is an ensemble

$$A = \sum_{i} u_i \langle a_i \rangle \in \langle Y^X \rangle,$$

where $a_i \sim a$, such that $A \stackrel{?}{=} \langle b \rangle$. Since $A = |\{ \leq \}| \langle b \rangle$, we have

$$\sum_{i} u_i = 1.$$

By Theorem 9.4,

$$\sum_{i} u_i h([a_i]) = h([b]).$$

Since $[a_i] = [a]$, we get h([a]) = h([b]).

§10. Maps of
$$S^p \times S^n$$

This section does not depend of the rest of the paper. We recall a theorem of G. W. Whitehead about the fibration of free spheroids (Theorem 10.1) and deduce Lemma 10.3 about certain maps $S^p \times S^n \to Y$ (we need it in §11).

We fix numbers $p, n \ge 1$ and a space Y. Let $\Omega^n Y$ be the space of maps $S^n \to Y$, as usual. Let

$$\epsilon \colon S^p \times S^n \to S^p \wedge S^n \to S^{p+n}$$

be the composition of the projection and the standard homeomorphism. For a map $w: S^{p+n} \to Y$, introduce the map

$$\nabla^n(w): S^p \to \Omega^n Y, \qquad \nabla^n(w)(t)(z) = w(\epsilon(t,z)).$$

Introduce the isomorphism

$$\nabla^n : \pi_{p+n}(Y) \to \pi_p(\Omega^n Y), \qquad [w] \mapsto [\nabla^n(w)].$$

Let

$$\mu: S^n \to S^n \vee S^n$$

be the standard comultiplication. Consider the usual multiplication

$$\Omega^n Y \times \Omega^n Y \xrightarrow{*} \Omega^n Y, \qquad v_1 * v_2 \colon S^n \xrightarrow{\mu} S^n \vee S^n \xrightarrow{v_1 \overline{\vee} v_2} Y.$$

For a map $v \colon S^n \to Y$, introduce the map

$$\tau_v \colon \Omega^n Y \xrightarrow{v*?} (\Omega^n Y, v* \P),$$

where the target is $\Omega^n Y$ with the specified new basepoint. It induces the isomorphism

$$\tau_{v*} \colon \pi_p(\Omega^n Y) \to \pi_p(\Omega^n Y, v* \P).$$

Let $\Lambda^n Y$ be the space of unbased maps $S^n \to Y$. Consider the fibration

$$\rho \colon \Lambda^n Y \to Y, \qquad v \mapsto v(\P).$$

We have $\rho^{-1}(\P) = \Omega^n Y$.

Theorem 10.1 (G. W. Whitehead). For a map $v: S^n \to Y$, the composition

$$\Gamma \colon \pi_{p+1}(Y) \xrightarrow{\lfloor ?, [v] \rceil} \pi_{p+n}(Y) \xrightarrow{\boldsymbol{\nabla}^n} \pi_p(\Omega^n Y) \xrightarrow{\tau_{v *}} \pi_p(\Omega^n Y, v * \P)$$

coincides up to a sign with the connecting homomorphism of the fibration ρ at the point $v * \P \in \Omega^n Y$. Consequently, the composition

$$\pi_{p+1}(Y) \xrightarrow{\Gamma} \pi_p(\Omega^n Y, v * \P) \xrightarrow{\operatorname{in}_*} \pi_p(\Lambda^n Y, v * \P)$$

is zero.

Proof. See [8, Theorem (3.2)] and [9, §3].

For a map $v: S^n \to Y$, introduce the homomorphism

$$\Psi_v \colon \pi_{p+n}(Y) \xrightarrow{\nabla^n} \pi_p(\Omega^n Y) \xrightarrow{\tau_{v *}} \pi_p(\Omega^n Y, v * \P) \xrightarrow{\operatorname{in}_*} \pi_p(\Lambda^n Y, v * \P).$$

By Theorem 10.1,

$$\Psi_v(|\boldsymbol{u},[v]]) = 0, \qquad \boldsymbol{u} \in \pi_{p+1}(Y). \tag{11}$$

For maps $v: S^n \to Y$ and $w: S^{p+n} \to Y$, introduce the map

$$\Psi_v(w) \colon S^p \xrightarrow{\nabla^n(w)} \Omega^n Y \xrightarrow{\tau_v} (\Omega^n Y, v * \P) \xrightarrow{\mathrm{in}} (\Lambda^n Y, v * \P).$$

Clearly,

$$[\Psi_v(w)] = \Psi_v([w])$$

in $\pi_p(\Lambda^n Y, v * \P)$.

Introduce the map

$$\Phi \colon S^p \times S^n \xrightarrow{\mathrm{id} \times \mu} S^p \times (S^n \vee S^n) \xrightarrow{\theta} S^n \vee S^{p+n}, \tag{12}$$

where

$$\theta$$
: $(t, \operatorname{in}_1(z)) \mapsto \operatorname{in}_1(z), \quad (t, \operatorname{in}_2(z)) \mapsto \operatorname{in}_2(\epsilon(t, z)), \qquad t \in S^p, \quad z \in S^n.$

For maps $v: S^n \to Y$ and $w: S^{p+n} \to Y$, introduce the map

$$\Xi(v,w) \colon S^p \times S^n \xrightarrow{\Phi} S^n \vee S^{p+n} \xrightarrow{v \overline{\vee} w} Y.$$
 (13)

For elements $\boldsymbol{v} \in \pi_n(Y)$ and $\boldsymbol{w} \in \pi_{p+n}(Y)$, put

$$\Xi(\boldsymbol{v}, \boldsymbol{w}) = [\Xi(\boldsymbol{v}, \boldsymbol{w})] \in [S^p \times S^n, Y], \tag{14}$$

where v and w are representatives of v and w, respectively.

For maps $v_0: S^n \to Y$ and $V: S^p \to (\Lambda^n Y, v_0)$, introduce the map

$$V^{\times} : S^p \times S^n \to Y, \qquad (t, z) \mapsto V(t)(z).$$

For $\mathbf{V} \in \pi_p(\Lambda^n Y, v_0)$, put

$$V^{\times} = [V^{\times}] \in [S^p \times S^n, Y],$$

where V is a representative of V.

Lemma 10.2. For maps $v: S^n \to Y$ and $w: S^{p+n} \to Y$, one has

$$\Xi(v,w) = \Psi_v(w)^{\times} : S^p \times S^n \to Y.$$

Consequently,

$$\Xi([v],[w]) = \Psi_v([w])^{\times}$$

in $[S^p \times S^n, Y]$.

Proof. Take a point $(t, z) \in S^p \times S^n$. We have $\mu(z) = \operatorname{in}_k(\widetilde{z})$ in $S^n \vee S^n$ for some $k \in \{1, 2\}$ and $\widetilde{z} \in S^n$. We have

$$\theta(t, \mu(z)) = \theta(t, \text{in}_k(\widetilde{z})) = \begin{cases} \text{in}_1(\widetilde{z}) & \text{if } k = 1, \\ \text{in}_2(\epsilon(t, \widetilde{z})) & \text{if } k = 2 \end{cases}$$

in $S^n \vee S^{p+n}$. Thus

$$\begin{split} \Xi(v,w)(t,z) &= ((v \ \overline{\supseteq} \ w) \circ \Phi)(t,z) \\ &= ((v \ \overline{\supseteq} \ w) \circ \theta \circ (\operatorname{id} \times \mu))(t,z) = (v \ \overline{\supseteq} \ w)(\theta(t,\mu(z))) \\ &= \begin{cases} (v \ \overline{\supseteq} \ w)(\operatorname{in}_1(\widetilde{z})) = v(\widetilde{z}) & \text{if } k = 1, \\ (v \ \overline{\supseteq} \ w)(\operatorname{in}_1(\widetilde{z})) = v(\widetilde{z}) & \text{if } k = 2. \end{cases} \end{split}$$

On the other hand,

$$\begin{split} \Psi_v(w)^\times(t,z) &= \Psi_v(w)(t)(z) = \tau_v(\nabla^n(w)(t))(z) = (v * \nabla^n(w)(t))(z) \\ &= (v \ \overline{\supseteq} \ \nabla^n(w)(t))(\mu(z)) = (v \ \overline{\supseteq} \ \nabla^n(w)(t))(\operatorname{in}_k(\widetilde{z})) \\ &= \begin{cases} v(\widetilde{z}) & \text{if } k = 1, \\ \nabla^n(w)(t)(\widetilde{z}) = w(\epsilon(t,\widetilde{z})) & \text{if } k = 2. \end{cases} \end{split}$$

The same. \Box

Lemma 10.3. For elements $u \in \pi_{p+1}(Y)$, $v \in \pi_n(Y)$, and $w \in \pi_{p+n}(Y)$, one has

$$\Xi(v, |u, v| + w) = \Xi(v, w)$$

in $[S^p \times S^n, Y]$.

Proof. Choose a representative $v: S^n \to Y$ of \boldsymbol{v} . By (11),

$$\Psi_v(|\boldsymbol{u}, \boldsymbol{v}| + \boldsymbol{w}) = \Psi_v(\boldsymbol{w})$$

in $\pi_p(\Lambda^n Y, v * \P)$. Applying Lemma 10.2 yields the desired equality. \square

For a map $w: S^{p+n} \to Y$, introduce the map

$$\xi(w): S^p \times S^n \xrightarrow{\epsilon} S^{p+n} \xrightarrow{w} Y.$$

For an element $\boldsymbol{w} \in \pi_{p+n}(Y)$, put

$$\boldsymbol{\xi}(\boldsymbol{w}) = [\boldsymbol{\xi}(\boldsymbol{w})] \in [S^p \times S^n, Y], \tag{15}$$

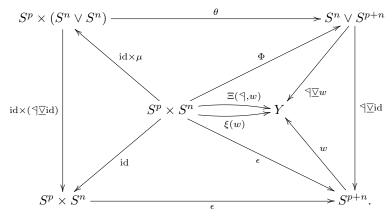
where w is a representative of \boldsymbol{w} .

Lemma 10.4. For en element $\mathbf{w} \in \pi_{p+n}(Y)$, one has

$$\Xi(0, \boldsymbol{w}) = \boldsymbol{\xi}(\boldsymbol{w})$$

in $[S^p \times S^n, Y]$.

Proof. Choose a representative $w\colon S^{p+n}\to Y$ of $\boldsymbol{w}.$ Consider the diagram



Since the map

$$S^n \xrightarrow{\mu} S^n \vee S^n \xrightarrow{\triangleleft \overline{\vee} \mathrm{id}} S^n$$

is homotopic to the identity, the left triangle is homotopy commutative. The other empty triangles and the square are commutative. It follows that the parallel curved arrows are homotopic. $\hfill\Box$

§11. Fineness of 2-similarity

Put $X = S^p \times S^n$ $(p \ge 1, n \ge 2)$. Let Y be a space, and let $\boldsymbol{u} \in \pi_{p+1}(Y)$ and $\boldsymbol{v} \in \pi_n(Y)$ be some elements. Consider the Whitehead product

$$|\boldsymbol{u}, \boldsymbol{v}| \in \pi_{p+n}(Y)$$

and the homotopy classes

$$k(t) = \xi(t \lfloor u, v \rceil) \in [X, Y], \qquad t \in \mathbb{Z}$$

(see (15)).

Lemma 11.1. Let L be an abelian group and $f: [X,Y] \to L$ be an invariant of order at most r. Then

$$f(\mathbf{k}(r!+t)) = f(\mathbf{k}(t)), \qquad t \in \mathbb{Z}.$$

Proof (after [5, Lemma 1.5]). We will use the homotopy classes

$$K(s,t) = \Xi(sv, t \lfloor u, v \rceil) \in [X, Y], \quad s, t \in \mathbb{Z}$$

(see (14)). By Lemma 10.4,

$$K(0,t) = k(t). \tag{16}$$

We have

$$K(s, m+t) = K(s,t) \quad \text{if } s \mid m$$
 (17)

because

$$\begin{split} \mathbf{\Xi}(s\boldsymbol{v},(m+t)\lfloor\boldsymbol{u},\boldsymbol{v}\rceil) &= \mathbf{\Xi}(s\boldsymbol{v},\lfloor (m/s)\boldsymbol{u},s\boldsymbol{v}\rceil + t\lfloor\boldsymbol{u},\boldsymbol{v}\rceil) \\ &= \mathbf{\Xi}(s\boldsymbol{v},t|\boldsymbol{u},\boldsymbol{v}\rceil) \quad \text{(by Lemma 10.3)}. \end{split}$$

Consider the wedge of r copies of S^n and two copies of S^{p+n}

$$W = S^n \vee \ldots \vee S^n \vee S^{p+n} \vee S^{p+n}$$

and the maps

$$\Lambda(d) = \lambda_1(d_1) \vee \dots \lambda_r(d_r) \vee \lambda_{r+1}(d_{r+1}) \vee \mathrm{id} \colon W \to W,$$

$$d = (d_1, \dots, d_{r+1}) \in \{0, 1\}^{r+1} \subseteq \mathbb{Z}^{r+1}, \text{ as in } \S 3. \text{ Put}$$

$$\mu = \mu_1 \vee \mu_2 \colon S^n \vee S^{p+n} \to W,$$

where

$$\mu_1 \colon S^n \to S^n \vee \ldots \vee S^n$$
 and $\mu_2 \colon S^{p+n} \to S^{p+n} \vee S^{p+n}$

are the comultiplications. Choose a map $q: W \to Y$ with

$$[q] = \boldsymbol{v} \, \overline{\vee} \dots \overline{\vee} \, \boldsymbol{v} \, \overline{\vee} \, r! \lfloor \boldsymbol{u}, \boldsymbol{v} \rceil \, \overline{\vee} \, t \lfloor \boldsymbol{u}, \boldsymbol{v} \rceil.$$

Consider the ensemble $A \in \langle Y^X \rangle$,

$$A = \sum_{d \in \{0,1\}^{r+1}} (-1)^{|d|} \langle a(d) \rangle,$$

where

$$a(d) \colon X \xrightarrow{\Phi} S^n \vee S^{p+n} \xrightarrow{\mu} W \xrightarrow{\Lambda(d)} W \xrightarrow{q} Y,$$

where Φ is as in (13). By Lemma 3.1, $A \stackrel{r}{=} 0$. Clearly,

$$[q \circ \Lambda(d) \circ \mu] = (d_1 + \dots d_r) \boldsymbol{v} \, \underline{\vee} \, (d_{r+1}r! + t) \lfloor \boldsymbol{u}, \boldsymbol{v} \rceil$$

in $[S^n \vee S^{p+n}, Y]$. Thus, by the construction of K(s, t),

$$[a(d)] = \mathbf{K}(d_1 + \dots d_r, d_{r+1}r! + t)$$

in [X, Y]. Thus, since f has order at most r,

$$\sum_{d \in \{0,1\}^{r+1}} (-1)^{|d|} f(\mathbf{K}(d_1 + \dots d_r, d_{r+1}r! + t)) = 0.$$

By (17), the class $\mathbf{K}(d_1 + \dots d_r, d_{r+1}r! + t)$ does not depend on d_{r+1} if $(d_1, \dots, d_r) \neq (0, \dots, 0)$. Thus the corresponding summands cancel out. We get $f(\mathbf{K}(0,t)) - f(\mathbf{K}(0,r!+t)) = 0$. By (16), this is what we need. \square

Let classes $E \in H^{p+1}(Y)$ and $F \in H^n(Y)$ satisfy EF = 0 in $H^{p+n+1}(Y)$. Put, as in Lemma 9.2,

$$\Delta = \langle \boldsymbol{u}^*(E), [S^{p+1}] \rangle \langle \boldsymbol{v}^*(F), [S^n] \rangle$$

+ $(-1)^{(p+1)n} \langle \boldsymbol{u}^*(F), [S^{p+1}] \rangle \langle \boldsymbol{v}^*(E), [S^n] \rangle \in \mathbb{Z}.$

If $Y = S^{p+1} \vee S^n$ with $\mathbf{u} = [\text{in}_1]$ and $\mathbf{v} = [\text{in}_2]$, taking obvious E and F yields $\Delta = 1$. If p = n - 1 and $Y = S^n$ with $\mathbf{u} = \mathbf{v} = [\text{id}]$, taking obvious equal E and F yields $\Delta = 1 + (-1)^n$.

Lemma 11.2. If $\Delta \neq 0$, the classes k(t), $t \in \mathbb{Z}$, are pairwise not 2-similar. Proof. Choose cocycles $e \in Z^{p+1}(Y)$ and $f \in Z^n(Y)$ representing E and F, respectively. Choose a cochain $g \in C^{p+n}(Y)$ with $\delta g = ef$. Consider the corresponding Hopf invariants (see §9)

$$h_0: \pi_{p+n}(Y) \to H^{p+n}(S^{p+n})$$
 and $h: [X, Y]_{e,f} \to H^{p+n}(X)$.

By Lemma 9.2,

$$\langle h_0(\lfloor \boldsymbol{u}, \boldsymbol{v} \rceil), [S^{p+n}] \rangle = (-1)^{pn+p+1} \Delta.$$

We have the decomposition

$$k(t): X \xrightarrow{\epsilon} S^{p+n} \overset{t[\mathrm{id}]}{\leadsto} S^{p+n} \overset{\lfloor u,v \rfloor}{\leadsto} Y$$

(the wavy arrows denote homotopy classes). Clearly, $k(t) \in [X,Y]_{e,f}$. Since the Brouwer degree of ϵ is 1 and that of $t[\mathrm{id}]$ is t, Lemma 9.1 yields

$$\langle h(\mathbf{k}(t)), [X] \rangle = (-1)^{pn+p+1} \Delta t.$$

By Corollary 9.5, the classes k(t), $t \in \mathbb{Z}$, are pairwise not 2-similar if $\Delta \neq 0$.

Moral. Suppose that $\Delta \neq 0$. The classes k(0) (i.e., $[\P]$) and k(2) in [X,Y], which are not 2-similar by Lemma 11.2, cannot be distinguished by an invariant of order at most 2 by Lemma 11.1. Recall that (X,Y) can be $(S^p \times S^n, S^{p+1} \vee S^n)$ for any $p \geq 1$ and $n \geq 2$ or $(S^{n-1} \times S^n, S^n)$ for even $n \geq 2$.

References

- M. Gusarov, On n-equivalence of knots and invariants of finite degree. In: "Topology of manifolds and varieties", Adv. Sov. Math. 18 (1994), 173–192.
- M. N. Gusarov, Variations of knotted graphs. Geometric techniques of nequivalence. — St. Petersbg. Math. J. 12 (2001), 569–604.
- 3. A. Hatcher, Algebraic topology. Cambridge University Press, 2002.
- S.S. Podkorytov, The order of a homotopy invariant in the stable case. Math. Sb. 202 (2011), 1183–1206.
- S.S. Podkorytov, On homotopy invariants of finite degree. J. Math. Sci., New York 212 (2016), 587–604.
- J.-P. Serre, Homologie singulière des espaces fibrés. Applications. Ann. Math.
 54, No. 3 (1951), 425–505.
- N. E. Steenrod, Cohomology invariants of mappings. Ann. Math. (2) 50, No. 4 (1949), 954–988.
- G. W. Whitehead, On products in homotopy groups. Ann. Math. (2) 47, No. 3 (1946), 460–475.
- J. H. C. Whitehead, On certain theorems of G. W. Whitehead. Ann. Math. (2) 58, No. 3 (1953), 418–428.

St. Petersburg Department of Steklov Institute of Mathematics, Fontanka 27, St. Petersburg 191011, Russia

E-mail: ssp@pdmi.ras.ru

Поступило 25 декабря 2025 г.