С. А. Симонов

ГЛАДКОСТЬ РЕШЕНИЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ ДЛЯ МАТРИЧНОГО ТЕЛЕГРАФНОГО УРАВНЕНИЯ НА ПОЛУОСИ С ЛОКАЛЬНО СУММИРУЕМЫМ ПОТЕНЦИАЛОМ

§1. Введение

Пусть L_0 – симметричный положительно определённый вполне несамосопряжённый оператор в гильбертовом пространстве \mathcal{H} . Рассмотрим динамическую систему α с граничным управлением:

$$u(t) \in \text{Dom } L_0^*, \qquad t \geqslant 0,$$
 (1)

$$u''(t) + L_0^* u(t) = 0, t > 0, (2)$$

$$u(0) = u'(0) = 0, (3)$$

$$\Gamma_1 u(t) = f(t),$$
 $t \geqslant 0.$ (4)

Здесь Γ_1 – первый из двух граничных операторов [10] так называемой граничной тройки Вишика ($\mathcal{K};\Gamma_1,\Gamma_2$), где $\mathcal{K}:=\operatorname{Ker} L_0^*$ и $\Gamma_1,\Gamma_2:\operatorname{Dom} L_0^*\to\mathcal{K},$

$$\Gamma_1 := L^{-1}L_0^* - I, \quad \Gamma_2 := P_{\mathcal{K}}L_0^*,$$

 $P_{\mathcal{K}}$ — проектор на \mathcal{K} в \mathcal{H} , а L — расширение оператора L_0 по Фридрихсу. Построение этой граничной тройки основано на разложении Вишика [8]:

$$\operatorname{Dom} L_0^* = \operatorname{Dom} L_0 \dot{+} \mathcal{K} \dot{+} L^{-1} \mathcal{K}.$$

 Γ раничное управление f представляет собой функцию из класса $\mathcal{C}^\infty([0,\infty);\mathcal{K})$ с носителем $\mathrm{supp}\, f\subset (0,\infty).$

В одном из подходов к решению обратных задач, методе граничного управления (ВС-методе, [1, 13, 2, 3]), рассматривают семейство (*гнез-до*) α^T подсистем системы α на конечных интервалах [0,T], T>0. Для каждого T особый интерес представляют *«гладкие волны»* – решения

Kлючевые слова: начально-краевая задача, телеграфное уравнение, матричный оператор Шрёдингера, метод граничного управления, управляющий оператор, задача Γ урса.

системы α в момент времени $T, u^f(T) \in \mathcal{H}$, порождаемые гладкими управлениями. Гладкие волны образуют линеал $\dot{\mathcal{U}}^T$, достижимое множество, замыкание которого называется достижимым подпространством \mathcal{U}^T системы α^T . Гладкие управления образуют класс $\dot{\mathcal{F}}^T := \{f \in \mathcal{C}^\infty([0,T];\mathcal{H}) \mid \mathrm{supp}\, f \subset (0,T]\}$, который плотен во внешнем пространстве $\dot{\mathcal{F}}^T := \mathcal{L}_2([0,T];\mathcal{H})$ системы α^T . Пространство $\dot{\mathcal{H}}$ рассматривается как внутреннее пространство системы α^T , а соответствие между управлениями и решениями устанавливается с помощью оператора управления $\dot{\mathcal{W}}^T : \dot{\mathcal{F}}^T \to \dot{\mathcal{H}}$, действующего по правилу $f \mapsto u^f(T)$ на $\mathrm{Dom}\, W^T = \dot{\mathcal{F}}^T$.

Свойства оператора управления определяются оператором L_0 и играют важную роль в ВС-методе. Например, для задачи электромагнитной томографии W^T неограничен [2], для задач акустической томографии W^T ограничен, но может быть необратимым при достаточно больших T [2], а для оператора Шрёдингера на полуоси W^T является изоморфизмом из \mathscr{F}^T в \mathscr{U}^T (т. е. ограниченным оператором, имеющим ограниченный обратный) [5]. Гнездо проекторов на достижимые подпространства $\{P_{\mathscr{U}^T}\}_{T\in[0,\infty]}$ служит разложением единицы для оператора эйконала $E=\int_{[0,\infty)} TdP_{\mathscr{U}^T}$ в \mathscr{H} . Переходя к спектральному $[0,\infty)$

представлению этого оператора, мы получаем модельное пространство функций, в котором оператор L_0 имеет своё представление \tilde{L}_0 , рассматриваемое как функциональная модель L_0 [7, 6]. Из множества возможных спектральных представлений особую роль играет представление, основанное на треугольной факторизации [9] связывающего оператора $C^T:=(W^T)^*W^T$ относительно гнезда подпространств запаздывающих управлений $\{\mathscr{F}_s^T\}_{s\in[0,T]},\,\mathscr{F}_s^T:=\mathcal{L}_2([T-s,T];\mathscr{K}),$ поскольку оно приводит к локальной функциональной модели L_0 , дающей способ решения обратных задач.

В настоящей работе мы рассматриваем минимальный матричный оператор Шрёдингера $L_0 = -\frac{d^2}{dx^2} + q(x)$ в гильбертовом пространстве $\mathscr{H} = \mathcal{L}_2([0,\infty);\mathbb{C}^n)$ с локально суммируемым эрмитовым матричнозначным потенциалом q и изучаем свойства соответствующих

гладких волн и оператора управления. В этом случае система α^T принимает эквивалентный вид $\alpha^T_{\mathbf{v}}$:

$$u(\cdot,t) \in \text{Dom } L_0^*, \qquad \qquad t \in [0,T], \tag{5}$$

$$\ddot{u}(x,t) - u_{xx}(x,t) + q(x)u(x,t) = 0, \qquad x \in (0,\infty), \ t \in (0,T),$$
 (6)

$$u(x,0) = \dot{u}(x,0) = 0,$$
 $x \in [0,\infty),$ (7)

$$u(0,t) = f_{v}(t),$$
 $t \in [0,T],$ (8)

где управление $f_{\rm v}\in\mathscr{F}_{\rm v}^T:=\mathcal{L}_2([0,T];\mathbb{C}^n)$ просто связано с управлением f, так что решение задачи $u_{\alpha}^{f_{\rm v}}(x,t)$ совпадает с $u^f(x,t)$ (см. (14)). Дифференцирование следует понимать в следующем смысле: \dot{u} – это производная функции со значениями в \mathscr{H} (по t), а u_x – это частная производная векторнозначной функции двух переменных x и t по x. Система $\alpha_{\rm v}^T$ почти идентична начально-краевой задаче $\beta_{\rm v}^T$ для телеграфного уравнения:

$$u_{tt}(x,t) - u_{xx}(x,t) + q(x)u(x,t) = 0, \quad x \in (0,\infty), \ t \in (0,T),$$
 (9)

$$u(x,0) = u_t(x,0) = 0,$$
 $x \in [0,\infty),$ (10)

$$u(0,t) = f_{\mathbf{v}}(t),$$
 $t \in [0,T],$ (11)

где u_t обозначает частную производную по t.

Если потенциал q и управление $f_{\rm v}$ гладкие, а управление обращается в нуль в окрестности начального момента времени, то хорошо известно, что система (9)–(11) имеет классическое решение:

$$u_{\beta}^{f_{\mathbf{v}}}(x,t) := f_{\mathbf{v}}(t-x) + \int_{x}^{t} w(x,s)f_{\mathbf{v}}(t-s)ds,$$
 (12)

где w – гладкое ядро. Можно увидеть, что это решение также является решением системы $\alpha_{\rm v}^T$, и, следовательно, $W^Tf=u^f(T)=u^{f_{\rm v}}(T)=u^{f_{\rm v}}(T)=u^{f_{\rm v}}(T)$. Это определяет соответствующий оператор управления $W_{\rm v}^T$: $f_{\rm v}\mapsto u^{f_{\rm v}}_{\alpha}(T)$, который является изоморфизмом в $\mathcal{L}_2([0,T];\mathbb{C}^n)$ (что ясно из (12)). Поэтому W^T (или, точнее, его замыкание) – изоморфизм из $\mathscr{F}^T=\mathcal{L}_2([0,T];\mathscr{K})$ в $\mathscr{U}^T=\mathcal{L}_2([0,T];\mathbb{C}^n)$. Для гладких управлений f(t) решение $u^f(\cdot,T)$ является гладким, и если рассмотреть сужение $W_{\rm v}^T$ на $\mathcal{H}^2([0,T];\mathbb{C}^n)$, то такой оператор окажется изоморфизмом и в этом пространстве (т. е. в норме этого пространства).

В общем случае имеется представление

$$u^{f}(t) = -f(t) + \int_{0}^{t} L^{-\frac{1}{2}} \sin(L^{\frac{1}{2}}(t-s)) f''(s) ds$$
 (13)

для решения системы α^T , однако оно не помогает в установлении свойств гладкости упомянутых выше волн. Тем не менее, оно позволяет увидеть, что $u^f(t)$ единственно и является гладким по t как \mathscr{H} -значная функция.

В настоящей работе мы рассматриваем потенциалы q из класса $\mathcal{L}_{1,\mathrm{loc}}([0,\infty);\mathbb{M}^n_{\mathbb{C}})$, где $\mathbb{M}^n_{\mathbb{C}}$ обозначает квадратные матрицы размера n с комплексными элементами. В теореме 1 мы показываем, что, хотя ядро w(x,t) является лишь \mathcal{W}^1_1 -гладким по x, решение $u^{f_{\mathrm{v}}}_{\alpha}(x,t)$ оказывается \mathcal{W}^2_1 -гладким по x (и \mathcal{C}^∞ -гладким по t). Оператор W^T тесно связан с оператором W^T_{v} , являющимся изоморфизмом в $\mathcal{L}_2([0,T];\mathbb{C}^n)$. В теореме 3 мы показываем, что если $q\in\mathcal{L}_2([0,T];\mathbb{M}^n_{\mathbb{C}})$, то W^T_{v} можно рассматривать в пространстве $\mathcal{H}^2([0,T];\mathbb{C}^n)$, где он является ограниченным оператором и, более того, такое сужение представляет собой изоморфизм в $\mathcal{H}^2([0,T];\mathbb{C}^n)$. Эти результаты будут использованы в статье [14] о характеризации операторов, унитарно эквивалентных матричным операторам Шрёдингера.

Работа организована следующим образом. В разделе 2 мы определяем оператор L_0 и получаем эквивалентную систему $\alpha_{\rm v}^T$ из системы α^T . В разделе 3 мы рассматриваем начально-краевую задачу $\beta_{\rm v}^T$ и доказываем формулу для её решения, анализируя соответствующую задачу Гурса. В разделе 4 мы устанавливаем связь между системами $\alpha_{\rm v}^T$ и $\beta_{\rm v}^T$, показывая, что решения последней удовлетворяют первой. В разделе 5 мы изучаем свойства «гладкости» оператора $W_{\rm v}^T$, т. е. его ограниченность и обратимость в классе Соболева.

§2. Минимальный оператор Шрёдингера

Пусть q — эрмитова матричнозначная функция из класса $\mathcal{L}_{1,\mathrm{loc}}([0,\infty);\mathbb{M}^n_{\mathbb{C}})$. Рассмотрим минимальный и максимальный матричные операторы Шрёдингера L_{min} и L_{max} в гильбертовом пространстве $\mathscr{H}=\mathcal{L}_2([0,\infty);\mathbb{C}^n)$ с областями определения

 $Dom L_{max}$

$$= \{ y \in \mathcal{L}_2([0,\infty); \mathbb{C}^n) \cap \mathcal{W}^2_{1,\text{loc}}([0,\infty); \mathbb{C}^n) \mid -y'' + qy \in \mathcal{L}_2([0,\infty); \mathbb{C}^n) \},$$

Dom $L_{\min} = \{ y \in \text{Dom } L_{\max} \mid \text{supp } y \subset (0,\infty) \text{ компактен} \}.$

Пусть L_0 — замыкание L_{\min} , тогда $L_0^* = L_{\max}$. Предположим, что потенциал q таков, что оператор L_0 положительно определён. Тогда по теореме Повзнера — Вингольца [15] его индексы дефекта равны $n_{\pm}(L_0) = n$, а области определения L_0 и его расширения Фридрихса L имеют вид

Dom
$$L = \{ y \in \text{Dom } L_0^* \mid y(0) = 0 \},$$

Dom $L_0 = \{ y \in \text{Dom } L_0^* \mid y(0) = y'(0) = 0 \}.$

Ядро L_0^* состоит из решений уравнения на собственные функции для нулевого спектрального параметра:

$$\mathscr{K} = \text{Ker } L_0^* = \{ y \in \text{Dom } L_0^* \mid -y'' + qy = 0 \}, \quad \dim \mathscr{K} = n.$$

Разложение Вишика Dom $L_0^*=$ Dom $L_0\dotplus L^{-1}\mathscr{K}\dotplus\mathscr{K}=$ Dom $L\dotplus\mathscr{K}$ позволяет определить граничную тройку $(\mathscr{K};\Gamma_1,\Gamma_2)$ с граничными операторами $\Gamma_1=L^{-1}L_0^*-I$, $\Gamma_2=P_{\mathscr{K}}L_0^*$, которые для $y=y_0+L^{-1}g+h\in Dom L_0^*$, $y_0\in Dom L_0$, $h,g\in \mathscr{K}$, действуют по правилу $\Gamma_1y=-h$, $\Gamma_2y=g$. Используя Γ_1 , рассмотрим динамическую систему с граничным управлением α^T , (1)–(4), где $f\in \mathring{\mathscr{F}}^T$, т. е. $f\in \mathcal{C}^\infty([0,T];\mathscr{K})$ и $\mathrm{supp}\, f\subset (0,T]$.

Пусть K(x) – такое матричное решение уравнения -y''+qy=0, что его столбцы $k_1,...,k_n$ образуют базис в $\mathscr K$ и $K(0)=I_{\mathbb M^n_\mathbb C}$. Такое решение существует, поскольку для любого базиса $k_1,...,k_n\in\mathscr K$ выполняется $\det K(0)\neq 0$: в противном случае существует линейная комбинация $k(x)=\sum_{i=1}^n c_i k_i(x)$, для которой k(0)=0, и тогда $k\in \mathrm{Dom}\, L\cap\mathscr K$, но это пересечение тривиально в силу разложения Вишика.

Для нахождения Γ_1 и Γ_2 необходимо определить g и h в разложении $y=y_0+L^{-1}g+h$. Поскольку $h,g\in \mathscr{K}$, положим $g(x)=K(x)c,\ h(x)=K(x)d$, где $c,d\in \mathbb{C}^n$. Обозначим $K_1(x)=(L^{-1}K)(x)$, где оператор применяется к столбцам матрицы K(x). Так как $y_0\in \mathrm{Dom}\, L_0$, имеем $y_0(0)=0$ и $y_0'(0)=0$, следовательно,

$$y(0) = h(0) = K(0)d = d, \quad y'(0) = K'_1(0)c + K'(0)d,$$

а также

$$(\Gamma_1 y)(x) = -h(x) = -K(x)d = -K(x)y(0),$$

$$(\Gamma_2 y)(x) = g(x) = K(x)c = K(x)(K'_1(0))^{-1}(y'(0) - K'(0)y(0)).$$

Здесь матрица $K_1'(0)$ обратима, поскольку если $\det K_1'(0)=0$, то существует такая нетривиальная линейная комбинация $k(x)=\sum_{i=1}^n c_i k_i(x)$, что $(L^{-1}k)'(0)=0$, и вместе с $(L^{-1}k)(0)=0$ это означало бы, что

 $L^{-1}k \in \text{Dom } L_0 \cap (L^{-1}\mathscr{K}) = \{0\}$, а это пересечение тривиально в силу разложения Вишика.

Определим изоморфизм $\lambda: \mathbb{C}^n \to \mathcal{K}$, $(\lambda v)(x) = -K(x)v$, и соответствующий изоморфизм $\Lambda^T: \mathcal{L}_2([0,T];\mathbb{C}^n) \to \mathcal{L}_2([0,T];\mathcal{K})$:

$$(\Lambda^T f_{\mathbf{v}})(t) := \lambda(f_{\mathbf{v}}(t)), \quad t \in [0, T].$$

Параметризуя

$$f = \Lambda^T f_{\mathbf{v}},\tag{14}$$

запишем систему $\alpha^T,$ (1)–(4), в эквивалентной форме $\alpha^T_{\rm v},$ (5)–(8), причем управляющие операторы W^T и $W^T_{\rm v}$ будут связаны соотношением

$$W_{\mathbf{v}}^{T} = W^{T} \Lambda^{T}. \tag{15}$$

§3. Начально-краевая задача β_{v}^T

В этом разделе мы устанавливаем свойства решения системы $\beta_{\rm v}^T$, (9)–(11). Мы показываем, что существует такая непрерывная матричнозначная функция w(x,t), определённая при $0\leqslant x\leqslant t<\infty$, что функция

$$u_{\beta}^{f_{\mathbf{v}}}(x,t) = f_{\mathbf{v}}(t-x) + \int_{T}^{t} w(x,s)f_{\mathbf{v}}(t-s)ds, \quad x \in [0,\infty), \ t \in [0,T], \ (16)$$

(при условии, что $f_{\rm v}$ продолжена на отрицательную полуось нулём) будет решением системы $\beta_{\rm v}^T$.

Ядро w является обобщённым решением следующей задачи Гурса:

$$w_{tt}(x,t) - w_{xx}(x,t) + q(x)w(x,t) = 0, t > 0, x \in (0,t),$$
 (17)

$$w(0,t) = 0, t \geqslant 0, (18)$$

$$w(x,x) = -\frac{1}{2} \int_{0}^{x} q(s)ds, \qquad x \geqslant 0, \tag{19}$$

в том смысле, что оно является решением соответствующего интегрального уравнения. Далее мы выведем это уравнение тем же способом, что и в [12], см. также [11], и покажем, что оно имеет единственное непрерывное решение. Затем мы докажем, что $u_{\beta}^{f_{v}}$, определённая формулой (16), удовлетворяет (9)–(11).

Чтобы свести задачу Гурса к интегральному уравнению, сделаем замену переменных

$$\xi = t - x$$
, $\eta = t + x$, $v(\xi, \eta) := w\left(\frac{\eta - \xi}{2}, \frac{\eta + \xi}{2}\right)$.

Тогда (17)-(19) принимает вид

$$v_{\xi\eta}(\xi,\eta) + q\left(\frac{\eta-\xi}{2}\right)\frac{v(\xi,\eta)}{4} = 0, \qquad \eta > 0, \ \xi \in (0,\eta),$$
 (20)

$$v(\xi, \xi) = 0, \qquad \qquad \xi \geqslant 0, \tag{21}$$

$$v(0,\eta) = -\frac{1}{2} \int_{0}^{\frac{\eta}{2}} q(s)ds, \qquad \eta \geqslant 0.$$
 (22)

Формально решая неоднородное дифференциальное уравнение

$$v_{\xi\eta}(\xi,\eta) = g(\xi,\eta) := -q\left(\frac{\eta-\xi}{2}\right)\frac{v(\xi,\eta)}{4},$$

получаем

$$v(\xi, \eta) = \int_{0}^{\xi} d\xi_1 \int_{0}^{\eta} d\eta_1 g(\xi_1, \eta_1) + v_1(\xi) + v_2(\eta)$$

с функциями v_1 и v_2 , которые могут быть определены из (21) и (22). Это приводит к интегральному уравнению

$$v(\xi,\eta) = -\frac{1}{2} \int_{\xi}^{\frac{\eta}{2}} q(s)ds - \frac{1}{4} \int_{0}^{\xi} d\xi_{1} \int_{\xi}^{\eta} d\eta_{1} q\left(\frac{\eta_{1} - \xi_{1}}{2}\right) v(\xi_{1},\eta_{1}).$$
 (23)

Обозначим

$$v_0(\xi,\eta):=-\frac{1}{2}\int\limits_{\frac{\xi}{2}}^{\frac{\eta}{2}}q(s)ds,\quad \widetilde{v}:=Vv,$$

где V — оператор, действующий по правилу

$$(Vv)(\xi,\eta) := -\frac{1}{4} \int_{0}^{\xi} d\xi_1 \int_{\xi}^{\eta} d\eta_1 q\left(\frac{\eta_1 - \xi_1}{2}\right) v(\xi_1,\eta_1).$$

Тогда интегральное уравнение (23) можно записать в виде $v = v_0 + Vv$, и его решение есть $v = (I - V)^{-1}v_0 = \sum_{n=0}^{\infty} V^n v_0$. Нужно показать, что ряд сходится в подходящем смысле. Зафиксируем T > 0 и рассмотрим это уравнение в пространстве $\mathcal{C}(\{(\xi,\eta) \mid \eta \in [0,T], \xi \in [0,\eta]\})$. Имеем:

$$||v_{0}(\xi,\eta)||_{\mathbb{M}_{\mathbb{C}}^{n}} \leqslant \frac{1}{2} \int_{0}^{\frac{\eta}{2}} ||q(s)||_{\mathbb{M}_{\mathbb{C}}^{n}} ds =: S(\eta), \quad \xi \geqslant 0,$$

$$||(Vv_{0})(\xi,\eta)||_{\mathbb{M}_{\mathbb{C}}^{n}} \leqslant \frac{1}{4} \int_{0}^{\xi} d\xi_{1} \int_{\xi}^{\eta} d\eta_{1} S(\eta_{1}) \left\| q\left(\frac{\eta_{1}-\xi_{1}}{2}\right) \right\|_{\mathbb{M}_{\mathbb{C}}^{n}}$$

$$= S(\eta) \int_{0}^{\xi} d\xi_{1} \int_{\xi}^{\eta} d\eta_{1} S'(\eta_{1}-\xi_{1}) \leqslant S^{2}(\eta) \xi,$$

аналогично получаем

$$\begin{aligned} \|(V^2 v_0)(\xi, \eta)\|_{\mathbb{M}^n_{\mathbb{C}}} &\leq \frac{1}{4} \int_0^{\xi} d\xi_1 \int_{\xi}^{\eta} d\eta_1 S^2(\eta_1) \xi_1 \left\| q\left(\frac{\eta_1 - \xi_1}{2}\right) \right\|_{\mathbb{M}^n_{\mathbb{C}}} \\ &= S^2(\eta) \int_0^{\xi} d\xi_1 \xi_1 \int_{\xi}^{\eta} d\eta_1 S'(\eta_1 - \xi_1) \leq \frac{S^3(\eta) \xi^2}{2}, \end{aligned}$$

и, по индукции, $\|(V^n v_0)(\xi,\eta)\|_{\mathbb{M}^n_{\mathbb{C}}} \leqslant \frac{S^{n+1}(\eta)\xi^n}{n!}$. Следовательно, ряд сходится и полученное решение v лежит в $\mathcal{C}(\{(\xi,\eta)\mid\eta\in[0,T],\xi\in[0,\eta]\})$ при всех T>0 и удовлетворяет оценке

$$||v(\xi,\eta)||_{\mathbb{M}^n_{\mathbb{C}}} \leqslant S(\eta)e^{\xi S(\eta)}.$$

Из равенства (23) видно, что v дифференцируема и что

$$v_{\xi}(\xi,\eta) = \frac{1}{4}q\left(\frac{\xi}{2}\right) - \frac{1}{4}\int_{\xi}^{\eta} q\left(\frac{\eta_1 - \xi}{2}\right)v(\xi,\eta_1)d\eta_1$$
$$+ \frac{1}{4}\int_{0}^{\xi} q\left(\frac{\xi - \xi_1}{2}\right)v(\xi_1,\xi)d\xi_1,$$

$$v_{\eta}(\xi, \eta) = -\frac{1}{4}q\left(\frac{\eta}{2}\right) - \frac{1}{4}\int_{0}^{\xi} q\left(\frac{\eta - \xi_{1}}{2}\right)v(\xi_{1}, \eta)d\xi_{1}.$$

Кроме того, равенство

$$v_{\xi\eta}(\xi,\eta) = -\frac{1}{4}q\left(\frac{\eta-\xi}{2}\right)v(\xi,\eta)$$

выполняется для фиксированного ξ и п. в. η , а также для фиксированного η и п. в. ξ , что дает (20). Условия (21) и (22), очевидно, выполнены, так что v является решением задачи (20)–(22). Отметим, что производные $v_{\xi\xi}$ и $v_{\eta\eta}$ могут не существовать.

Решение v является суммой явной части v_0 , которая лишь дифференцируема, и части \widetilde{v} , имеющей две производные, как мы сейчас покажем. Имеем:

$$v_{0\xi}(\xi,\eta) = \frac{1}{4}q\left(\frac{\xi}{2}\right), \quad v_{0\eta}(\xi,\eta) = -\frac{1}{4}q\left(\frac{\eta}{2}\right),$$

$$\widetilde{v}_{\xi}(\xi,\eta) = -\frac{1}{4}\int_{\xi}^{\eta}q\left(\frac{\eta_{1}-\xi}{2}\right)v(\xi,\eta_{1})d\eta_{1} + \frac{1}{4}\int_{0}^{\xi}q\left(\frac{\xi-\xi_{1}}{2}\right)v(\xi_{1},\xi)d\xi_{1}$$

$$= -\frac{1}{2}\int_{0}^{\frac{\eta-\xi}{2}}q(\tau)v(\xi,\xi+2\tau)d\tau + \frac{1}{2}\int_{0}^{\frac{\xi}{2}}q(\tau)v(\xi-2\tau,\xi)d\tau,$$

$$\widetilde{v}_{\eta}(\xi,\eta) = -\frac{1}{4}\int_{0}^{\xi}q\left(\frac{\eta-\xi_{1}}{2}\right)v(\xi_{1},\eta)d\xi_{1} = -\frac{1}{2}\int_{\frac{\eta-\xi}{2}}^{\frac{\eta}{2}}q(\tau)v(\eta-2\tau,\eta)d\tau. \quad (25)$$

Подставляя v из уравнения (23), получаем:

$$\begin{split} \frac{d}{d\xi}v(\xi,\xi+2\tau) &= \frac{1}{4}\left(q\left(\frac{\xi}{2}\right) - q\left(\frac{\xi}{2} + \tau\right)\right) \\ &+ \frac{1}{2}\left(\int\limits_{0}^{\frac{\xi}{2}}q(\sigma)v(\xi-2\sigma,\xi)d\sigma - \int\limits_{0}^{\tau}q(\sigma)v(\xi,\xi+2\sigma)d\sigma\right) \end{split}$$

$$-\int_{\tau}^{\tau+\frac{\xi}{2}}q(\sigma)v(\xi+2\tau-2\sigma,\xi+2\tau)d\sigma\right),$$

$$\begin{split} \frac{d}{d\eta}v(\eta-2\tau,\eta) &= \frac{1}{4}\left(q\left(\frac{\eta}{2}-\tau\right)-q\left(\frac{\eta}{2}\right)\right) \\ &+ \frac{1}{2}\left(\int\limits_{0}^{\frac{\eta}{2}-\tau}q(\sigma)v(\eta-2\tau-2\sigma,\eta-2\tau)d\sigma - \int\limits_{0}^{\tau}q(\sigma)v(\eta-2\tau,\eta-2\tau+2\sigma)d\sigma \right. \\ &\left. - \int\limits_{\tau}^{\frac{\eta}{2}}q(\sigma)v(\eta-2\sigma,\eta)d\sigma\right). \end{split}$$

Подстановка в (24) и (25) даёт

$$\widetilde{v}_{\xi\xi}(\xi,\eta) = \frac{q((\eta - \xi)/2)v(\xi,\eta) + q(\xi/2)v(0,\xi)}{4}$$

$$+ \frac{1}{8} \left(\int_{0}^{\frac{\eta - \xi}{2}} q(\tau)(q(\xi/2 + \tau) - q(\xi/2))d\tau + \int_{0}^{\frac{\xi}{2}} q(\tau)(q(\xi/2 - \tau) - q(\xi/2))d\tau \right)$$

$$+ \frac{1}{4} \left(\int_{0}^{\frac{\eta - \xi}{2}} d\tau q(\tau) \left(\int_{0}^{\tau} d\sigma q(\sigma)v(\xi,\xi + 2\sigma) - \int_{0}^{\frac{\xi}{2}} d\sigma q(\sigma)v(\xi - 2\sigma,\xi) \right) + \int_{\tau}^{\frac{\xi}{2}} d\tau q(\tau) \left(\int_{0}^{\frac{\xi}{2} - \tau} d\sigma q(\sigma)v(\xi - 2\tau - 2\sigma,\xi + 2\tau) \right) \right)$$

$$- \int_{0}^{\tau} d\sigma q(\sigma)v(\xi - 2\tau,\xi - 2\tau + 2\sigma) - \int_{\tau}^{\frac{\xi}{2}} d\sigma q(\sigma)v(\xi - 2\sigma,\xi) \right), \quad (26)$$

$$\widetilde{v}_{\eta\eta}(\xi,\eta) = \frac{q((\eta-\xi)/2)v(\xi,\eta) - q(\eta/2)v(0,\eta)}{4} + \frac{1}{8} \int_{\frac{\eta-\xi}{2}}^{\frac{\eta}{2}} q(\tau)(q(\eta/2) - q(\eta/2 - \tau))d\tau + \frac{1}{4} \left(\int_{\frac{\eta-\xi}{2}}^{\frac{\eta}{2}} d\tau q(\tau) \left(\int_{0}^{\tau} d\sigma q(\sigma)v(\eta - 2\tau, \eta - 2\tau + 2\sigma) \right) - \int_{0}^{\frac{\eta}{2} - \tau} d\sigma q(\sigma)v(\eta - 2\tau - 2\sigma, \eta - 2\tau) + \int_{\tau}^{\frac{\eta}{2}} d\sigma q(\sigma)v(\eta - 2\sigma, \eta) \right) \right), \quad (27)$$

и

$$\widetilde{v}_{\xi\eta}(\xi,\eta) = -\frac{q((\eta-\xi)/2)v(\xi,\eta)}{4}.$$

Возвращаясь к функции w, мы можем записать её в виде $w=w_0+\widetilde{w},$ где

$$w_0(x,t) = -\frac{1}{2} \int_{\frac{t-x}{2}}^{\frac{t+x}{2}} q(s)ds.$$

Для второго слагаемого \widetilde{w} найдём производные второго порядка:

$$\begin{split} \widetilde{w}_{tt}((\eta-\xi)/2,(\eta+\xi)/2) &= \widetilde{v}_{\xi\xi}(\xi,\eta) + \widetilde{v}_{\eta\eta}(\xi,\eta) + 2\widetilde{v}_{\xi\eta}(\xi,\eta) \\ &= \frac{q(\xi/2)v(0,\xi) - q(\eta/2)v(0,\eta)}{4} \\ &+ \frac{1}{8} \left(q(\eta/2) \int_{\frac{\eta-\xi}{2}}^{\frac{\eta}{2}} q(\tau)d\tau - q(\xi/2) \int_{0}^{\frac{\eta-\xi}{2}} q(\tau)d\tau - q(\xi/2) \int_{0}^{\frac{\xi}{2}} q(\tau)d\tau \\ &+ \int_{0}^{\frac{\eta-\xi}{2}} q(\tau)q(\xi/2+\tau)d\tau + \int_{0}^{\frac{\xi}{2}} q(\tau)q(\xi/2-\tau)d\tau - \int_{\frac{\eta-\xi}{2}}^{\frac{\eta}{2}} q(\tau)q(\eta/2-\tau)d\tau \right) \\ &+ \widehat{w}((\eta-\xi)/2,(\eta+\xi)/2), \end{split}$$

где функция \hat{w} содержит все оставшиеся интегральные члены и является непрерывной. Возвращаясь к исходным переменным, получаем:

$$\widetilde{w}_{tt}(x,t) = \frac{1}{4}q\left(\frac{t-x}{2}\right)w\left(\frac{t-x}{2},\frac{t-x}{2}\right) - \frac{1}{4}q\left(\frac{t+x}{2}\right)w\left(\frac{t+x}{2},\frac{t+x}{2}\right)$$

$$+ \frac{1}{8}\left(q\left(\frac{t+x}{2}\right)\int_{t}^{\frac{t+x}{2}}q(\tau)d\tau - q\left(\frac{t-x}{2}\right)\int_{0}^{t}q(\tau)d\tau$$

$$-q\left(\frac{t-x}{2}\right)\int_{0}^{\frac{t-x}{2}}q(\tau)d\tau + \int_{0}^{x}q(\tau)q\left(\frac{t-x}{2}+\tau\right)d\tau$$

$$+ \int_{0}^{\frac{t-x}{2}}q(\tau)q\left(\frac{t-x}{2}-\tau\right)d\tau - \int_{x}^{\frac{t+x}{2}}q(\tau)q\left(\frac{t+x}{2}-\tau\right)d\tau\right) + \widehat{w}(x,t). \quad (28)$$

В то же время, используя (21), имеем

$$\widetilde{w}_{xx}((\eta - \xi)/2, (\eta + \xi)/2) = \widetilde{v}_{\xi\xi}(\xi, \eta) + \widetilde{v}_{\eta\eta}(\xi, \eta) - 2\widetilde{v}_{\xi\eta}(\xi, \eta) = \widetilde{w}_{tt}((\eta - \xi)/2, (\eta + \xi)/2) - 4\widetilde{v}_{\xi\eta}(\xi, \eta) = \widetilde{w}_{tt}((\eta - \xi)/2, (\eta + \xi)/2) + q((\eta - \xi)/2)v(\xi, \eta),$$

и, следовательно,

$$\widetilde{w}_{xx}(x,t) = \widetilde{w}_{tt}(x,t) + q(x)w(x,t).$$

Следующая лемма является следствием теоремы Фубини.

Лемма 1. Если $q \in \mathcal{L}_{1,loc}([0,\infty);\mathbb{M}^n_{\mathbb{C}})$, то интегралы

$$\int\limits_{0}^{\frac{t-x}{2}}q(\tau)q\left(\frac{t-x}{2}-\tau\right)d\tau, \quad \int\limits_{x}^{\frac{t+x}{2}}q(\tau)q\left(\frac{t+x}{2}-\tau\right)d\tau \ u \ \int\limits_{0}^{x}q(\tau)q\left(\frac{t-x}{2}+\tau\right)d\tau$$

как функции x и t локально суммируемы по обеим переменным: при всех t>0 они лежат в $\mathcal{L}_1([0,t];\mathbb{M}^n_{\mathbb{C}})$ как функции x, а при всех x>0 в $\mathcal{L}_{1,\mathrm{loc}}([x,\infty);\mathbb{M}^n_{\mathbb{C}})$ как функции t.

Доказательство. Первый интеграл равен p((t-x)/2), где

$$p(x) := \int_{0}^{x} q(\tau)q(x-\tau)d\tau.$$

Возьмём T>0. Тогда

$$\begin{split} \int\limits_0^T \|p(x)\|_{\mathbb{M}^n_{\mathbb{C}}} dx &\leqslant \int\limits_0^T dx \int\limits_0^x d\tau \|q(\tau)\| \|q(x-\tau)\| \\ &= \int\limits_0^T d\tau \|q(\tau)\| \int\limits_\tau^T dx \|q(x-\tau)\| = \int\limits_0^T d\tau \|q(\tau)\| \int\limits_0^{T-\tau} d\sigma \|q(\sigma)\| \\ &\leqslant \int\limits_0^T \|q(\tau)\| d\tau \int\limits_0^T \|q(\sigma)\| d\sigma < \infty, \end{split}$$

что оправдывает изменение порядка интегрирования. Следовательно, $p \in \mathcal{L}_{1,\text{loc}}([0,\infty);\mathbb{M}^n_{\mathbb{C}})$, и мы получаем утверждение для первого интеграла.

Второй интеграл можно записать как разность

$$\int_{0}^{\frac{t+x}{2}} q(\tau)q\left(\frac{t+x}{2} - \tau\right)d\tau = p\left(\frac{t+x}{2}\right)$$

и $\int\limits_0^x q(\tau)q\left(\frac{t+x}{2}-\tau\right)d\tau.$ Таким образом, остаётся рассмотреть

$$\int\limits_{0}^{x}q(\tau)q\left(\frac{t+x}{2}-\tau\right)d\tau \ \ \text{и} \ \int\limits_{0}^{x}q(\tau)q\left(\frac{t-x}{2}+\tau\right)d\tau.$$

При всех $t \geqslant 0$ имеем:

$$\begin{split} \int\limits_0^t dx \int\limits_0^x d\tau \|q(\tau)\| \left\| q\left(\frac{t+x}{2} - \tau\right) \right\| &= \int\limits_0^t d\tau \|q(\tau)\| \int\limits_\tau^t dx \left\| q\left(\frac{t+x}{2} - \tau\right) \right\| \\ &= 2 \int\limits_0^t d\tau \|q(\tau)\| \int\limits_{\frac{t-\tau}{2}}^{t-\tau} d\sigma \|q(\sigma)\| \leqslant 2 \int\limits_0^t \|q(\tau)\| d\tau \int\limits_0^t \|q(\sigma)\| d\sigma < \infty, \end{split}$$

$$\begin{split} \int\limits_0^t dx \int\limits_0^x d\tau \|q(\tau)\| \left\| q\left(\frac{t-x}{2}+\tau\right) \right\| &= \int\limits_0^t d\tau \|q(\tau)\| \int\limits_\tau^t dx \left\| q\left(\frac{t-x}{2}+\tau\right) \right\| \\ &= 2 \int\limits_0^t d\tau \|q(\tau)\| \int\limits_\tau^{\frac{t+\tau}{2}} d\sigma \|q(\sigma)\| \leqslant 2 \int\limits_0^t \|q(\tau)\| d\tau \int\limits_0^t \|q(\sigma)\| d\sigma < \infty. \end{split}$$

В то же время при всех $x \geqslant 0$ и T > x:

$$\begin{split} &\int\limits_x^T dt \int\limits_0^x d\tau \|q(\tau)\| \left\| q\left(\frac{t+x}{2}-\tau\right) \right\| = \int\limits_0^x d\tau \|q(\tau)\| \int\limits_x^T dt \left\| q\left(\frac{t+x}{2}-\tau\right) \right\| \\ &= 2\int\limits_0^x d\tau \|q(\tau)\| \int\limits_{x-\tau}^{\frac{T+x}{2}-\tau} d\sigma \|q(\sigma)\| \leqslant 2\int\limits_0^x \|q(\tau)\| d\tau \int\limits_0^{\frac{T+x}{2}} \|q(\sigma)\| d\sigma < \infty, \\ &\int\limits_x^T dt \int\limits_0^x d\tau \|q(\tau)\| \left\| q\left(\frac{t-x}{2}+\tau\right) \right\| = \int\limits_0^x d\tau \|q(\tau)\| \int\limits_x^T dt \left\| q\left(\frac{t-x}{2}+\tau\right) \right\| \\ &= 2\int\limits_0^x d\tau \|q(\tau)\| \int\limits_x^{\frac{T-x}{2}+\tau} d\sigma \|q(\sigma)\| \leqslant 2\int\limits_0^x \|q(\tau)\| d\tau \int\limits_0^{\frac{T+x}{2}} \|q(\sigma)\| d\sigma < \infty. \end{split}$$

Из этого следует утверждение для второго и третьего интегралов, что завершает доказательство. $\hfill \Box$

Мы получили следующий результат.

Лемма 2. Пусть $q \in \mathcal{L}_{1,loc}([0,\infty);\mathbb{M}^n_{\mathbb{C}})$. Тогда выполнено следующее.

- 1. При всех $t \geqslant 0$ верно, что $\widetilde{w}_{tt}(\cdot,t) \in \mathcal{L}_1([0,t];\mathbb{M}^n_{\mathbb{C}}).$
- 2. При всех $x \geqslant 0$ верно, что $\widetilde{w}_{tt}(x,\cdot) \in \mathcal{L}_{1,loc}([x,\infty);\mathbb{M}^n_{\mathbb{C}}).$
- 3. При всех $t \geqslant 0$ равенство $\widetilde{w}_{tt}(x,t) \widetilde{w}_{xx}(x,t) + q(x)w(x,t) = 0$ выполняется для п. в. $x \in [0,t]$.
- 4. Если выбран представитель класса эквивалентности q, то для n. в. $x \ge 0$ равенство $\widetilde{w}_{tt}(x,t) \widetilde{w}_{xx}(x,t) + q(x)w(x,t) = 0$ выполняется для n. в. $t \in [x,\infty)$.

Замечание 1. Равенство частных производных $w_{tt}(x,t) - w_{xx}(x,t) + q(x)w(x,t) = 0$ может не выполняться нигде.

Теорема 1. Пусть $q \in \mathcal{L}_{1,\mathrm{loc}}([0,\infty);\mathbb{M}^n_{\mathbb{C}}), f_{\mathrm{v}} \in \mathcal{C}^\infty_{\mathrm{loc}}([0,\infty);\mathbb{C}^n)$ и $\mathrm{supp}\, f_{\mathrm{v}} \subset (0,\infty).$ Тогда функция

$$u^{f_{v}}(x,t) = f_{v}(t-x) + \int_{x}^{t} w(x,s)f_{v}(t-s)ds$$
 (29)

является решением системы

$$u_{tt}(x,t) - u_{xx}(x,t) + q(x)u(x,t) = 0, t > 0, x \in (0,t),$$
 (30)

$$u(x,t) = 0, x \geqslant t, (31)$$

$$u(0,t) = f_{\mathbf{v}}(t), \qquad t \geqslant 0. \tag{32}$$

Кроме того, для каждого $t \ge 0$ выполнено:

$$u^{f_{\mathbf{v}}}(\cdot,t) \in \mathcal{W}_1^2([0,t];\mathbb{C}^n), \quad -u_{xx}^{f_{\mathbf{v}}}(\cdot,t) + q(\cdot)u^{f_{\mathbf{v}}}(\cdot,t) \in \mathcal{C}([0,t];\mathbb{C}^n).$$

Доказательство. Продифференцируем равенство (29) по t дважды:

$$u_{tt}^{f_{\mathbf{v}}}(x,t) = f_{\mathbf{v}}''(t-x) + \int_{x}^{t} w(x,s)f_{\mathbf{v}}''(t-s)ds.$$

Отсюда следует, что $u_{tt}^{f_v}(\cdot,t)\in\mathcal{C}([0,t];\mathbb{C}^n)$ при всех $t\geqslant 0$. Мы видим, что при всех x функции $\widetilde{w}(x,\cdot)$ и $\widetilde{w}_t(x,\cdot)$ абсолютно непрерывны. Таким образом, можно проинтегрировать по частям:

$$\begin{split} u_{tt}^{f_{\mathbf{v}}}(x,t) &= f_{\mathbf{v}}''(t-x) + \int\limits_{x}^{t} w_0(x,s) f_{\mathbf{v}}''(t-s) ds + \int\limits_{x}^{t} \widetilde{w}(x,s) f_{\mathbf{v}}''(t-s) ds \\ &= f_{\mathbf{v}}''(t-x) + \int\limits_{x}^{t} w_0(x,s) f_{\mathbf{v}}''(t-s) ds + \widetilde{w}_t(x,x) f_{\mathbf{v}}(t-x) \\ &+ \int\limits_{x}^{t} \widetilde{w}_{tt}(x,s) f_{\mathbf{v}}(t-s) ds, \end{split}$$

поскольку $\widetilde{w}(x,x)=0.$ Продифференцируем теперь (29) по x,

$$\begin{split} u_{xx}^{f_{\mathbf{v}}}(x,t) &= f_{\mathbf{v}}''(t-x) + \left(\int\limits_{x}^{t} w_0(x,s) f_{\mathbf{v}}(t-s) ds\right)_{xx} \\ &+ \left(\int\limits_{x}^{t} \widetilde{w}(x,s) f_{\mathbf{v}}(t-s) ds\right)_{xx} = f_{\mathbf{v}}''(t-x) + \left(\int\limits_{x}^{t} w_0(x,s) f_{\mathbf{v}}(t-s) ds\right)_{xx} \\ &- \widetilde{w}_x(x,x) f_{\mathbf{v}}(t-x) + \int\limits_{x}^{t} \widetilde{w}_{xx}(x,s) f_{\mathbf{v}}(t-s) ds, \end{split}$$

снова воспользовались тем, что $\widetilde{w}(x,x)=0.$ Тогда при всех $t\geqslant 0$ и п. в. $x\in (0,t)$

$$u_{tt}^{f_{\mathbf{v}}}(x,t) - u_{xx}^{f_{\mathbf{v}}}(x,t) = \int_{x}^{t} w_0(x,s) f_{\mathbf{v}}''(t-s) ds - \left(\int_{x}^{t} w_0(x,s) f_{\mathbf{v}}(t-s) ds\right)_{xs}$$

$$+ (\widetilde{w}_t(x,x) + \widetilde{w}_x(x,x)) f_{\mathbf{v}}(t-x) + \int_{x}^{t} (\widetilde{w}_{tt}(x,s) - \widetilde{w}_{xx}(x,s)) f_{\mathbf{v}}(x,s) ds$$

$$= \int_{x}^{t} w_0(x,s) f_{\mathbf{v}}''(t-s) ds - \left(\int_{x}^{t} w_0(x,s) f_{\mathbf{v}}(t-s) ds\right)_{xx}$$

$$- q(x) \int_{x}^{t} \widetilde{w}(x,s) f_{\mathbf{v}}(x,s) ds,$$

где мы использовали равенство $\widetilde{w}_t(x,x) + \widetilde{w}_x(x,x) = 0$. Рассмотрим отдельно первое и второе слагаемые:

$$\int_{x}^{t} w_{0}(x,s) f_{v}''(t-s) ds = w_{0}(x,x) f_{v}'(t-x) + \int_{x}^{t} w_{0}(x,s) f_{v}'(t-s) ds$$

$$= -\frac{f_{v}'(t-x)}{2} \int_{0}^{x} q(\tau) d\tau - \frac{1}{4} \int_{x}^{t} \left(q\left(\frac{s+x}{2}\right) - q\left(\frac{s-x}{2}\right) \right) f_{v}'(t-s) ds$$

$$\left(\int_{x}^{t} w_0(x,s) f_{\mathbf{v}}(t-s) ds \right)_{xx} = \left(-\frac{1}{2} \int_{x}^{t} ds \int_{\frac{s-x}{2}}^{\frac{s+x}{2}} d\tau q(\tau) f_{\mathbf{v}}(t-s) \right)_{xx}$$

$$= \frac{1}{2} \left(\left(\int_{0}^{x} q(\tau) d\tau \right) f_{\mathbf{v}}(t-x) - \int_{x}^{t} \left(q \left(\frac{s+x}{2} \right) + q \left(\frac{s-x}{2} \right) \right) f_{\mathbf{v}}(t-s) ds \right)_{x}$$

$$= \frac{q(x) f_{\mathbf{v}}(t-x)}{2} - \frac{f'_{\mathbf{v}}(t-x)}{2} \int_{0}^{x} q(\tau) d\tau$$

$$- \frac{1}{2} \left(\int_{x}^{\frac{t+x}{2}} q(\sigma) f_{\mathbf{v}}(t+x-2\sigma) d\sigma + \int_{0}^{\frac{t-x}{2}} q(\sigma) f_{\mathbf{v}}(t-x-2\sigma) d\sigma \right)_{x}$$

$$= q(x) f_{\mathbf{v}}(t-x) - \frac{f'_{\mathbf{v}}(t-x)}{2} \int_{0}^{x} q(\tau) d\tau$$

$$- \frac{1}{2} \int_{x}^{\frac{t+x}{2}} q(\sigma) f'(t+x-2\sigma) d\sigma + \frac{1}{2} \int_{0}^{\frac{t-x}{2}} q(\sigma) f'(t-x-2\sigma) d\sigma$$

$$= q(x) f_{\mathbf{v}}(t-x) - \frac{f'_{\mathbf{v}}(t-x)}{2} \int_{0}^{x} q(\tau) d\tau$$

$$- \frac{1}{4} \int_{x}^{t} \left(q \left(\frac{s+x}{2} \right) - q \left(\frac{s-x}{2} \right) \right) f'_{\mathbf{v}}(t-s) ds.$$

Имеем

$$\int_{x}^{t} w_0(x, s) f_{\mathbf{v}}''(t - s) ds - \left(\int_{x}^{t} w_0(x, s) f_{\mathbf{v}}(t - s) ds\right)_{xx} = -q(x) f_{\mathbf{v}}(t - x)$$

И

$$u_{tt}^{f_{\mathbf{v}}}(x,t) - u_{xx}^{f_{\mathbf{v}}}(x,t)$$

$$= -q(x) \left(f_{v}(t-x) + \int_{x}^{t} w(x,s) f_{v}(t-s) ds \right) = -q(x) u^{f_{v}}(x,t).$$

Мы видим, что выполнено утверждение (30). При всех $t\geqslant 0$ имеем $u^{f_{\mathbf{v}}}_{xx}(\cdot,t)\in\mathcal{L}_1([0,t];\mathbb{C}^n)$, что означает $u^{f_{\mathbf{v}}}(\cdot,t)\in\mathcal{H}^2_1([0,t];\mathbb{C}^n)$, а также то, что $-u^{f_{\mathbf{v}}}_{xx}(x,t)+q(x)u^{f_{\mathbf{v}}}(x,t)=-u^{f_{\mathbf{v}}}(x,t)$ есть непрерывная функция x. Условие (31), очевидно, выполнено, а (32) выполняется, поскольку $w(0,t)\equiv 0$.

§4. Гладкие волны

В этом разделе мы покажем, что решение $u_{\beta}^{f_{\rm v}}(x,t)$ системы $\beta_{\rm v}^T$ одновременно является решением системы $\alpha_{\rm v}^T$. Поскольку последнее, как известно, единственно, см. (13), это означает, что $u_{\alpha}^{f_{\rm v}}=u_{\beta}^{f_{\rm v}}$.

Теорема 2. Пусть q – локально суммируемый эрмитов $\mathbb{M}^n_{\mathbb{C}}$ -значный потенциал. Тогда функция $u^{f_v}_{\beta}(x,t)$, заданная формулой (16), является решением системы α^T_v , (5)–(8).

Доказательство. Согласно теореме 1, решение $u_{\beta}^{f_{v}}$ удовлетворяет (5). Очевидно, что условия (7) и (8) также выполнены. Остаётся проверить, что выполняется (6). Нужно показать, что производная $\ddot{u}_{\beta}^{f_{v}}$ в \mathscr{H} существует и совпадает с частной производной $(u_{\beta}^{f_{v}})_{tt}$. Это получается из следующей леммы (применённой дважды).

Лемма 3. Eсли $f_{\mathbf{v}} \in \mathcal{C}^{\infty}([0,\infty);\mathbb{C}^n)$ u supp $f_{\mathbf{v}} \subset (0,\infty)$, mo $\dot{u}_{\beta}^{f_{\mathbf{v}}} = (u_{\beta}^{f_{\mathbf{v}}})_t$.

Доказательство. Утверждение леммы следует из прямой оценки. Пусть $h \in (-1,1) \setminus \{0\}$. Поскольку

$$(u_{\beta}^{f_{\mathbf{v}}})_{t}(x,t) = f_{\mathbf{v}}'(t-x) + \int_{x}^{t} w(x,s)f_{\mathbf{v}}'(t-s)ds = u_{\beta}^{f_{\mathbf{v}}'}(x,t)$$

и $f'_{\mathbf{v}} \in \mathcal{C}^{\infty}([0,\infty);\mathbb{C}^n)$ с supp $f'_{\mathbf{v}} \subset (0,\infty)$, то равенство можно дифференцировать любое число раз, что означает гладкость функции $u^{f_{\mathbf{v}}}(x,\cdot)$. Использем формулу Тейлора

$$g(x+h) = g(x) + g'(x)h + \frac{1}{2} \int_{x}^{x+h} (x+h-t)g''(t)dt$$

для гладкой функции g, что дает

$$\left\| \frac{g(x+h) - g(x)}{h} - g'(x) \right\|_{\mathbb{C}^n} \le \frac{|h|}{2} \max_{t \in [x, x+h]} \|g''(t)\|_{\mathbb{C}^n}.$$

Получаем для $u^{f_{\mathbf{v}}}(x,\cdot)$ следующие оценки, предполагая |h|<1:

$$\begin{split} \int\limits_0^\infty \left\| \frac{u^{f_{\mathrm{v}}}(x,t+h) - u^{f_{\mathrm{v}}}(x,t)}{h} - u^{f_{\mathrm{v}}}_t(x,t) \right\|_{\mathbb{C}^n}^2 dx \\ &\leqslant \frac{h^2}{2} \int\limits_0^\infty \max_{t_1 \in [t,t+h]} \left\| u^{f_{\mathrm{v}}}_{tt}(x,t_1) \right\|_{\mathbb{C}^n}^2 dx \\ &= \frac{h^2}{2} \int\limits_0^{t+h} \max_{t_1 \in [t,t+h]} \left\| f''_{\mathrm{v}}(t_1-x) + \int\limits_x^{t_1} w(x,s) f''_{\mathrm{v}}(t_1-s) ds \right\|_{\mathbb{C}^n}^2 dx \\ &\leqslant \frac{h^2}{2} \max_{t_1 \in [0,t+1]} \| f''_{\mathrm{v}}(t_1) \|_{\mathbb{C}^n}^2 (t+1) \Big[1 + \max_{t_1 \in [0,t+1], x_1 \in [0,t_1]} \| w(x_1,t_1) \|_{\mathbb{M}^n_{\mathbb{C}}}^2 (t+1) \Big]^2. \end{split}$$

Это означает, что $\frac{u^{f_{\mathbf{v}}}(\cdot,t+h)-u^{f_{\mathbf{v}}}(\cdot,t)}{h} \to u_t^{f_{\mathbf{v}}}(\cdot,t)$ при $h \to 0$ в пространстве $\mathscr{H} = \mathcal{L}_2([0,\infty);\mathbb{C}^n)$.

Следующее следствие сразу получается из леммы.

Следствие 1. Если потенциал q из формулировки теоремы 2 таков, что оператор L_0 положительно определен, то функция $u^f(x,t) = u_{\beta}^{f_{\rm v}}(x,t)$, где $f = \Lambda^T f_{\rm v}$, является решением системы α^T , (1)-(4). Замыкание оператора W^T есть изоморфизм из \mathscr{F}^T в \mathscr{U}^T , и $\mathscr{U}^T = \mathcal{L}_2([0,T];\mathbb{C}^n)$.

$\S 5$. Управляющий оператор и норма \mathcal{H}^2

Оператор $W_{\mathbf{v}}^T: f_{\mathbf{v}} \mapsto u_{\beta}^{f_{\mathbf{v}}}(\cdot,t)$, определённый формулой (16) в $\mathcal{L}_2([0,T];\mathbb{C}^n)$, может одновременно рассматриваться как оператор, действующий в пространстве $\mathcal{H}^2([0,T];\mathbb{C}^n)$. Несложно увидеть, что он ограничен в норме этого пространства. Мы покажем, что он также ограниченно обратим в этой норме.

Теорема 3. Если $q \in \mathcal{L}_2([0,T]; \mathbb{M}^n_{\mathbb{C}})$, то оператор W^T_v , заданный формулой (15) и суженный на $\mathcal{H}^2([0,T]; \mathbb{C}^n)$, является изоморфизмом в $\mathcal{H}^2([0,T]; \mathbb{C}^n)$.

Доказательство. Пусть $Y^T: f_{\mathbf{v}}(\cdot) \mapsto f_{\mathbf{v}}(T-\cdot)$ – оператор отражения в $\mathcal{H}^2([0,T];\mathbb{C}^n)$. Оператор $W^T_{\mathbf{v}}$ будет изоморфизмом в $\mathcal{H}^2([0,T];\mathbb{C}^n)$ одновременно с оператором $\tilde{W}^T:=W^T_{\mathbf{v}}Y^T=I+A^T$, где A^T действует в $\mathcal{H}^2([0,T];\mathbb{C}^n)$ по правилу:

$$(A^T f_{\mathbf{v}})(x) = (\mathcal{A} f_{\mathbf{v}})(x) := \int\limits_x^T \left(\widetilde{w}(x,s) - \int\limits_{\frac{s-x}{2}}^{\frac{s+x}{2}} \frac{q(\tau)}{2} d\tau\right) f_{\mathbf{v}}(s) ds.$$

Имеем:

$$(A^T f_{\mathbf{v}})'(x) = \left(\int_0^x \frac{q(\tau)}{2} d\tau \right) f_{\mathbf{v}}(x)$$

$$+ \int_{-T}^T \left(\widetilde{w}_x(x,s) - \frac{q\left(\frac{s+x}{2}\right) + q\left(\frac{s-x}{2}\right)}{4} \right) f_{\mathbf{v}}(s) ds,$$

$$(A^T f_{\mathbf{v}})''(x) = (q(x) - \widetilde{w}_x(x, x)) f_{\mathbf{v}}(x) + \left(\int_0^x \frac{q(\tau)}{2} d\tau \right) f_{\mathbf{v}}'(x)$$

$$+ \left(\frac{q\left(\frac{T-x}{2}\right) - q\left(\frac{T+x}{2}\right)}{4} \right) f_{\mathbf{v}}(T)$$

$$+ \int_x^T \widetilde{w}_{xx}(x, s) f_{\mathbf{v}}(s) ds - \int_x^T \left(\frac{q\left(\frac{s+x}{2}\right) - q\left(\frac{s-x}{2}\right)}{4} \right) f_{\mathbf{v}}'(s) ds.$$

Из этих равенств сразу видно, что A^T ограничен в $\mathcal{H}^2([0,T];\mathbb{C}^n)$.

Выражение для \mathcal{A} определяет несколько операторов в разных пространствах. В $\mathcal{L}_2([0,T];\mathbb{C}^n)$ оно определяет $A_{\mathcal{L}}^T$, вольтерров интегральный оператор. Следовательно, $(I+A_{\mathcal{L}}^T)^{-1}$ существует, ограничен, и ряд Неймана сходится в $\mathfrak{B}(\mathcal{L}_2([0,T];\mathbb{C}^n))$:

$$(I + A_{\mathcal{L}}^{T})^{-1} = \sum_{n=0}^{\infty} (-1)^{n} (A_{\mathcal{L}}^{T})^{n} = I - A_{\mathcal{L}}^{T} + (A_{\mathcal{L}}^{T})^{2} - (A_{\mathcal{L}}^{T})^{3} (I + A_{\mathcal{L}}^{T})^{-1}.$$
(33)

Покажем, что выражение для ${\cal A}$ определяет ограниченные операторы:

- (I) из $\mathcal{L}_2([0,T];\mathbb{C}^n)$ в $\mathcal{C}([0,T];\mathbb{C}^n),$
- (II) из $\mathcal{C}([0,T];\mathbb{C}^n)$ в $\mathcal{C}^1([0,T];\mathbb{C}^n)$,

(III) из $\mathcal{C}^1([0,T];\mathbb{C}^n)$ в $\mathcal{H}^2([0,T];\mathbb{C}^n)$.

Эти операторы и A^T можно рассматривать как сужения $A^T_{\mathcal{L}}$. Обозначим

$$a_1 := 1/2 \|q\|_{\mathcal{L}_1([0,T];\mathbb{M}^n_{\mathbb{C}})}, \quad a_2 := \|q\|_{\mathcal{L}_2([0,T];\mathbb{M}^n_{\mathbb{C}})},$$

 $b_1 := \|\widetilde{w}\|_{\mathcal{C}(\{(x,t) \mid t \in [0,T], x \in [0,t]\}; \mathbb{M}^n_{\mathbb{C}})}, \quad b_2 := \|\widetilde{w}_x\|_{\mathcal{C}(\{(x,t) \mid t \in [0,T], x \in [0,t]\}; \mathbb{M}^n_{\mathbb{C}})},$

$$b_3 := \int_0^T dx \left(\int_x^T \|\widetilde{w}_{xx}(x,t)\|_{\mathbb{M}^n_{\mathbb{C}}} dt \right)^2.$$

Покажем, что b_3 конечно. Поскольку $\widetilde{w}_{xx}(x,t) = \widetilde{w}_{tt}(x,t) + q(x)w(x,t)$, функция w непрерывна и $q \in \mathcal{L}_2([0,T];\mathbb{M}^n_{\mathbb{C}})$, нужно доказать, что

$$\int_{0}^{T} dx \left(\int_{x}^{T} \|\widetilde{w}_{tt}(x,t)\|_{\mathbb{M}^{n}_{\mathbb{C}}} dt \right)^{2} < \infty.$$

Достаточно увидеть, что $\int_{x}^{T} \|\widetilde{w}_{tt}(x,t)\|_{\mathbb{M}^{n}_{\mathbb{C}}} dt$ является ограниченной функцией $x \in [0,T]$. Используя (28) и (26)–(27) для оценки \hat{w} , обозначая

$$b_4 := ||w||_{\mathcal{C}(\{(x,t)|t\in[0,T],x\in[0,t]\};\mathbb{M}_c^n)},$$

запишем при каждом $x \in [0,T]$, воспользовавшись оценками из доказательства леммы 1:

$$\int_{T}^{T} \|\widetilde{w}_{tt}(x,t)\|_{\mathbb{M}^{n}_{\mathbb{C}}} dt \leq 2a_{1}b_{4} + \frac{3a_{1}^{2}}{4} + \frac{4a_{1}^{2} + 2a_{1}^{2}}{8} + \frac{9a_{1}^{2}b_{4}}{4}.$$

Отсюда следует, что $b_3 < \infty$. Тогда при соответствующих предположениях относительно $f_{\rm v}$ выполняются следующие оценки:

- i. $||A^T f_{\mathbf{v}}||_{\mathcal{C}} \leq (a_1 + b_1)||f_{\mathbf{v}}||_{\mathcal{L}_1} \leq (a_1 + b_1)\sqrt{T}||f_{\mathbf{v}}||_{\mathcal{L}_2}$,
- ii. $\|(A^T f_{\mathbf{v}})'\|_{\mathcal{C}} \leq a_1 \|f_{\mathbf{v}}\|_{\mathcal{C}} + b_2 T \|f_{\mathbf{v}}\|_{\mathcal{C}} + 2a_1 \|f_{\mathbf{v}}\|_{\mathcal{C}} = (3a_1 + b_2 T) \|f_{\mathbf{v}}\|_{\mathcal{C}},$ $\|A^T f_{\mathbf{v}}\|_{\mathcal{C}} \leq (a_1 + b_1) \|f_{\mathbf{v}}\|_{\mathcal{L}_1} \leq (a_1 + b_1) T \|f_{\underline{\mathbf{v}}}\|_{\mathcal{C}},$
- iii. $\|(A^T f_{\mathbf{v}})''\|_{\mathcal{L}_2} \leq (a_2 + b_2 \sqrt{T}) \|f_{\mathbf{v}}\|_{\mathcal{C}} + a_1 \sqrt{T} \|f_{\mathbf{v}}'\|_{\mathcal{C}} + 2a_1 \|f_{\mathbf{v}}\|_{\mathcal{C}} + \sqrt{b_3} \|f_{\mathbf{v}}\|_{\mathcal{C}} + 2a_1 \|f_{\mathbf{v}}'\|_{\mathcal{C}} \leq (4a_1 + a_2 + (a_1 + b_2)\sqrt{T} + \sqrt{b_3}) \|f_{\mathbf{v}}\|_{\mathcal{C}^1},$ $\|A^T f_{\mathbf{v}}\|_{\mathcal{L}_2} \leq \sqrt{T} \|A^T f_{\mathbf{v}}\|_{\mathcal{C}} \leq (a_1 + b_1) T^{\frac{3}{2}} \|f_{\mathbf{v}}\|_{\mathcal{C}} \leq (a_1 + b_1) T^{\frac{3}{2}} \|f_{\mathbf{v}}\|_{\mathcal{C}^1}.$

Это означает, что утверждения (I)–(III) верны. Следовательно, $(A_{\mathcal{L}}^T)^3$ можно рассматривать как ограниченный оператор из $\mathcal{L}_2([0,T];\mathbb{C}^n)$ в $\mathcal{H}^2([0,T];\mathbb{C}^n)$. Поскольку оператор вложения $J_{\mathcal{H}^2}$ пространства

 $\mathcal{H}^2([0,T];\mathbb{C}^n)$ в $\mathcal{L}_2([0,T];\mathbb{C}^n)$ ограничен, из (33) видно, что сужение $(I+A_{\mathcal{L}}^T)^{-1} \upharpoonright \mathcal{H}^2([0,T];\mathbb{C}^n)$ есть ограниченный оператор в $\mathcal{H}^2([0,T];\mathbb{C}^n)$:

$$(I + A_{\mathcal{L}}^T)^{-1} \upharpoonright \mathcal{H}^2([0, T]; \mathbb{C}^n) = I - A^T + (A^T)^2 - (A_{\mathcal{L}}^T)^3 (I + A_{\mathcal{L}}^T)^{-1} J_{\mathcal{H}^2}.$$

Вместе с равенством $I+A^T=(I+A_L^T)\upharpoonright \mathcal{H}^2([0,T];\mathbb{C}^n)$ это дает

$$(I + A_{\mathcal{L}}^T)^{-1} \upharpoonright \mathcal{H}^2([0, T]; \mathbb{C}^n)(I + A^T) = I_{\mathcal{H}^2}$$

= $(I + A^T)(I + A_{\mathcal{L}}^T)^{-1} \upharpoonright \mathcal{H}^2([0, T]; \mathbb{C}^n).$

Последнее означает, что

$$(I + A_{\mathcal{L}}^T)^{-1} \upharpoonright \mathcal{H}^2([0, T]; \mathbb{C}^n) = (I + A^T)^{-1}.$$

Отсюда получаем, что $\tilde{W}^T = I + A^T$, и, следовательно, $W^T_{\rm v}$ – изоморфизмы в $\mathcal{H}^2([0,T];\mathbb{C}^n)$. Это завершает доказательство.

Благодарности

Автор выражает глубокую благодарность М. И. Белишеву за внимание к этой работе и за многочисленные обсуждения предмета исследования.

Список литературы

- 1. М.И.Белишев, Об одном подходе к многомерным обратным задачам для волнового уравнения. Докл. АН СССР, **297**, No. 3 (1987), 524–527.
- 2. М. И. Белишев, Граничное управление и томография римановых многообразий (ВС-метод). Усп. матем. наук, **72**, No. 4 (2017), 3–66.
- 3. М. И. Белишев, М. Н. Демченко, Динамическая система с граничным управлением, связанная с симметрическим полуограниченным оператором. Зап. научн. семин. ПОМИ, **409** (2012), 17–39.
- 4. М.И.Белишев, А.Б.Пушницкий, *К треугольной факторизации положительных операторов.* Зап. научн. семин. ПОМИ, **239** (1997), 45–60.
- 5. М. И. Белишев, С. А. Симонов, Волновая модель оператора Штурма Лиувилля на полуоси. — Алгебра и анализ, **29**, No. 2 (2017), 3–33.
- 6. М. И. Белишев, С. А. Симонов, Функциональная модель одного класса симметрических полуограниченных операторов. Зап. научн. семин. ПОМИ, **521** (2023), 33–53.
- 7. М. И. Белишев, С. А. Симонов, *Треугольная факторизация и функциональные модели операторов и систем.* Алгебра и анализ, **36**, No. 5 (2024), 107–127.
- 8. М.И. Вишик, Об общих краевых задачах для эллиптических дифференциальных уравнений. Труды Московского матем. общества, 1 (1952), 187–246.
- И. Ц. Гохберг, М. Г. Крейн, Теория вольтерровых операторов в гильбертовом пространстве и её приложения. М., Наука (1967).
- В. А. Деркач, М. М. Маламуд, Теория симметричных расширений операторов и краевых задач. — Труды института математики НАН Украины 104 (2017).

- 11. В. А. Марченко, Спектральная теория операторов Штурма-Лиувилля. Наукова Думка, Киев (1972).
- S. B. Avdonin, V. S. Mikhailov, The boundary control approach to inverse spectral theory. — Inverse Problems, 26 (2010).
- M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC method). — Inverse Problems, 13, No. 5 (1997), 1–45.
- 14. M. I. Belishev, S. A. Simonov, A model and characterization of a class of symmetric semibounded operators. To appear in J. Operator Theory.
- S. Clark, F. Gesztesy, On Povzner-Wienholtz-type self-adjointness results for matrix-valued Sturm-Liouville operators. — Proc. Royal Soc. Edinb., 133, No. 4 (2003), 747-758.

Simonov S. A. Smoothness of solutions of the initial-boundary value problem for the matrix telegraph equation on the half-line with a locally summable potential

We study solutions of the system

$$u_{tt} - u_{xx} + q(x)u = 0,$$
 $x > 0, t > 0,$
 $u|_{t=0} = u_t|_{t=0} = 0,$ $x \ge 0,$
 $u|_{x=0} = f(t),$ $t \ge 0,$

with a locally summable Hermitian matrix-valued potential q and a \mathcal{C}^{∞} -smooth \mathbb{C}^n -valued boundary control f vanishing near the origin. We show that the solution $u^f(\cdot,T)$ is a function from $\mathcal{W}^2_1([0,T];\mathbb{C}^n)$ and that the control operator $W^T:g\mapsto u^g(\cdot,T)$ is an isomorphism in $\mathcal{L}_2([0,T];\mathbb{C}^n)$, while for $q\in\mathcal{L}_2([0,T];\mathbb{M}^n_{\mathbb{C}})$ it is also an isomorphism in $\mathcal{H}^2([0,T];\mathbb{C}^n)$.

Санкт-Петербургское отделение математического института им. В. А. Стеклова РАН, наб. Фонтанки 27, Санкт-Петербург, 191023; Академический университет им. Ж. И. Алферова, Хлопина 8А, Санкт-Петербург 194021; Институт математики, Университет ИТМО, Кронверкский пр., д. 49, лит. А, Санкт-Петербург 197101 E-mail: sergey.a.simonov@gmail.com

Поступило 5 октября 2025 г.