Ivan Panin

EXTENSIONS OF POONEN'S THEOREMS

ABSTRACT. We prove some extensions of Poonen's form of Bertini type theorems over a finite field. These extensions are stated and proved in section 2. First applications are given in section 3. Further applications will be given in a next paper.

§1. Introduction

Let X be a quasi-projective subscheme of \mathbf{P}^n of dimension $m\geqslant 0$ over $\mathbb{F}_q.$ Let

$$\emptyset = X_{n+1} \subset \ldots \subset X_2 \subset X_1 = X$$

be a filtration of X by closed subvarieties such that X_i-X_{i+1} is smooth equidimensional of dimension $m_i\geqslant 0$. Then there exist homogeneous polynomials f over \mathbb{F}_q such that for each i the intersection of X_i-X_{i+1} and the hypersurface f=0 is smooth of dimension m_i-1 . In fact, the set of such f has a positive density, equal to $\prod_{i=1}^n \zeta_{X_i-X_{i+1}}(m_i+1)^{-1}$, where for an \mathbb{F}_q -scheme Y the function $\zeta_Y(s)=Z_Y(q^{-s})$ is the zeta function of Y.

As applications we prove Corollary 3.3 and Theorem 3.4. Further applications will be given in a next paper. Particularly, we expect to give a detailed proof of existences of an elementary fibration for smooth varieties over a finite field. The latter statement was formulated in [2, Proposition 2.3] and a sketch of its proof was given there [2, Appendix B].

§2. Poonen's type theorems

Let \mathbb{F}_q be a finite field of $q=p^a$ elements. Let $S=\mathbb{F}_q[x_0,\ldots,x_r]$ be the homogeneous coordinate ring of \mathbb{P}^r , let $S_d\subset S$ be the \mathbb{F}_q -subspace of homogeneous polynomials of degree d, and let $S_{\text{hom}}=\cup_{d=0}^\infty S_d$. For each $f\in S_d$, let H_f be the subscheme $\text{Proj}(S/(f))\subset \mathbb{P}^r$. Typically (but not always), H_f is a hypersurface of dimension r-1 defined by the equation

Key words and phrases: finite fields, Bertini type theorems, Poonen's theorems.

f=0. Define the density of a subset $\mathcal{P}\subseteq S_{\text{hom}}$ by

$$\mu(\mathcal{P}) := \lim_{d \to \infty} \frac{\sharp (\mathcal{P} \cap S_d)}{\sharp (S_d)}$$

if the limit exists.

Notation 2.1. Let $U \subset \mathbb{P}^r$ be a smooth quasi-projective equidimensional subscheme of dimension m. Let $f \in S_{\text{hom}}$. We write $H_f \cap U$ if the scheme $H_f \cap U$ is smooth of dimension m-1.

Let $P \in U$. We write $(H_f \cap U)_P$ if f(P) = 0 and the scheme $H_f \cap U$ is smooth of dimension m-1 at the point P.

Theorem 2.2 (Bertini type theorem). Let X be an arbitrary quasi-projective subscheme of \mathbb{P}^r over \mathbb{F}_q . Let

$$\emptyset = X_{n+1} \subset \ldots \subset X_1 \subset X_0 = X \tag{1}$$

be a filtration of X by closed subvarieties such that $U_i := X_i - X_{i+1}$ is smooth equidimensional of dimension $m_i \ge 0$. Define

$$\mathfrak{P} := \{ f \in S_{\text{hom}} : \text{for each i one has } H_f \pitchfork U_i \}.$$

Then
$$\mu(\mathfrak{P}) = \prod_i \zeta_{U_i} (m_i + 1)^{-1}$$
 and $\mu(\mathfrak{P}) > 0$.

Let $W\subseteq \mathbb{P}^r$ be a finite subscheme of \mathbb{P}^r . The following notation is taken from [3, Theorem 1.2]. Given $g\in R_d$ let $g|_W$ be the element of $H^0(W, \mathcal{O}_W)$ that on each connected component W_i equals the restriction of g/x_j^d to W_i , where j=j(i) is the smallest $j\in\{0,\ldots,r\}$ such that the coordinate x_j is invertible on Z_j . Theorem 2.2 is a partial case of the following result. Indeed, taking $W_i=\varnothing$ for all i and $B=\varnothing$ in Theorem 2.3 we get Theorem 2.2.

Theorem 2.3 (Bertini type theorem). Let X be an arbitrary quasi-projective subscheme of \mathbb{P}^r over \mathbb{F}_q . Let $m = \dim X \geqslant 2$. Let

$$\emptyset = X_{n+1} \subset \ldots \subset X_1 \subset X_0 = X \tag{2}$$

be a filtration of X by closed subvarieties and $B \subset X$ is a closed subset with $dimB \leq m-2$. Let $Y_i = X_i - B$. Let $W \subset \mathbb{P}^r$ be a finite subscheme and $T \subset H^0(W, \mathcal{O}_W)$ a nonempty subset. Suppose $V_i := Y_i - Y_{i+1}$ is smooth equidimensional of dimension $m_i \geq 0$. Put $U_i = V_i - W$ and consider a set

 $\mathfrak{P}^T := \{ f \in S_{\text{hom}} : f|_W \in T \text{ and for each } i \text{ one has } H_f \cap U_i \}.$

Then
$$\mu(\mathcal{P}^T) = \frac{\sharp(T)}{\sharp H^0(W,\mathcal{O}_W)} \prod_{i=0}^n \zeta_{U_i}(m_i+1)^{-1} \text{ and } \mu(\mathcal{P}^T) > 0.$$

Let U be a smooth equidimensional of dimension m quasi-projective subscheme of \mathbb{P}^r over \mathbb{F}_q and r>0 be an integer. Define Let $U_{< r}$ be the set of closed points of U of degree < r. Similarly define $U_{>r}$. Let W be a finite subscheme of \mathbb{P}^r with $W \cap U = \emptyset$. Let T be a subset in $H^0(W, \mathcal{O}_W)$. Define

$$\begin{split} \mathcal{P}^U_r &:= \{f \in S_{\text{hom}} : (H_f \pitchfork U)_P \text{ at all } P \in U_{\leq r}\}, \\ \mathcal{P}^{U,T}_r &:= \{f \in S_{\text{hom}} : H_f \pitchfork U \text{ at all } P \in U_{\leq r} \text{ and } f|_W \in T\}, \\ \mathcal{P}^U &:= \{f \in S_{\text{hom}} : H_f \pitchfork U\}. \end{split}$$

$$\mathcal{P}^{U,T} := \{f \in S_{\text{hom}} : H_f \pitchfork U \text{ and } f|_W \in T\}.$$

Lemma 2.4 (Lemma 2.2 of [3]). $\mu(\mathcal{P}_r^U) = \prod_{P \in U_{< r}} (1 - q^{-(m+1)\deg P});$ $\mu(\mathcal{P}_r^{U,T}) = \frac{\sharp(T)}{\sharp H^0(W, \mathcal{O}_W)} \prod_{P \in U_{< r}} (1 - q^{-(m+1)\deg P}).$

As mentioned in the proof of [3, Lemma 2.4], the number of closed points of degree r in U is O(qrm); this guarantees that the product defining $\zeta_U(s)^{-1}$ converges at s=m+1. By Lemma 2.4

$$\lim_{r \to \infty} \mu(\mathcal{P}_r^U) = \zeta_U(m+1)^{-1}$$

and

$$\lim_{r\to\infty}\mu(\mathcal{P}^{U,T}_r)=\frac{\sharp(T)}{\sharp H^0(W,\mathcal{O}_W)}\zeta_U(m+1)^{-1}.$$

Define

$$\mathcal{P}_r^T := \{ f \in S_{\text{hom}} : \text{for each } i \ (H_f \cap U_i)_P \text{ at all } P \in (U_i)_{\leq r} \text{ and } f|_W \in T \}.$$

$$\mathcal{P}^T := \{ f \in S_{\text{hom}} : \text{for each } i \ H_f \cap U_i \text{ and } f|_W \in T \}.$$

Clearly, $\mathcal{P}_r^T = \mathcal{P}_r^{U_0,T} \cap \bigcap_{i=1}^n \mathcal{P}_r^{U_i}$ and $\mathcal{P}^T = \mathcal{P}^{U_0,T} \cap \bigcap_{i=1}^n \mathcal{P}^{U_i}$. Hence Lemma 2.4 yields the following

Lemma 2.5. One has

$$\mu(\mathcal{P}_r^T) = \left[\frac{\sharp(T)}{\sharp H^0(W, \mathcal{O}_W)} \prod_{P \in (U_0)_{\le r}} (1 - q^{-(m_0 + 1)\deg P}) \right] \times \prod_{i=1}^n \prod_{P \in (U_i)_{\le r}} (1 - q^{-(m_i + 1)\deg P}).$$

Corollary 2.6.

$$\lim_{r \to \infty} \mu(\mathcal{P}_r^T) = \left[\frac{\sharp(T)}{\sharp H^0(W, \mathcal{O}_W)} \zeta_{U_0}(m_0 + 1)^{-1} \right] \prod_{i=1}^n [\zeta_{U_i}(m_i + 1)^{-1}].$$

Define

$$\begin{aligned} Q_{\mathrm{med},r}^{U_i} &:= \cup_{d \geqslant 0} \{ f \in S_d : \exists P \in U_i \text{ with } r \leqslant \deg P \leqslant d/(m_i+1) \\ &\text{such that } H_f \cap U_i \text{ is not smooth of dimension } m_i - 1 \text{ at } P \}, \\ Q_{\mathrm{high}}^{U_i} &:= \cup_{d \geqslant 0} \{ f \in S_d : \exists P \in (U_i)_{>d/(m_i+1)} \text{ such that } \\ H_f \cap U_i \text{ is not smooth of dimension } m_i - 1 \text{ at } P \} \end{aligned}$$

The following inclusions are obvious

$$\mathcal{P}^T \subseteq \mathcal{P}_r^T \subseteq \mathcal{P}^T \cup \bigcup_{i=0}^n Q_{\text{med},r}^{U_i} \cup \bigcup_{i=0}^n Q_{\text{high}}^{U_i}$$
 (3)

Proof of Theorem 2.3. Due to inclusions (3) as $\bar{\mu}(\mathcal{P}^T)$, so $\underline{\mu}(\mathcal{P}^T)$ each differ from $\mu(\mathcal{P}_r^T)$ by at most $\sum_{i=0}^n \bar{\mu}(Q_{\mathrm{med},r}^{U_i}) + \sum_{i=0}^n \bar{\mu}(Q_{\mathrm{high}}^{U_i})$. By [3, Lemma 2.4] for each $i \in \{0, 1, \dots, n\}$ one has $\lim_{r \to \infty} \bar{\mu}(Q_{\mathrm{med},r}^{U_i}) = 0$. By [3, Lemma 2.6] for each $i \in \{0, 1, \dots, n\}$ one has $\bar{\mu}(Q_{\mathrm{high}}^{U_i}) = 0$. By Corollary 2.6 the limit $\lim_{r \to \infty} \mu(\mathcal{P}_r^T)$ exists. Thus letting r tend to infinity, we obtain

$$\mu(\mathcal{P}^T) = \lim_{r \to \infty} \mathcal{P}_r^T = \frac{\sharp(T)}{\sharp H^0(W, \mathcal{O}_W)} \prod_{i=0}^n \zeta_{U_i} (m_i + 1)^{-1}.$$
 (4)

§3. First applications

Proposition 3.1. Let X be a projective equidimensional subscheme of \mathbb{P}^r over \mathbb{F}_q . Let $m \geq 2$ be the dimension of X. Let $f_0 \in S_{\text{hom}}$ be such that $Y := H_{f_0} \cap X$ is equidimensional of dimension m-1. Put $X_0 = Y_{\text{red}}$. Let $B \subset X_0$ be a closed subset with dim $B \leq m-2$ and such that X-B and X_0-B are smooth. Let $\underline{x}=\{x_1,\ldots,x_l\}$ be a finite set of closed points in $\mathfrak{X}:=X-X_0$. Then there exists a homogeneous polynomial $f_1 \in S_{\text{hom}}$ such that

- 1) for the scheme $X_1 := H_{f_1} \cap X$ the one $X_1 B$ is smooth of dimension m-1;
 - 2) the scheme $(X_0 \cap X_1) B$ is smooth of dimension m-2;

- 3) $\underline{x} \cap (X_0 \cup X_1) = \emptyset$;
- 4) $\deg f_0$ divides $\deg f_1$.

Let $\{Z_c\}_{c\in C}$ be any finite family of closed irreducible subsets in X. Then one can choose $f_1 \in S_{\text{hom}}$ such that additionally for each $c \in C$ one has $\dim(X_1 \cap Z_c) \leq \dim Z_c - 1$. Particularly, one can choose $f_1 \in S$ such that

- 5) $\dim(X_1 \cap X_0) \leq m 2$;
- 6) $\dim(X_1 \cap B) \leq m 3$.

If X is absolutely irreducible then one can choose $f_1 \in S_{hom}$ such that additionally

7) the scheme X_1 is absolutely irreducible.

Proof. (of Proposition 3.1). Take the filtration $\varnothing\subset X_0\subset X$. Put $Y_1=X-B,\ Y_0=X_0-B$. Clearly, Y_0 and Y_1 are smooth. Consider a finite family W of closed points in X such that W contains at least one point of each irreducible component of X_0 and B and contains at least one point of each Z_c ($c\in C$). Suppose also that W contains \underline{x} . Consider W as a closed subscheme of \mathbb{P}^r with the reduced structure. For each $w\in W$ set $T_w=\mathbb{F}_q-\{0\}$ and take $T=\prod_{w\in W}T_w\subset \Gamma(W,\mathbb{O}_W)$. Put $U_{(0)}=Y_1-Y_0$ and $U_{(1)}=Y_0$, and

$$\mathfrak{P}^T:=\{f\in S_{\text{hom}}: f|_W\in T \text{ and for each } s \text{ one has } H_f\pitchfork (U_{(s)}-W)\}.$$

Clearly, for each $f_1 \in \mathcal{P}^T$ the assertions (1)–(3),(5) and (6) are true. By Theorem 2.3 the density $\mu(\mathcal{P}^T)$ of \mathcal{P}^T is well-defined and it is positive. Thus we may choose $f_1 \in \mathcal{P}^T$ such that conditions (1)–(6) and (4) are satisfied.

Suppose now that X is absolutely irreducible. Consider a set

$$\mathcal{P}_1 := \{ f \in S_{\text{hom}} : \text{the scheme } H_f \cap X \text{ is absolutely irreducible} \}.$$

Clearly, for each $f_1 \in \mathcal{P}^T \cap \mathcal{P}_1$ the assertions (1)–(3), (5), (6), and (7) are true. By [1, Theorem 1.1] the density of \mathcal{P}_1 is 1. Thus the density of $\mathcal{P}^T \cap \mathcal{P}_1$ is well-defined and positive. So, we may choose $f_1 \in \mathcal{P}^T \cap \mathcal{P}_1$ such that conditions (1)–(3), (5)–(7) are satisfied and the condition (4) is satisfied too

Theorem 3.2. Let $X \subset \mathbb{P}^r$, $m \geq 2$, $f_0 \in S_{\text{hom}}$, Y, $X_0 \subset X$, $B \subset X_0$, $\mathfrak{X} = X - X_0$ and $\underline{x} \subset \mathfrak{X}$ be the same as in Proposition 3.1. Then for each integer n with $1 \leq n \leq m$ there exist homogeneous polynomials f_1, \ldots, f_n such that for schemes $X_i := H_{f_i} \cap X$ and any subset I in $\{0, 1, \ldots, n\}$ and the scheme intesection $X_I := \bigcap_{i \in I} X_i$ we have

- 1) the scheme $X_I B$ is smooth of dimension m |I|;
- $2) \ \underline{x} \cap (X_0 \cup X_1) = \varnothing;$
- 3) \underline{x} is contained in $\bigcap_{i=2}^{n} X_i$;
- 4) deg f_i divides $deg f_{i+1}$ for each $i \in \{0, 1, \dots, n-1\}$;

Let $\{Z_c\}_{c\in C}$ be any finite family of closed irreducible subsets in X. Then one can choose $f_1,\ldots,f_n\in S$ such that additionally for each $c\in C$ and any subset I in $\{1,\ldots,n\}$ one has $\dim(X_I\cap Z_c)\leqslant \dim Z_c-|I|$. Particularly, one can choose $f_1,\ldots,f_n\in S$ such that

- 5) for any subset I in $\{0,1,\ldots,n\}$ the scheme X_I has dimension m-|I|;
- 6) for any subset I in $\{1, \ldots, n\}$ one has $\dim(X_I \cap B) \leq \dim B |I|$.

If X is absolutely irreducible then one can choose $f_1, \ldots, f_n \in S$ such that additionally

7) for any I in $\{1, ..., n\}$ with |I| < m the scheme X_I is absolutely irreducible.

Proof. Assuming the theorem is true for all integers strictly less than n prove it for the integer n. Proposition 3.1 shows that we may assume $n \ge 2$. Thus we are given with f_1, \ldots, f_{n-1} which enjoy properties (1)–(6). Our aim is to find $f_n \in S_{\text{hom}}$ such that f_1, \ldots, f_n enjoy properties (1)–(6).

aim is to find
$$f_n \in S_{\text{hom}}$$
 such that f_1, \ldots, f_n enjoy properties (1)–(6). For each $s \in \{1, \ldots, n\}$ put $X_{(s)} := \bigcup_{\text{Card}(I)=s} X_I$, where

 $I \subset \{0,1,\dots,n-1\}$. Put $X_{(0)} := X$. Consider the following filtration on X via closed subschemes

$$\emptyset \subset X_{(n)} \subset \ldots \subset X_{(1)} \subset X_{(0)} = X$$
 (5)

Put $Y_{(s)}=X_{(s)}-B$. Clearly, $U_s:=X_{(s)}-X_{(s+1)}$ is smooth equidimensional of dimension $m_s=m-s\geqslant 0$. If n=2, then put $\mathbb{X}=X$. If n>2, then put $\mathbb{X}=\bigcap_{i=2}^{n-1}X_i$.

Consider all closed sets of the form $Z_c \cap X_I$ $(c \in C \text{ and } I \subset \{0,1,\ldots,n-1\})$. Consider all closed sets of the form X_I with $I \subset \{0,1,\ldots,n-1\}$ and all closed sets of the form $B \cap X_J$ with $J \subset \{1,\ldots,n-1\}$. Let E be a set enumerating all irreducible components of these sets. So, for each $e \in E$ there is a unique irreducible component Z_e of one of the mentioned closed sets. For each e in E choose one point e in E choose one point e in E choose e in E choose one point e in E

consider

 $\mathfrak{P}^T := \{ f \in S_{\text{hom}} : f|_W \in T \text{ and for each } s \text{ one has } H_f \cap (U_{(s)} - W) \}.$

It is straight forward to check that for each $f_n \in \mathcal{P}^T$ the polynomials f_1, \ldots, f_n enjoy the properties (1)–(5) and (6). By Theorem 2.3 the density $\mu(\mathcal{P}^T)$ of \mathcal{P}^T is well-defined and it is positive. Thus we may choose $f_n \in \mathcal{P}^T$ such that f_1, \ldots, f_n enjoy properties (1)-(6) and (4).

Suppose now that X is absolutely irreducible. Let I be a subset of $\{1,\ldots,n-1\}$. If |I|< m-1, put $\mathcal{P}_I:=\{f\in S_{\mathrm{hom}}: \mathrm{the\ scheme}\ H_f\cap I\}$ X_I is absolutely irreducible. Write Sub(n-1) for the set of all subsets I of $\{1,\ldots,n-1\}$ with |I| < m-1. Clearly, for each $f_n \in \mathcal{P}^T \cap \bigcap_{I \in \mathrm{Sub}(n-1)} \mathcal{P}_I$ the assertions (1)–(3),(5)–(6) and (7) are true. By [1, Theorem 1.1] for each $I \in \operatorname{Sub}(n-1)$ the density of \mathcal{P}_I is 1. Thus the density of $\mathcal{P}^T \cap$ $\bigcap_{I\in \mathrm{Sub}(n-1)} \mathcal{P}_I$ is well-defined and positive. So, we may choose $f_n\in \mathcal{P}^T\cap \mathcal{P}_I$ $\bigcap_{I \in \text{Sub}(n-1)} \mathcal{P}_I$ such that conditions (1)-(3), (5)-(6), (7) are satisfied and the condition (4) is satisfied too. The proof is completed.

Corollary 3.3. Let $X \subset \mathbb{P}^r$, $m \geqslant 2$, $f_0 \in S_{\text{hom}}$, Y, $X_0 \subset X$, $B \subset X_0$, $\mathfrak{X}=X-X_0$ and $\underline{x}\subset\mathfrak{X}$ be the same as in Proposition 3.1. Then there exist homogeneous polynomials f_1, \ldots, f_m such that for $X_i := H_{f_i} \cap X$ and any subset I in $\{0,1,\ldots,m\}$ and the scheme intesection $X_I:=\bigcap_{i\in I}X_i$ $we\ have$

- 1) $X_{\{0,1,...,m\}} = \emptyset;$
- 2) $X_{\{1,...,m\}}$ is smooth of dimension 0;
- 3) $X_{\{0,2,\ldots,m\}}$ is smooth of dimension 0;
- 4) $X_{\{2,\ldots,m\}}$ is smooth of dimension 1;
- 5) \underline{x} is contained in $X_{\{2,\ldots,m\}}$;
- 6) $\underline{x} \cap (X_0 \cup X_1) = \emptyset;$
- 7) deg f_i divides deg f_{i+1} for each $i \in \{0, 1, \dots, m-1\}$.

Let Z be a closed subset in X with dim $Z \leq m-1$ such that $(Z \cap X_0) \subset B$.

Then one can choose $f_1, \ldots, f_m \in S_{\text{hom}}$ such that additionally

- 8) $X_{\{1,...,m\}} \cap Z = \emptyset$;
- 9) $X_{\{0,2,...,m\}} \cap Z = \emptyset$.

If X is absolutely irreducible then one can choose $f_1, \ldots, f_m \in S$ such that additionally

10) the scheme $X_{\{2,\ldots,m\}}$ is absolutely irreducible.

Also, Theorem 3.2 easily implies the following result.

Theorem 3.4 (Bertini type theorem). Let X be a smooth projective equidimensional subscheme of \mathbb{P}^r over \mathbb{F}_q . Let $\underline{x} = \{x_1, \dots, x_l\}$ be a finite set of closed points in X. Let $m \geq 0$ be the dimension of X. There exist homogeneous polynomials f_0, f_1, \dots, f_m of degrees e_0, e_1, \dots, e_m respectively such that the subschemes $X_i := H_{f_i} \cap X$ enjoy the following properties:

- 1) for any $I \subset \{0, 1, ..., m\}$ the intesection $X_I := \bigcap_{i \in I} X_i$ is smooth of dimension m |I|;
 - 2) X_0 and X_1 do not contain any point of \underline{x} ;
- 3) for any i > 1 the scheme X_i contains the set \underline{x} ; 4) for each $i = 0, 1, \ldots, m-1$ the number e_i divides e_{i+1} .

Let Z be a closed subset in X with $\dim Z \leq m-1$. Then one can choose $f_0, \ldots, f_m \in S_{\text{hom}}$ such that additionally $(\cap_{i=1}^m X_i) \cap Z = \emptyset$ and $(\cap_{i=2}^m X_i) \cap (Z \cap X_0) = \emptyset$

We will write $\mathcal{O}(e)$ for $\mathcal{O}_{\mathbb{P}^r}(e)|_X$ and $s_i \in \Gamma(X, \mathcal{O}(e_i))$ for $f_i|_X$.

Proposition 3.5. Let $\mathbb{P}^{m,w}$ be the weighted projective space with homogenneous coordinates $[t_0:t_1:\ldots:t_m]$ of weights $1,e_1/e_0,\ldots,e_m/e_0$ respectively. Then under the notation of Theorem 3.4 the morphism

$$\pi = [s_0 : s_1 : \dots : s_m] : X \to \mathbb{P}^{m,w}$$

$$\tag{6}$$

is well-defined and finite.

Proof. One has $X = \bigcup_{j=0}^{m} X^{(j)}$, where $X^{(j)} := X_{s_j \neq 0}$. Let $\mathbb{P}_j^{m,w}$ be the open subscheme of $\mathbb{P}^{m,w}$, where the *j*-th weighted coordinate does not vanish. Then $\pi^{-1}(\mathbb{P}_j^{m,w}) = X^{(j)}$. Since each $X^{(j)}$ is affine, the morphism π is affine. At the same time π is projective. Thus, π is finite. \square

Let $\mathbb{P}^{m-1,w}$ be the weighted projective space with homogeneous coordinates $[x_1:\ldots:x_m]$ of weights $1,e_2/e_1,\ldots,e_m/e_1$ respectively.

Proposition 3.6. Under the hypotheses of Corollary 3.3 let $M \subset X$ be a closed subscheme such that $X_{1,...,m} \cap M = \emptyset$. Then the morphism $[s_1 : ... : s_m] : M \to \mathbb{P}^{m-1,w}$ is finite. Particularly, morphisms

 $[s_1:\ldots:s_m]:Y\to\mathbb{P}^{m-1,w},$

 $[s_1:\ldots:s_m]:B\to\mathbb{P}^{m-1,w}$

 $[s_1:\ldots:s_m]:Z\to\mathbb{P}^{m-1,w}$

are finite.

Proof. They are affine and projective.

References

- F. Charles, B. Poonen, Bertini irreducibility theorems over finite fields. J. Amer. Math. Soc. 29, No. 1 (2016), 81–94.
- 2. I. Panin, Nice triples and a moving lemma for motivic spaces. Izvestiya: Mathematics, $83:4~(2019),\,796-829$
- B. Poonen, Bertini theorems over finite fields. Annals of Mathematics, 160 (2004), 1099-1127.

St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia

 $E\text{-}mail\colon \mathtt{paniniv@gmail.com}$

Поступило 30 ноября 2025 г.