В. А. Сергеев

АДИАБАТИЧЕСКАЯ ЭВОЛЮЦИЯ, ПОРОЖДЕННАЯ ОПЕРАТОРОМ ШРЕДИНГЕРА С НЕПРЕРЫВНЫМ СПЕКТРОМ. II

§1. Введение

1.1. Изучаемое уравнение и исследуемое решение. При $\varepsilon \to 0$ мы изучаем решения уравнения Шредингера

$$i\varepsilon\frac{\partial\Psi}{\partial\tau}=-\frac{\partial^2\Psi}{\partial x^2}+v(x,\tau)\Psi,\quad x>0,\quad \tau\in\mathbb{R},\quad \Psi\Big|_{x=0}=0. \eqno(1.1)$$

Говорят, что уравнение (1.1) описывает адиабатическую эволюцию, порождаемую в $L^2(\mathbb{R}_+)$ стационарным оператором

$$H(\tau) = -\frac{\partial^2}{\partial x^2} + v(x,\tau)$$

с условием Дирихле при x=0. Оператор $H(\tau)$ зависит от времени τ как от параметра. Нас интересует случай, когда потенциал v представляет собой линейно сужающуюся со временем прямоугольную потенциальную яму:

$$v(x,\tau) = \begin{cases} -1, & \text{если } 0 \leqslant x \leqslant 1 - \tau, \\ 0 & \text{иначе.} \end{cases}$$
 (1.2)

С помощью замены переменной $\tau\mapsto t=\tau/\varepsilon$ уравнение (1.1) может быть записано в виде

$$i\frac{\partial\Psi}{\partial t} = -\frac{\partial^2\Psi}{\partial x^2} + v(x,\varepsilon t)\Psi. \tag{1.3}$$

Уравнение вида (1.3) с v, не зависящим от t, было введено Леонтовичем и Фоком для приближенного описания распространения электромагнитных волн в тропосфере [1, глава 11]. В работе [2] подробно обсуждалась связь исследуемой задачи с задачами акустики. Здесь

Ключевые слова: нестационарное уравнение Шредингера, непрерывный спектр, зависящий от времени потенциал, адиабатическое приближение, рассеяние плоской волны на секторе с полупрозрачной границей.

Работа выполнена при поддержке программы социальных инвестиций "Родные города" ПАО "Газпром нефть".

эта связь служит лишь обоснованием для использования терминологии из теории распространения волн. Если в (1.3) воспринимать t и x как пространственные переменные, то можно сказать, что (1.3) с v, определенным в (1.2), описывает распространение акустических волн в полуплоскости $P = \{(t,x) \in \mathbb{R}^2 \mid x \geqslant 0\}$, содержащей узкий сектор $W = \{(t,x) \in P \mid x \leqslant 1 - \varepsilon t\}$ с полупрозрачной границей.

Решение Ψ уравнения (1.1), которое мы изучаем в данной работе, было построено в [2]. Формулы, определяющие решение Ψ , приведены в разделе 2.1, а здесь мы охарактеризуем это решение качественно. Используя акустическую терминологию, можно описать решение Ψ как результат рассеяния падающей из бесконечности плоской волны $e^{-iEt-i\sqrt{E}x}, E>0$, на секторе W, имеющем полупрозрачную границу. В W изучаемое решение представляет собой сумму прошедшей в этот сектор волны и всех волн, получающихся из нее при отражениях от границ сектора. Вне W решение Ψ есть сумма падающей волны, волны, отраженной от границы $\{x=1-\varepsilon t\}$ сектора W, а также всех преломленных волн, вышедших из W через границу $\{x=1-\varepsilon t\}$ после (вообще говоря, многократного) отражения внутри W.

Теперь опишем квантово-механическую интерпретацию решения Ψ . Его можно охарактеризовать как аналог т. н. адиабатической нормальной волны, соответствующий непрерывному спектру оператора $H(\tau)$. Напомним, что спектр оператора $H(\tau)$ состоит из абсолютно непрерывного спектра, заполняющего $[0, +\infty)$, и конечного числа отрицательных собственных значений, причем с ростом au собственные значения одно за другим приближаются к краю непрерывного спектра и, достигнув его, исчезают. Если бы потенциал v в уравнении (1.1) не зависел от времени и представлял собой потенциальную яму постоянной ширины, то можно было бы разделить переменные в (1.1) и построить решения этого уравнения, являющиеся при каждом фиксированном auсобственными функциями и обобщенными собственными функциями непрерывного спектра для оператора Шредингера $-\partial^2/\partial x^2 + v(x)$. Изучаемое решение Ψ в этом случае совпадает с точностью до множителя с решением, получающимся при разделении переменных, и пропорционально обобщенной собственной функции непрерывного спектра. В случае сужающейся со временем потенциальной ямы, рассматриваемом в данной работе, малость ε позволила "приближенно разделить переменные": в работах [3–5] были построены и изучены решения уравнения (1.1), близкие при некоторых τ к собственным функциям оператора $H(\tau)$. Отметим, что возникают интересные эффекты, связанные с изменением поведения этих решений при исчезновении собственных значений $H(\tau)$. В задачах акустики формальные асимптотические решения такого типа называют адиабатическими нормальными волнами. Исследуемое решение Ψ можно назвать аналогом этих адиабатических нормальных волн для непрерывного спектра.

В работе [2] было исследовано асимптотическое поведение решения Ψ при $0 \leqslant x \leqslant 1-\tau$, т.е. внутри потенциальной ямы или, что то же самое, внутри сектора W. Эти результаты качественно описаны в разделе 1.2. В данной работе мы исследуем поведение решения Ψ при $x \geqslant 1-\tau$, т.е. вне потенциальной ямы или вне сектора W.

1.2. Поведение Ψ внутри потенциальной ямы. Асимптотическое поведение решения Ψ внутри потенциальной ямы, исследованное в работе [2], можно качественно описать следующим образом. В зависимости от значений спектрального параметра E на непрерывном спектре, выделяются два асимптотических режима: один – когда спектральный параметр принимает значения вдали от края непрерывного спектра, и другой – когда спектральный параметр близок к этому краю. Можно сказать, что на расстоянии порядка единицы от края непрерывного спектра амплитуда старшего члена асимптотики решения Ψ осциллирует, оставаясь при этом порядка единицы и принимая наибольшие значения вблизи моментов

$$\tau = 1 - \frac{\pi(n-1/2)}{\sqrt{E+1}}, \quad n \in \mathbb{N}.$$

Около края непрерывного спектра, при $0 < E \ll 1$, "всплески" этой амплитуды происходят вблизи моментов исчезновения собственных значений оператора $H(\tau)$ — моментов

$$\tau_n = 1 - \pi(n - 1/2), \quad n \in \mathbb{N}.$$
(1.4)

Отметим, что эти же моменты являются моментами рождения резонансов. В "тени" между моментами τ_n решение Ψ оказывается асимптотически меньше, чем вблизи них. При этом амплитуда старшего члена асимптотики Ψ имеет при $\varepsilon^{2/3} \ll E \ll 1$ порядок единицы в окрестностях порядка \sqrt{E} моментов τ_n и описывается через элементарные функции. При $0 < E \ll \varepsilon^{2/3}$ эта амплитуда имеет порядок $\varepsilon^{-1/3}\sqrt{E} \ll 1$ в окрестностях порядка $\varepsilon^{1/3}$ моментов τ_n и описывается

в терминах спецфункции, родственной функции Эйри. В акустических терминах можно сказать, что при $0 < E \ll 1$ плоская волна, падающая на сектор W, "просачивается" в него при $\tau \sim \tau_n$. При $0 < E \ll \varepsilon^{2/3}$ это просачивание становится малым и падающая волна отражается от сектора W почти полностью.

1.3. Кратко о результатах. В данной работе получены асимптотические формулы для решения Ψ вне потенциальной ямы. Как и внутри потенциальной ямы, имеют место два асимптотических режима в зависимости от значений спектрального параметра: один при $E\gg \varepsilon^{2/3}$ и другой при $0 < E \ll \varepsilon^{2/3}$. В первом из указанных режимов старший член асимптотики Ψ описывается везде через элементарные функции. Во втором режиме вблизи границы потенциальной ямы он описывается в терминах спецфункции, родственной функции Эйри.

Опишем более подробно поведение Ψ около края непрерывного спектра. Положим

$$\xi = \varepsilon(x - (1 - \tau)). \tag{1.5}$$

Пусть $\varepsilon^{2/3} \ll E \ll 1$. Поведение старшего члена асимптотики Ψ для этого случая схематически изображено на рис. 1. На полуплоскости переменных (τ, ξ) вне окрестностей порядка E прямых

$$\xi = 2\sqrt{E}(\tau - \tau_n), \quad n \in \mathbb{N},$$

старший член асимптотики ведет себя как $\sin\left(\sqrt{E}\xi/\varepsilon\right)$. При этом в старшем порядке решение Ψ представляет собой только сумму падающей и отраженной волн, а сумма преломленных волн оказывается малой. Вблизи же указанных прямых сумма преломленных волн имеет один порядок с падающей и отраженной волнами, и старший член асимптотики Ψ ведет себя как $\cos\left(\sqrt{E}\xi/\varepsilon\right)$. Вблизи границы $\{x=1-\tau\}$ потенциальной ямы решение Ψ имеет порядок единицы при $\tau \sim \tau_n$ и асимптотически мало между этими моментами, что согласуется со "всплесками" решения Ψ в потенциальной яме при $\tau \sim \tau_n$, описанными в разделе 1.2.

Во втором асимптотическом режиме, при $0 < E \ll \varepsilon^{2/3}$, старший член асимптотики Ψ ведет себя как $\sin\left(\sqrt{E}\xi/\varepsilon\right)$, если этот синус не является малым. Вблизи границы потенциальной ямы, при $0 \leqslant \xi = O\left(\varepsilon^{2/3}\right)$, указанный синус уже не является настоящим старшим членом, оказываясь одного порядка или меньше по сравнению со следующим членом асимптотики, который описывается в терминах спецфункции. При этом решение Ψ принимает значения порядка $\varepsilon^{-1/3}\sqrt{E}$

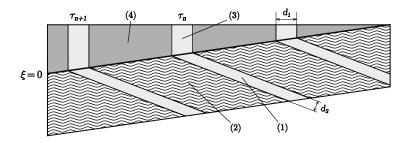


Рис. 1. Схематическое изображение поведения старшего члена асимптотики Ψ на полуплоскости переменных (τ,ξ) при $\varepsilon^{2/3}\ll E\ll 1$. Здесь $d_1\sim \sqrt{E}$ и $d_2\sim E$. В области (1) $\Psi\sim\cos\left(\sqrt{E}\xi/\varepsilon\right)$, в области (2) $\Psi\sim\sin\left(\sqrt{E}\xi/\varepsilon\right)$, в области (3) Ψ принимает значения порядка 1, а в области (4) $\Psi=O\left(\sqrt{E}\right)$.

в окрестностях порядка $\varepsilon^{1/3}$ моментов τ_n (где и появляется спецфункция) и асимптотически меньшие значения между этими моментами. Этот результат также согласуется с поведением Ψ в потенциальной яме.

§2. Основные результаты

2.1. Формулы для решения Ψ . Следуя [2], мы выпишем здесь формулы для решения Ψ . Ниже предполагается, что $0<\varepsilon<1,\ \tau\leqslant 1$ и $p\geqslant 1+\varepsilon/2$, если не сказано обратное. Сперва нам понадобится определить несколько функций. Положим при $p\geqslant 1$

$$\rho(p) = \frac{Q(p) - p}{Q(p) + p}, \quad Q(p) = \sqrt{p^2 - 1}, \quad \text{где } Q(p) \geqslant 0,$$
(2.1)

и рассмотрим при $p \geqslant 1$ разностное уравнение

$$R\left(p + \frac{\varepsilon}{2}\right) = \rho(p)R\left(p - \frac{\varepsilon}{2}\right). \tag{2.2}$$

Выберем быстро убывающее при $p \to +\infty$ непрерывное решение R(p) этого уравнения, определенное в Приложении А. Наконец, положим

$$p_1(p) = -\frac{\varepsilon}{2} + Q\left(p + \frac{\varepsilon}{2}\right), \quad p_2(p) = \frac{\varepsilon}{2} + Q\left(p - \frac{\varepsilon}{2}\right), \quad p_3(p) = p_2(p) - \varepsilon, \quad (2.3)$$

$$T(p) = \left. \frac{-ipe^{i/\varepsilon}}{Q(p) + p} \right|_{p := p + \varepsilon/2}, \quad r(p) = \left. \left(\rho(p) e^{-2iQ(p)} \right) \right|_{p := p - \varepsilon/2}, \quad (2.4)$$

$$t(p) = \frac{e^{-ip^2/\varepsilon}}{R(p)} \left. \left(\frac{-4iQ(p)}{Q(p) + p} e^{-i(Q(p) - p)} \right) \right|_{p:=p-\varepsilon/2}. \tag{2.5}$$

Справедлива

Теорема 1 ([2, теорема 3]). Положим при $x \ge 1 - \tau$

$$\Psi(x,\tau,p) = e^{-ip_2^2(p)\tau/\varepsilon - ip_2(p)x} + r(p) e^{-ip_3^2(p)\tau/\varepsilon + ip_3(p)x}
+ t(p) \sum_{m=0}^{\infty} e^{ip_1^2(k_m)(1-\tau)/\varepsilon + ip_1(k_m)x} T(k_m) R(k_m), \quad k_m = p + \varepsilon m, \quad (2.6)$$

 $a npu 0 \leqslant x \leqslant 1 - \tau$

$$\Psi(x,\tau,p) = t(p)e^{i\tau/\varepsilon} \sum_{m=0}^{\infty} e^{ik_m^2(1-\tau)/\varepsilon} \sin(k_m x) R(k_m), \quad k_m = p + \varepsilon m. \quad (2.7)$$

Формулы (2.6) и (2.7) описывают решение Ψ уравнения (1.1). Это решение бесконечно дифференцируемо по τ и x при $0 < x < 1 - \tau$ и $x > 1 - \tau$, удовлетворяет граничному условию Дирихле при x = 0 и непрерывно вместе со своей производной по x при $x = 1 - \tau$.

Замечание 1. Формулы для функций p_1, p_2, p_3, T, r, t и разностное уравнение для функции R получаются из условий непрерывности Ψ и $\partial \Psi/\partial x$ при $x=1-\tau$. Отметим также, что, по существу, выписанные формулы для Ψ получаются с помощью метода отражений, и функцию R можно интерпретировать как регуляризованное произведение коэффициентов отражения, введенное для удобства дальнейшего анализа рядов. Наконец, заметим, что здесь и далее мы для удобства используем вместо спектрального параметра E, использованного во введении, параметр p, имеющий смысл импульса плоской волны, прошедшей в сектор W, см. первое слагаемое в (2.7). Параметр E связан с параметром p формулой $E=(p-\varepsilon/2)^2-1$.

2.2. Асимптотики решения Ψ вне потенциальной ямы. В разделе 1.3 были качественно описаны два различных асимптотических режима для решения Ψ вне потенциальной ямы. Теорема 2 данного раздела описывает первый из этих режимов. Теорема 3 описывает как второй из этих режимов, так и переход между двумя режимами.

Будем использовать введенное ранее в (1.5) обозначение $\xi = \varepsilon \big(x - (1 - au) \big)$ и положим

$$\kappa(\xi, p, \varepsilon) = \left. \left(e^{-i\xi/2} e^{-iQ(p)} e^{-i(p^2 - 1)\tau/\varepsilon} \right) \right|_{p := p - \varepsilon/2}. \tag{2.8}$$

Теорема 2. Фиксируем некоторые $\tau_* < 1, \ c_1, c_2, c_3 > 0, \ a$ также $\alpha_1, \beta_1 \ u \ \gamma, \ maкиe \ umo$

$$2/3 \le \beta_1 < 1$$
, $0 \le \alpha_1 < 2(1-\beta_1)$, $3\alpha_1/2 - 2/3 < \gamma < 2\beta_1 - 1$. (2.9)

Пусть $\varepsilon > 0$ достаточно мало́ и пусть

$$\tau_* \leqslant \tau \leqslant 1, \quad 0 \leqslant \xi \leqslant c_1 \varepsilon^{-\gamma} (p-1)^{3/2}, \quad 1 + c_2 \varepsilon^{\alpha_1} \leqslant p \leqslant 1 + c_3,$$
 (2.10)

тогда выполнено

$$\Psi(x,\tau,p) = \kappa(\xi,p,\varepsilon) \left(e^{-iQ(p-\varepsilon/2)\xi/\varepsilon} + \rho(p) e^{iQ(p-\varepsilon/2)\xi/\varepsilon} + 4pQ(p-\varepsilon/2) \frac{e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)} \rho(p)}{1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)} \rho(p)} e^{iQ(p-\varepsilon/2)\xi/\varepsilon} + O(\rho(p)\Delta) \right), \quad (2.11)$$

 $e \partial e$

$$\Delta = \varepsilon^{1/2} + \frac{\varepsilon^{2\beta_1 - 1}}{\sqrt{p - 1}} + \frac{\varepsilon^{2\beta_1 - 1} \xi}{(p - 1)^{3/2}} = o(1). \tag{2.12}$$

Оценка поправки в формуле (2.11) равномерна по ξ , τ и p.

Обсудим теорему 2. Сперва отметим, что теорема 2 описывает асимптотику решения Ψ в том числе и на больших расстояниях от края потенциальной ямы: условие на ξ в терминах переменной x принимает вид

$$0 \leqslant x - (1 - \tau) \leqslant c_1 \varepsilon^{-(\gamma + 1)} (p - 1)^{3/2}.$$
 (2.13)

Пусть параметр p принимает из всех значений, рассматриваемых в теореме 2, наиболее близкие к единице. Для этого надо считать, что

$$\beta_1 = 2/3$$
, $\alpha_1 < 2/3$ и близко́ к $2/3$, $(p-1) \sim \varepsilon^{\alpha_1}$.

В этом случае правая часть в (2.13) имеет порядок $\varepsilon^{\frac{3}{2}\alpha_1-1-\gamma}\gg \varepsilon^{-1/3}$. При $(p-1)\sim 1$ правая часть в (2.13) имеет порядок $\varepsilon^{-(\gamma+1)}$, где γ может быть выбрано близким к 1.

Как видно из формулы (2.11), амплитуда старшего члена асимптотики Ψ осциллирует, оставаясь порядка единицы. Интерес представляют предельные случаи, когда (p-1) принимает большие или малые значения. При достаточно больших значениях p, т.е. для случая "высоких энергий" (заметим, что константа c_3 в условии теоремы 2 может быть взята достаточно большой), в формулу (2.11) можно подставить верные при $p \to +\infty$ соотношения

$$Q(p - \varepsilon/2) = p (1 + O(p^{-2})),$$

$$\rho(p) = -(Q(p) + p)^{-2} = -\frac{1}{4} p^{-2} (1 + O(p^{-2}))$$

и после элементарных преобразований получить формулу 1

$$\Psi(x,\tau,p) = e^{-i(p^2 - 1)\tau/\varepsilon} \left(-2i\sin\left(p(1-\tau) + \xi/2 + Q(p - \varepsilon/2)\xi/\varepsilon\right) + O\left(\varepsilon + p^{-1}\right) \right),$$

в которой вклад в старший член асимптотики дают только падающая волна и сумма преломленных волн, а вклад от отраженной волны мал. Этот факт является естественным, поскольку коэффициент $\rho(p)$, становящийся малым при больших значениях p, имеет смысл коэффициента отражения.

Случай, когда $\varepsilon^{2/3} \ll p-1 \ll 1$, был качественно описан в разделе 1.3, в котором, напомним, используется параметр $E=(p-\varepsilon/2)^2-1$. Здесь мы приведем для указанного случая точные формулы, вывод которых дан в Приложении В. Положим

$$\theta_n(\tau, \xi, p) = 2(\tau_n - \tau) + \frac{p\xi}{O(p)}, \quad n \in \mathbb{N}, \tag{2.14}$$

где τ_n определено формулой (1.4). При значениях τ и ξ , указанных в формулировке теоремы 2, на полуплоскости переменных (τ, ξ) в окрестностях порядка (p-1) прямых

$$\theta_n(\tau, \xi, p) = 0, \quad n \in \mathbb{N},$$

$$(2.15)$$

 $^{^{1}}$ Мы не заменяем в аргументе синуса выражение $Q(p-\varepsilon/2)$ на его асимптотику, поскольку множитель ξ/ε может, вообще говоря, быть большим. Конечно, если ξ не слишком велико, то формулу можно упростить далее.

формула (2.11) принимает упрощенный вид

$$\Psi(x,\tau,p)$$

$$= \kappa(\xi,p,\varepsilon) \bigg(2\cos\Big(Q(p-\varepsilon/2)\xi/\varepsilon\Big) + O\left(\sqrt{p-1} + \frac{|\theta_n|}{\sqrt{p-1}} + \Delta\right) \bigg). \quad (2.16)$$

Вне окрестностей порядка (p-1) прямых (2.15) формула (2.11) упрощается до

$$\Psi(x,\tau,p) = \kappa(\xi,p,\varepsilon) \left(-2i \sin\left(Q(p-\varepsilon/2)\xi/\varepsilon\right) + O\left(\frac{\sqrt{p-1}}{|\theta|} + \Delta\right) \right), \\ |\theta| = \min_{n \in \mathbb{N}} \left\{ |\theta_n| \right\}. \quad (2.17)$$

Таким образом, при $\varepsilon^{2/3}\ll p-1\ll 1$ старший член асимптотики Ψ осциллирует вблизи прямых (2.15) и между ними с разной фазой.

Замечание 2. В разделе 1.3 вместо прямых (2.15) указаны прямые

$$\xi = 2Q(p - \varepsilon/2)(\tau - \tau_n), \quad n \in \mathbb{N},$$

но с учетом размера рассматриваемых окрестностей это различие не имеет значения при условиях теоремы 2.

Перейдем к обсуждению второго асимптотического режима. Его описывает

Теорема 3. Фиксируем некоторые $\tau_* < 1, \ c_1, c_2 > 0, \ a \ также \alpha_2 \ u \beta_2, \ makue \ umo^2$

$$8/15 < \beta_2 < 2/3, \quad \beta_2 \leqslant \alpha_2 < 1.$$
 (2.18)

 Πycm ь $\varepsilon > 0$ достаточно мало́ и пусть

$$\tau_* \leqslant \tau \leqslant 1, \quad 0 \leqslant \xi \leqslant c_1 \varepsilon^{-\beta_2/2}, \quad 1 + \varepsilon/2 \leqslant p \leqslant 1 + c_2 \varepsilon^{\alpha_2}.$$
 (2.19)

Тогда имеет место формула

$$\Psi(x,\tau,p) = \kappa(\xi,p,\varepsilon) \left(-2i \sin\left(Q(p-\varepsilon/2)\xi/\varepsilon\right) + 4\sqrt{2} q^{1/2} \left(\phi(\xi,\tau,p) + O(\varepsilon^{2\beta_2-1})\right) + O(\varepsilon) \right), \quad (2.20)$$

где $q=\left(p-1-\varepsilon/2\right)/\varepsilon^{2/3},$ а для $\phi(\xi,\tau,p)$ справедлива оценка $\phi(\xi,\tau,p)=O(1).$

 $^{^2}$ Заметим, что ограничение $\beta_2>8/15$ в условии теоремы 3 взято для того, чтобы поправка $O\left(q^{1/2}\varepsilon^{2\beta_2-1}\right)=O\left(\varepsilon^{\alpha_2/2+2\beta_2-4/3}\right)$ всегда была малой.

Фиксируем достаточно малые $\delta_1, \delta_2 > 0$. Пусть

$$0 \leqslant \xi \leqslant \delta_1 \sqrt{p-1}$$
.

Eсли $|\tau - \tau_n| \geqslant \delta_2$ для каждого $n \in \mathbb{N}$, то

$$\phi(\xi, \tau, p) = O\left(\varepsilon^{1/3} + \varepsilon^{-1/6}\xi\right). \tag{2.21}$$

Если же для фиксированного $N \in \mathbb{N}$ выполнено $|\tau - \tau_N| \leqslant \delta_2$, то

$$\phi(\xi, \tau, p) = e^{\frac{4\sqrt{2}}{3}q^{3/2}} \mathcal{G}\left(\frac{\xi}{\varepsilon^{2/3}}, \frac{\eta_N}{\varepsilon^{1/3}}, q\right) + O\left(\varepsilon^{1/3} + \varepsilon^{-1/6}\xi\right),$$

$$\eta_N = 2(\tau_N - \tau).$$
(2.22)

$$\mathcal{G}(s, w, q) = \int_{0}^{\infty} e^{iwu - \frac{4\sqrt{2}}{3}(q+u)^{3/2} + \sqrt{2}i(q+u)^{1/2}s} du.$$
 (2.23)

Оценки поправок равномерны по ξ , τ и p.

Замечание 3. Для $\phi(\xi, \tau, p)$ имеет место явная формула

$$\phi(\xi, \tau, p)$$

$$= \varepsilon^{1/3} e^{\frac{4\sqrt{2}}{3}q^{3/2}} \sum_{m=1}^{\infty} e^{i\eta m - \frac{4\sqrt{2}}{3} \left(q + \varepsilon^{1/3} m\right)^{3/2} \left(1 - \frac{3i\xi}{16}\right) + \sqrt{2}i\left(q + \varepsilon^{1/3} m\right)^{1/2} \frac{\xi}{\varepsilon^{2/3}}}, \quad (2.24)$$

где
$$\eta = 2(1 + \pi/2 - \tau)$$
.

При обсуждении теоремы 3 мы будем использовать следующие асимптотические формулы для функции \mathcal{G} : при $q \to +0$

$$\mathcal{G}(s, w, q) = \mathcal{G}_1(s, w) + O(q(1+s)),$$

$$\mathcal{G}_1(s, w) = \int_0^\infty e^{iwu - \frac{4\sqrt{2}}{3}u^{3/2} + \sqrt{2}iu^{1/2}s} du,$$
(2.25)

а при $q \to +\infty$

$$\mathcal{G}(s, w, q) = e^{-\frac{4\sqrt{2}}{3}q^{3/2}} e^{\sqrt{2}iq^{1/2}s} \times \left(\frac{1}{2\sqrt{2}q^{1/2} - iw - \frac{is}{\sqrt{2}q^{1/2}}} + O\left(q^{-2} + sq^{-3}\right)\right). \quad (2.26)$$

Доказательства этих формул приведены в приложении С.1.

Рассмотрим формулу (2.20) при $\varepsilon/2\leqslant p-1\ll \varepsilon^{2/3}$, т. е. при $q\ll 1$. Если синус, стоящий в скобках в (2.20), принимает значения, асимптотически большие, чем $q^{1/2}$, то он является, ввиду оценки $\phi=O(1)$, старшим членом асимптотики Ψ (с точностью до постоянного по модулю множителя). Если же этот синус мал, то мы имеем для решения Ψ оценку $\Psi=O\left(q^{1/2}\right)$. Этот синус всегда мал при $\xi=0$, т. е. при $x=1-\tau$, и вторая часть теоремы 3 позволяет более точно описать в рассматриваемом случае поведение Ψ вблизи границы потенциальной ямы. При малых аргументах синус в (2.20) ведет себя как $\sqrt{2}q^{1/2}\xi/\varepsilon^{2/3}$, т. е. принимает при $\xi=O\left(\varepsilon^{2/3}\right)$ значения одного порядка или меньше по сравнению с оценкой второго слагаемого в скобках в (2.20). Используемое во второй части теоремы 3 условие $\xi\leqslant \delta_1\sqrt{p-1}$ включает в себя эту область значений ξ , поскольку $p-1\geqslant \varepsilon/2$. Формула (2.22), описывающая поведение ϕ при $\tau\sim\tau_N,\ N\in\mathbb{N}$, упрощается при $q\ll 1$ с помощью (2.25):

$$\phi(\xi, \tau, p) = \mathcal{G}_1\left(\frac{\xi}{\varepsilon^{2/3}}, \frac{\eta_N}{\varepsilon^{1/3}}\right) + O\left(q\left(1 + \varepsilon^{-2/3}\xi\right) + \varepsilon^{1/3} + \varepsilon^{-1/6}\xi\right).$$

Заметим, что в рассмотренном случае $\varepsilon/2\leqslant p-1\ll \varepsilon^{2/3}$ поведение решения Ψ вблизи границы потенциальной ямы согласуется с описанным в разделе 1.2 поведением Ψ внутри ямы: решение Ψ имеет вблизи границы ямы порядок $q^{1/2}=\varepsilon^{-1/3}\sqrt{p-1-\varepsilon/2}$ при $\tau\sim\tau_n$ и принимает асимптотически меньшие значения между моментами τ_n . В описываемом теоремой 2 случае $\varepsilon^{2/3}\ll p-1\ll 1$ поведение Ψ вблизи границы ямы и внутри нее также согласовано: решение Ψ имеет около моментов τ_n порядок единицы и мало́ между ними. Эти факты уже обсуждались в разделе 1.3.

Наконец, рассмотрим случай $\varepsilon^{2/3}\ll p-1\ll \varepsilon^{8/15}$, т.е. $1\ll q\ll \varepsilon^{-2/15}$. В этом случае применимы и теорема 3, и теорема 2, и имеет смысл вопрос о согласованности асимптотик. Вблизи границы потенциальной ямы, при $\xi=O\left(p-1\right)=O\left(\varepsilon^{2/3}q\right)$, нетрудно проверить согласованность асимптотик Ψ с помощью формулы (2.26). Это проделано в Приложении C.2.

2.3. Структура работы. Опишем структуру оставшейся части данной работы. В разделе 3 мы приведем две леммы из работы [2], которые понадобятся нам в дальнейшем. Разделы 4 и 5 посвящены, соответственно, доказательству теорем 2 и 3.

§3. Две леммы

Для доказательства теорем 2 и 3 нам понадобятся следующие леммы из работы [2].

Лемма 1 ([2, следствие 1]). Положим при $p \ge 1$

$$l(p) = -i \ln \rho(p), \quad l(1) = \pi.$$
 (3.1)

 $\Pi pu \ k\geqslant 1 \ u \ p\geqslant 1$ справедлива формула

$$R(k) = R(p) \left(1 + O(\varepsilon^{1/2}) \right) e^{\frac{i}{\varepsilon} \int_{p}^{k} l(s) ds},$$
 (3.2)

оценка погрешности в которой равномерна.

Лемма 2 ([2, лемма 3]). Пусть b > 0. При $1 \le p \le 1 + b$ имеют место соотношения

$$l(p) = \pi + 2\sqrt{2}i\sqrt{p-1} + O((p-1)^{3/2}), \quad \text{Im } l(p) \geqslant C\sqrt{p-1}, \quad (3.3)$$

еде $C>0,\ a$ квадратный корень принимает неотрицательные значения. При всех $k\geqslant p\geqslant 1$ выполнена оценка

$$\operatorname{Im} \int_{p}^{k} l(s) \, ds \geqslant \operatorname{Im} l(p) \, (k-p), \tag{3.4}$$

 $nричем\ npu\ p>1,\ k\to p\ верна\ формула$

$$\int_{0}^{k} l(s) ds = l(p) (k - p) + O\left((k - p)^{2} / \sqrt{p^{2} - 1}\right).$$
 (3.5)

§4. Доказательство теоремы 2

Здесь и далее мы будем рассматривать решение Ψ вне потенциальной ямы, при $x\geqslant 1-\tau$, где оно описывается формулой (2.6). При этом мы будем, не оговаривая это каждый раз отдельно, использовать обозначение $k_m=p+\varepsilon m$, как в формуле (2.6), а также обозначение $\xi=\varepsilon(x-(1-\tau))$, см. (1.5). Символом C мы будем обозначать положительные постоянные, не зависящие от переменных и параметров.

Асимптотическое поведение первых двух слагаемых в формуле (2.6) находится тривиально, и сложность при доказательстве теорем данной

работы представляет только изучение бесконечной суммы

$$\Sigma_1(x,\tau,p) = \sum_{m=0}^{\infty} e^{ip_1^2(k_m)(1-\tau)/\varepsilon + ip_1(k_m)x} T(k_m) R(k_m).$$
 (4.1)

Идея доказательства теоремы 2 повторяет идею доказательства [2, теорема 1] и состоит в замене функции R в некотором количестве начальных членов ряда Σ_1 на асимптотику (3.2) с последующей линеаризацией функции, стоящей в показателе экспоненты, с помощью формулы (3.5). Сумма оставшихся членов ряда при этом оказывается малой.

Асимптотические формулы для первых двух слагаемых в (2.6) дает

Лемма 3. Фиксируем $\tau_* < 1$ и определим $\kappa = \kappa(\xi, p, \varepsilon)$ формулой (2.8). При $\tau_* \leqslant \tau \leqslant 1$ верны формулы

$$e^{-ip_2^2(p)\tau/\varepsilon - ip_2(p)x} = \kappa e^{-iQ(p-\varepsilon/2)\xi/\varepsilon} (1 + O(\varepsilon)), \tag{4.2}$$

$$r(p) e^{-ip_3^2(p)\tau/\varepsilon + ip_3(p)x} = \rho(p - \varepsilon/2) \kappa e^{iQ(p - \varepsilon/2)\xi/\varepsilon} (1 + O(\varepsilon)). \tag{4.3}$$

Доказательство. Докажем формулу (4.3), формула (4.2) доказывается аналогично. Используя определение p_3 , см. (2.3), получаем

$$-ip_3^2\tau/\varepsilon + ip_3x = -ip_3^2\tau/\varepsilon + ip_3(1-\tau) + ip_3\xi/\varepsilon$$

$$= -i(p_3^2 + \varepsilon p_3)\tau/\varepsilon + ip_3 + ip_3\xi/\varepsilon = -i(p_3 + \varepsilon/2)^2\tau/\varepsilon + ip_3 + ip_3\xi/\varepsilon + O(\varepsilon)$$

$$= -i((p-\varepsilon/2)^2 - 1)\tau/\varepsilon + iQ(p-\varepsilon/2) - i\xi/2 + iQ(p-\varepsilon/2)\xi/\varepsilon + O(\varepsilon). \quad (4.4)$$

Отсюда и из определения r в (2.4) вытекает формула (4.3).

Перейдем к изучению суммы Σ_1 . Фиксируем некоторые $\tau_* < 1$ и $c_1, c_2, c_3 > 0$, а также такие α_1 , β_1 и γ , что выполнено (2.9). Будем считать, что условия (2.10) теоремы 2 выполнены. В [2, (5.5)] уже возникала вытекающая из оценки в (3.3) и из ограниченности p оценка

$$\sum_{m=M}^{\infty} e^{-\operatorname{Im} l(p) \, m} = \frac{e^{-\operatorname{Im} l(p) \, M}}{1 - e^{-\operatorname{Im} l(p)}} = O\left((p-1)^{-1/2} \, e^{-C\sqrt{p-1} \, M}\right), \quad (4.5)$$

$$M \in \mathbb{N} \cup \{0\}.$$

Будем обозначать через [a] целую часть числа $a \in \mathbb{R}$ и положим $m_{\beta_1} = \lfloor \varepsilon^{\beta_1 - 1} \rfloor$. Поскольку при $k \geqslant 1$ выполнено $p_1(k) \in \mathbb{R}$ и $|T(k)| \leqslant 1$, то

$$\left| \frac{1}{R(p)} \sum_{m=m_{\beta_1}+1}^{\infty} e^{ip_1^2(k_m)(1-\tau)/\varepsilon + ip_1(k_m)x} T(k_m) R(k_m) \right|$$

$$\leq \frac{1}{|R(p)|} \sum_{m=m_{\beta_1}+1}^{\infty} |R(k_m)|. \quad (4.6)$$

Для выражения в правой части (4.6) имеет место вытекающая из формул (3.2), (3.4), (4.5) и из неравенства $p-1\geqslant c_2\varepsilon^{\alpha_1}$ оценка

$$\frac{1}{|R(p)|} \sum_{m=m_{\beta_1}+1}^{\infty} |R(k_m)| \leqslant C \sum_{m=m_{\beta_1}+1}^{\infty} e^{-\frac{1}{\varepsilon} \operatorname{Im} \int_{p}^{k_m} l(s) \, ds}$$

$$\leqslant C \sum_{m=m_{\beta_1}+1}^{\infty} e^{-\frac{1}{\varepsilon} \operatorname{Im} l(p) \, (k_m-p)}$$

$$= C \sum_{m=m_{\beta_1}+1}^{\infty} e^{-\operatorname{Im} l(p) \, m} = O\left(\varepsilon^{-\alpha_1/2} \, e^{-C\varepsilon^{\alpha_1/2+\beta_1-1}}\right)$$

$$= O\left(e^{-C\varepsilon^{\alpha_1/2+\beta_1-1}}\right). \quad (4.7)$$

Заметим, что оцененный выше хвост ряда экспоненциально мал, поскольку предполагаемое нами условие $\alpha_1 < 2(1-\beta_1)$ равносильно условию $\alpha_1/2+\beta_1-1<0$. Из формулы (3.2) и оценок (4.6) и (4.7) получаем

$$\Sigma_{1} = R(p) \sum_{m=0}^{m_{\beta_{1}}} e^{ip_{1}^{2}(k_{m})(1-\tau)/\varepsilon + ip_{1}(k_{m})x} T(k_{m}) \left(1 + O(\varepsilon^{1/2})\right) e^{\frac{i}{\varepsilon} \int_{p}^{k} l(s) ds} + O\left(R(p) e^{-C\varepsilon^{\alpha_{1}/2 + \beta_{1} - 1}}\right).$$
(4.8)

Преобразовать эту формулу далее нам позволит

Лемма 4. Пусть р принимает значения, указанные в формулировке теоремы 2. Тогда при $0\leqslant m\leqslant m_{\beta_1}=\lfloor \varepsilon^{\beta_1-1}\rfloor$ верны формулы

$$T(k_m) = T(p - \varepsilon) \left(1 + O\left(\frac{\varepsilon^{\beta_1}}{\sqrt{p-1}}\right) \right),$$
 (4.9)

$$ip_{1}^{2}(k_{m})(1-\tau)/\varepsilon + ip_{1}(k_{m})x$$

$$= \left(i(p^{2}-1)(1-\tau)/\varepsilon - i\xi/2 + iQ(p)\xi/\varepsilon\right)\Big|_{p:=p-\varepsilon/2}$$

$$+i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)(m+1) + O\left(\varepsilon^{2\beta_{1}-1}\left(1 + \frac{\xi}{(p-1)^{3/2}}\right)\right). \quad (4.10)$$

Доказательство. Докажем сперва формулу (4.10). Рассуждая аналогично (4.4), получим, с учетом определения p_1 в (2.3),

$$ip_1^2(k_m)(1-\tau)/\varepsilon + ip_1(k_m)x = i\left(p_1(k_m) + \varepsilon/2\right)^2(1-\tau)/\varepsilon + ip_1(k_m)\xi/\varepsilon + O(\varepsilon)$$

$$= i\left((k_m + \varepsilon/2)^2 - 1\right)(1-\tau)/\varepsilon - i\xi/2 + iQ(k_m + \varepsilon/2)\xi/\varepsilon + O(\varepsilon)$$

$$= i\left((p-\varepsilon/2)^2 - 1\right)(1-\tau)/\varepsilon + 2ip(1-\tau)(m+1) - i\xi/2$$

$$+ iQ(k_m + \varepsilon/2)\xi/\varepsilon + O(\varepsilon(m+1)^2). \quad (4.11)$$

Из определения Q в (2.1) легко получить формулу

$$Q(p - \varepsilon/2) = Q(p) + O\left(\frac{\varepsilon}{\sqrt{p-1}}\right), \tag{4.12}$$

из которой, в свою очередь, следует соотношение

$$Q(k_m + \varepsilon/2) = Q(p - \varepsilon/2) + \frac{p}{Q(p)}\varepsilon(m+1) + O\left(\frac{\varepsilon^2(m+1)^2}{(p-1)^{3/2}}\right). \quad (4.13)$$

С помощью (4.13) нетрудно получить (4.10) из формулы (4.11). Формула (4.9) следует из определения T в (2.4) и из формулы (4.13):

$$T(k_m) = \frac{-i(k_m + \varepsilon/2)e^{i/\varepsilon}}{Q(k_m + \varepsilon/2) + (k_m + \varepsilon/2)}$$
$$= \frac{-i(p - \varepsilon/2)e^{i/\varepsilon}}{Q(p - \varepsilon/2) + (p - \varepsilon/2)} \left(1 + O\left(\frac{\varepsilon(m+1)}{\sqrt{p-1}}\right)\right).$$

Лемма доказана.

Лемма 4 и формула (3.5) с $k=k_m$ позволяют получить из (4.8) формулу

$$\Sigma_{1} = R(p) \left(e^{-i\xi/2} e^{i(p^{2}-1)(1-\tau)/\varepsilon} e^{iQ(p)\xi/\varepsilon} \right) \Big|_{p:=p-\varepsilon/2} T(p-\varepsilon) e^{-il(p)}$$

$$\times \sum_{m=0}^{m_{\beta_{1}}} e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)} + l(p)\right)(m+1)} \left(1 + O(\Delta)\right) + O\left(R(p)e^{-C\varepsilon^{\alpha_{1}/2 + \beta_{1} - 1}}\right), \quad (4.14)$$

где Δ определено формулой (2.12). Как следует из (4.5) и из неравенства $p-1\geqslant c_2\varepsilon^{\alpha_1}$,

$$\left|\sum_{m=0}^{m_{\beta_1}} e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)} + l(p)\right)(m+1)} O\left(\Delta\right)\right| = O\left(\frac{e^{il(p)}\Delta}{\sqrt{p-1}}\right),$$

$$\sum_{m=0}^{m\beta_1} e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)} + l(p)\right)(m+1)}$$

$$= \frac{e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)} + l(p)\right)}}{1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)} + l(p)\right)}} + O\left(e^{il(p)}e^{-C\varepsilon^{\alpha_1/2 + \beta_1 - 1}}\right), \quad (4.15)$$

поэтому, с учетом соотношения $e^{il(p)} = \rho(p)$,

$$\Sigma_{1} = R(p) \left. \left(e^{-i\xi/2} e^{i(p^{2}-1)(1-\tau)/\varepsilon} e^{iQ(p)\xi/\varepsilon} \right) \right|_{p:=p-\varepsilon/2} T(p-\varepsilon)$$

$$\times \left(\frac{e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)}}{1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)} \rho(p)} + O\left(\frac{\Delta}{\sqrt{p-1}}\right) \right). \quad (4.16)$$

Как нетрудно видеть из определений T, t и κ , см. (2.4), (2.5) и (2.8),

$$t(p)R(p)\left(e^{-i\xi/2}e^{i(p^2-1)(1-\tau)/\varepsilon}e^{iQ(p)\xi/\varepsilon}\right)\Big|_{p:=p-\varepsilon/2}T(p-\varepsilon)$$

$$=e^{-ip^2/\varepsilon}\left(\frac{-4iQ(p)}{Q(p)+p}e^{-i(Q(p)-p)}e^{-i\xi/2}e^{i(p^2-1)(1-\tau)/\varepsilon}e^{iQ(p)\xi/\varepsilon}\frac{-ipe^{i/\varepsilon}}{Q(p)+p}\right)\Big|_{p:=p-\varepsilon/2}$$

$$=\kappa\left(\frac{-4pQ(p)}{(Q(p)+p)^2}\right)\Big|_{p:=p-\varepsilon/2}e^{iQ(p-\varepsilon/2)\xi/\varepsilon}\left(1+O(\varepsilon)\right). \quad (4.17)$$

Формула (4.12) и элементарное соотношение $\rho(p) = -(Q(p) + p)^{-2}$ позволяют написать

$$\rho(p - \varepsilon/2) = \rho(p) \left(1 + O\left(\frac{\varepsilon}{\sqrt{p-1}}\right) \right), \tag{4.18}$$

$$\left(\frac{-4pQ(p)}{(Q(p) + p)^2} \right) \Big|_{p := p - \varepsilon/2} = 4pQ(p - \varepsilon/2)\rho(p) \left(1 + O\left(\frac{\varepsilon}{\sqrt{p-1}}\right) \right). \tag{4.19}$$

Теперь формулы (4.16), (4.17), (4.19) и вытекающая из (4.5) и (4.15) оценка

$$\frac{e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)}}{1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)}\rho(p)} = O\left((p-1)^{-1/2}\right)$$

дают нам

$$t(p) \Sigma_{1} = 4p Q(p - \varepsilon/2) \kappa e^{iQ(p - \varepsilon/2)\xi/\varepsilon} \times \left(\frac{e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)} \rho(p)}{1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)} \rho(p)} + O\left(\frac{\rho(p)\Delta}{\sqrt{p-1}}\right) \right). \quad (4.20)$$

Наконец, остается сопоставить формулу (2.6) для решения Ψ вне потенциальной ямы, определение (4.1) суммы Σ_1 и асимптотические формулы (4.2), (4.3) (с учетом (4.18)) и (4.20). Теорема 2 доказана.

§5. Доказательство теоремы 3

При доказательстве теоремы 3 мы будем рассуждать аналогично доказательству [2, теорема 2]. Здесь, как и в разделе 4, мы воспользуемся для изучения суммы Σ_1 асимптотикой (3.2) функции R, но теперь будем аппроксимировать начальные члены ряда Σ_1 не в окрестности точки p, а в окрестности единицы. В результате мы получим формулу (2.20) с функцией ϕ , определенной в (2.24). Наконец, мы завершим доказательство теоремы 3, преобразовав входящий в определение ϕ бесконечный ряд с использованием формулы суммирования Пуассона.

Пусть выполнены условия теоремы 3: фиксируем некоторые $\tau_* < 1$ и $c_1, c_2 > 0$, а также α_2 и β_2 , удовлетворяющие (2.18), и будем считать, что имеют место неравенства (2.19). Аналогично сделанному в разделе 4, мы будем использовать обозначение $m_{\beta_2} = \lfloor \varepsilon^{\beta_2 - 1} \rfloor$. Пользуясь оценкой (4.6) и первым неравенством в (4.7) с заменой m_{β_1} на m_{β_2} , напишем

$$\left| \frac{1}{R(p)} \sum_{m=m_{\beta_2}+1}^{\infty} e^{ip_1^2(k_m)(1-\tau)/\varepsilon + ip_1(k_m)x} T(k_m) R(k_m) \right|$$

$$\leq C \sum_{m=m_{\beta_2}+1}^{\infty} e^{-\frac{1}{\varepsilon} \operatorname{Im} \int_{p}^{k_m} l(s) \, ds} . \quad (5.1)$$

Следующая оценка уже была проделана в [2, раздел 6]. Она получается последовательным применением к правой части (5.1) оценки в (3.3), оценки (3.4), неравенства

$$(a+b)^{3/2} \geqslant a^{3/2} + b^{3/2}, \quad a,b \geqslant 0,$$
 (5.2)

оценки (4.5) с заменой p на $k_{m_{\beta_2}}$ и, наконец, оценки $k_{m_{\beta_2}} - 1 \geqslant C \varepsilon^{\beta_2}$:

$$\sum_{m=m_{\beta_{2}}+1}^{\infty} e^{-\frac{1}{\varepsilon} \operatorname{Im} \int_{p}^{k_{m}} l(s) \, ds} = e^{-\frac{1}{\varepsilon} \operatorname{Im} \int_{p}^{k_{m_{\beta_{2}}}} l(s) \, ds} \sum_{m=m_{\beta_{2}}+1}^{\infty} e^{-\frac{1}{\varepsilon} \operatorname{Im} \int_{k_{m_{\beta_{2}}}}^{k_{m}} l(s) \, ds}$$

$$\leq e^{-\frac{C}{\varepsilon} \left((k_{m_{\beta_{2}}} - 1)^{3/2} - (p-1)^{3/2} \right)} \sum_{m=1}^{\infty} e^{-\operatorname{Im} l \left(k_{m_{\beta_{2}}} \right) m}$$

$$\leq C e^{-\frac{C}{\varepsilon} \left(k_{m_{\beta_{2}}} - p \right)^{3/2}} \left(k_{m_{\beta_{2}}} - 1 \right)^{-1/2}$$

$$\leq C e^{-C\varepsilon^{1/2} m_{\beta_{2}}^{3/2}} \varepsilon^{-\beta_{2}/2} = O\left(e^{-C\varepsilon^{3\beta_{2}/2-1}} \right). \quad (5.3)$$

Оценки (5.1) и (5.3) вместе с формулой (3.2) позволяют написать для Σ_1

$$\Sigma_{1} = R(p) \sum_{m=0}^{m_{\beta_{2}}} e^{ip_{1}^{2}(k_{m})(1-\tau)/\varepsilon + ip_{1}(k_{m})x} T(k_{m}) \left(1 + O(\varepsilon^{1/2})\right) e^{\frac{i}{\varepsilon} \int_{p}^{k_{m}} l(s) ds} + O(R(p) e^{-C\varepsilon^{3\beta_{2}/2-1}}).$$
 (5.4)

Положим $q=\left(p-1-\varepsilon/2\right)/\varepsilon^{2/3}$, как в формулировке теоремы 3. Далее нам понадобится

Лемма 5. Пусть р принимает значения, указанные в формулировке теоремы 3. Тогда при $0 \le m \le m_{\beta_2} = |\varepsilon^{\beta_2-1}|$ верны формулы

$$\frac{i}{\varepsilon} \int_{p}^{k_m} l(s) ds = i\pi m - \frac{4\sqrt{2}}{3} \left(q + \varepsilon^{1/3} (m+1) \right)^{3/2} + \frac{4\sqrt{2}}{3} q^{3/2} + O\left(\varepsilon^{\beta_2/2}\right), \quad (5.5)$$

$$T(k_m) = -ie^{i/\varepsilon} \left(1 + O\left(\varepsilon^{\beta_2/2}\right) \right), \quad (5.6)$$

$$ip_1^2(k_m)(1-\tau)/\varepsilon + ip_1(k_m)x = i\left((p-\varepsilon/2)^2 - 1\right)(1-\tau)/\varepsilon + 2i(1-\tau)(m+1)$$
$$-i\xi/2 + \sqrt{2}i\left(q + \varepsilon^{1/3}(m+1)\right)^{1/2} \frac{\xi}{\varepsilon^{2/3}} + \frac{i\xi}{2\sqrt{2}}\left(q + \varepsilon^{1/3}(m+1)\right)^{3/2}$$
$$+ O\left(\varepsilon^{2\beta_2 - 1}\left(1 + \varepsilon^{\beta_2/2}\xi\right)\right). \quad (5.7)$$

Доказательство. Докажем сперва формулу (5.5). В силу первой формулы в (3.3) и верной при условиях леммы оценки $k_m-1=O\left(\varepsilon^{\beta_2}\right)$

мы имеем

$$\frac{i}{\varepsilon} \int_{r}^{k_{m}} l(s) ds = \frac{i}{\varepsilon} \pi (k_{m} - p) - \frac{4\sqrt{2}}{3\varepsilon} (k_{m} - 1)^{3/2} + \frac{4\sqrt{2}}{3\varepsilon} (p - 1)^{3/2} + O\left(\frac{(k_{m} - 1)^{5/2}}{\varepsilon}\right)$$

$$=i\pi m-\frac{4\sqrt{2}}{3}\left(q+\varepsilon^{1/3}m+\frac{\varepsilon^{1/3}}{2}\right)^{3/2}+\frac{4\sqrt{2}}{3}\left(q+\frac{\varepsilon^{1/3}}{2}\right)^{3/2}+O\left(\varepsilon^{5\beta_2/2-1}\right).$$

Формула (5.5) следует отсюда и из верной при $0\leqslant X\leqslant C\varepsilon^{\beta_2-2/3}$ оценки

$$\left(X + \frac{\varepsilon^{1/3}}{2}\right)^{3/2} - X^{3/2} = O(\varepsilon^{\beta_2/2}),$$
 (5.8)

в которую можно подставить $X=q+\varepsilon^{1/3}m+\frac{\varepsilon^{1/3}}{2}$ и X=q. Оценку (5.8) можно получить следующим образом: если $0\leqslant X\leqslant C\varepsilon^{1/3}$, то левая часть в (5.8) есть, очевидно, $O(\varepsilon^{1/2})=O(\varepsilon^{\beta_2/2})$. Если же для достаточно большого C>0 выполнено $C\varepsilon^{1/3}\leqslant X\leqslant C\varepsilon^{\beta_2-2/3}$, то

$$\left(X + \frac{\varepsilon^{1/3}}{2}\right)^{3/2} - X^{3/2} = X^{3/2} \left(1 + O\left(\frac{\varepsilon^{1/3}}{X}\right)\right) - X^{3/2}$$

$$= O\left(X^{1/2}\varepsilon^{1/3}\right) = O\left(\varepsilon^{\beta_2/2}\right).$$

Для доказательства формул (5.6) и (5.7) нам понадобится очевидное соотношение

$$Q(k) = \sqrt{2}\sqrt{k-1} + \frac{1}{2\sqrt{2}}(k-1)^{3/2} + O\left((k-1)^{5/2}\right), \quad k \to 1+0.$$
 (5.9)

Формула (5.6) получается с помощью определения T в (2.4), формулы (5.9) с $k=k_m+\varepsilon/2$ и оценки $k_m-1=O(\varepsilon^{\beta_2})$. Формулу (5.7) нетрудно получить, подставляя (5.9) с $k=k_m+\varepsilon/2$ в формулу (4.11) и учитывая соотношения

$$k_m + \varepsilon/2 - 1 = \varepsilon^{2/3}q + \varepsilon(m+1), \qquad p-1 \leqslant k_m - 1 = O(\varepsilon^{\beta_2}).$$

Лемма доказана.

Заметим также, что при условиях теоремы 3 верна вытекающая из определения (2.5) функции t и из (5.9) формула

$$t(p) = -4\sqrt{2}i\,\varepsilon^{1/3}q^{1/2}\,\frac{e^{-ip^2/\varepsilon}}{R(p)}\,e^{-iQ(p-\varepsilon/2)}\,e^{ip}\left(1 + O\left(\varepsilon^{\alpha_2/2}\right)\right). \tag{5.10}$$

Введем обозначение $\eta = 2(1 + \pi/2 - \tau)$, как в замечании 3. С помощью леммы 5 и формулы (5.10) из формулы (5.4) получается формула

$$t(p) \Sigma_{1} = 4\sqrt{2} \varepsilon^{1/3} q^{1/2} \kappa$$

$$\times \left(e^{\frac{4\sqrt{2}}{3} q^{3/2}} \sum_{m=1}^{m_{\beta_{2}}+1} e^{i\eta m - \frac{4\sqrt{2}}{3} \left(q + \varepsilon^{1/3} m \right)^{3/2} \left(1 - \frac{3i\xi}{16} \right) + \sqrt{2}i \left(q + \varepsilon^{1/3} m \right)^{1/2} \frac{\xi}{\varepsilon^{2/3}} \right)$$

$$\times \left(1 + O\left(\varepsilon^{2\beta_{2}-1} \right) \right) + O\left(e^{-C\varepsilon^{3\beta_{2}/2-1}} \right), \quad (5.11)$$

где κ определено в (2.8). В [2, (6.4)] была доказана с помощью неравенства (5.2) оценка

$$e^{\frac{4\sqrt{2}}{3}q^{3/2}} \sum_{m=M}^{\infty} e^{-\frac{4\sqrt{2}}{3}(q+\varepsilon^{1/3}m)^{3/2}} = e^{-\frac{4\sqrt{2}}{3}\varepsilon^{1/2}M^{3/2}} O(\varepsilon^{-1/3}),$$

$$M \in \mathbb{N} \cup \{0\}.$$
(5.12)

Ее доказательство тривиально и мы не будем его повторять. Пользуясь этой оценкой с M=1 и с $M=m_{\beta_2}+2 \asymp \varepsilon^{\beta_2-1},$ получим из (5.11)

$$t(p) \Sigma_{1} = 4\sqrt{2} q^{1/2} \kappa \left(\phi(\xi, \tau, p) + O\left(\varepsilon^{2\beta_{2}-1}\right) \right),$$

$$\phi(\xi, \tau, p) = \varepsilon^{1/3} e^{\frac{4\sqrt{2}}{3} q^{3/2}} \Sigma_{2},$$
 (5.13)

$$\Sigma_{2}(\xi,\tau,p) = \sum_{m=1}^{\infty} e^{i\eta m - \frac{4\sqrt{2}}{3} \left(q + \epsilon^{1/3} m\right)^{3/2} \left(1 - \frac{3i\xi}{16}\right) + \sqrt{2}i\left(q + \epsilon^{1/3} m\right)^{1/2} \frac{\xi}{\epsilon^{2/3}}}.$$
 (5.14)

Формула для ϕ уже была выписана ранее, см. (2.24). Из (5.12) следует оценка $\phi = O(1)$. Сопоставление формулы (2.6) с формулами (4.2) и (4.3) (с учетом выписанной в Приложении В формулы (B.4) для функции ρ), определением (4.1) суммы Σ_1 и формулами (5.13) завершает доказательство первой части теоремы 3 (формулы (2.20)).

При доказательстве оставшейся части теоремы 3 мы будем считать, что $0 \le \xi \le \delta_1 \sqrt{p-1}$ для некоторого достаточно малого $\delta_1 > 0$. В этом предположении

$$\phi(\xi, \tau, p) = \varepsilon^{1/3} e^{\frac{4\sqrt{2}}{3}q^{3/2}} \widetilde{\Sigma}_2 + O\left(\varepsilon^{2\beta_2 - 1}\right),$$

$$\widetilde{\Sigma}_2 = \sum_{m=1}^{\infty} e^{i\eta m - \frac{4\sqrt{2}}{3}\left(q + \varepsilon^{1/3}m\right)^{3/2} + \sqrt{2}i\left(q + \varepsilon^{1/3}m\right)^{1/2} \frac{\xi}{\varepsilon^{2/3}}}.$$
(5.15)

Формулу (5.15) легко получить с помощью рассуждений, аналогичных приведенным выше: необходимо перейти от Σ_2 к сумме по $1\leqslant m\leqslant m_{\beta_2}$ с помощью оценки хвоста ряда (5.12) с $M=m_{\beta_2}+1$, использовать верную при таких m и при рассматриваемых условиях на q и ξ оценку $\left(q+\varepsilon^{1/3}m\right)^{3/2}\xi=O\left(\varepsilon^{2\beta_2-1}\right)$, а затем повторно воспользоваться оценкой (5.12) с M=1 и с $M=m_{\beta_2}+1$ для перехода к сумме $\widetilde{\Sigma}_2$.

Для завершения доказательства теоремы 3 мы исследуем сумму $\widetilde{\Sigma}_2$, применяя формулу суммирования Пуассона. Выберем "срезающую" функцию $\chi \in C^{\infty}(\mathbb{R})$, такую что $\chi(s)=0$ при s<1/2 и $\chi(s)=1$ при s>3/4. Имеем

$$\begin{split} &\widetilde{\Sigma}_{2} = \sum_{m=-\infty}^{\infty} e^{i\eta m - \frac{4\sqrt{2}}{3} \left(q + \varepsilon^{1/3} m\right)^{3/2} + \sqrt{2}i \left(q + \varepsilon^{1/3} m\right)^{1/2} \frac{\xi}{\varepsilon^{2/3}}} \chi(m) \\ &= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i\eta_{n} s - \frac{4\sqrt{2}}{3} \left(q + \varepsilon^{1/3} s\right)^{3/2} + \sqrt{2}i \left(q + \varepsilon^{1/3} s\right)^{1/2} \frac{\xi}{\varepsilon^{2/3}}} \chi(s) \, ds = \varepsilon^{-1/3} \sum_{n=-\infty}^{\infty} I_{n}, \end{split}$$

гле

$$\eta_n = \eta - 2\pi n, \quad I_n = \int_0^\infty e^{i\eta_n \varepsilon^{-1/3} u - \frac{4\sqrt{2}}{3}(q+u)^{3/2} + \sqrt{2}i(q+u)^{1/2} \frac{\xi}{\varepsilon^{2/3}}} \chi(\varepsilon^{-1/3}u) du.$$

Далее мы рассмотрим два взаимоисключающих случая: либо при каждом $n \in \mathbb{Z}$ выполнено $|\eta_n| \geqslant C > 0$, либо есть единственное число $N \in \mathbb{Z}$, для которого η_N может быть близко́ к нулю. В первом случае оценку суммы $\widetilde{\Sigma}_2$ позволяет получить аналогичная лемме [2, лемма 4]

Лемма 6. Пусть $0 \leqslant \xi \leqslant \delta_1 \sqrt{p-1}$, где $\delta_1 > 0$ достаточно мало́, и пусть $|\eta_n| \geqslant C > 0$, $n \in \mathbb{Z}$. Тогда

$$I_n = e^{-\frac{4\sqrt{2}}{3}q^{3/2}} O\left(\frac{\varepsilon^{1/3} + \varepsilon^{-1/6}\xi}{\eta_n^2}\right),\,$$

где зависимость оценки от п указана явно.

Доказательство. Мы докажем данную лемму, интегрируя I_n по частям. Для удобства введем обозначение для показателя экспоненты в подынтегральном выражении:

$$h(u) := i \frac{\eta_n}{\varepsilon^{1/3}} u + \sqrt{2}i (q+u)^{1/2} \frac{\xi}{\varepsilon^{2/3}} - \frac{4\sqrt{2}}{3} (q+u)^{3/2},$$

$$h'(u) = i \left(\frac{\eta_n}{\varepsilon^{1/3}} + \frac{\xi}{\sqrt{2}\varepsilon^{2/3}\sqrt{q+u}} \right) - 2\sqrt{2}\sqrt{q+u},$$

$$h''(u) = \frac{-i\xi}{2\sqrt{2}\varepsilon^{2/3}(q+u)^{3/2}} - \frac{\sqrt{2}}{\sqrt{q+u}}.$$

С учетом того, что $\chi(s) = 0$ при s < 1/2, мы имеем

$$\begin{split} I_n &= -\int\limits_{\frac{1}{2}\varepsilon^{1/3}}^{\infty} e^{h(u)} \left(\frac{\chi(\varepsilon^{-1/3}u)}{h'(u)} \right)_u' du = I_n^{(1)} + I_n^{(2)}, \\ I_n^{(1)} &= \int\limits_{\frac{1}{2}\varepsilon^{1/3}}^{\infty} e^{h(u)} \, \frac{\chi(\varepsilon^{-1/3}u) \, h''(u)}{(h'(u))^2} \, du, \\ I_n^{(2)} &= -\int\limits_{\frac{1}{2}\varepsilon^{1/3}}^{\varepsilon^{1/3}} e^{h(u)} \, \frac{\varepsilon^{-1/3}\chi'(\varepsilon^{-1/3}u)}{h'(u)} \, du. \end{split}$$

При $0\leqslant \xi\leqslant \delta_1\sqrt{p-1}$ и $u\geqslant \varepsilon^{1/3}/2$ справедлива оценка

$$0\leqslant \frac{\xi}{\sqrt{2}\varepsilon^{2/3}\sqrt{q+u}}\leqslant \frac{\delta_1\sqrt{p-1}}{\sqrt{2}\varepsilon^{1/3}\sqrt{\varepsilon^{2/3}q+\varepsilon/2}}=\frac{\delta_1}{\sqrt{2}\varepsilon^{1/3}}\leqslant \frac{\delta_1}{\sqrt{2}C}\frac{|\eta_n|}{\varepsilon^{1/3}}.$$

В силу малости δ_1 мы можем написать

$$|h'(u)| \geqslant \left| \frac{\eta_n}{\varepsilon^{1/3}} + \frac{\xi}{\sqrt{2}\varepsilon^{2/3}\sqrt{q+u}} \right| \geqslant \left| \frac{|\eta_n|}{\varepsilon^{1/3}} - \frac{\xi}{\sqrt{2}\varepsilon^{2/3}\sqrt{q+u}} \right|$$
$$\geqslant \left(1 - \frac{\delta_1}{\sqrt{2}C} \right) \frac{|\eta_n|}{\varepsilon^{1/3}} \geqslant \frac{|\eta_n|}{2\varepsilon^{1/3}}.$$

Используя эту оценку, а также элементарную оценку

$$|h''(u)| \leqslant \frac{C \xi}{\varepsilon^{2/3} u^{3/2}} + \frac{C}{\sqrt{u}}$$

и неравенство (5.2), получим для $I_n^{(1)}$

$$\begin{split} \left|I_{n}^{(1)}\right| &\leqslant Ce^{-\frac{4\sqrt{2}}{3}q^{3/2}} \int\limits_{\frac{1}{2}\varepsilon^{1/3}}^{\infty} \int\limits_{\frac{1}{2}\varepsilon^{1/3}}^{\infty} e^{-\frac{4\sqrt{2}}{3}u^{3/2}} \left(\frac{\xi}{\varepsilon^{2/3}u^{3/2}} + \frac{1}{\sqrt{u}}\right) du \\ &= e^{-\frac{4\sqrt{2}}{3}q^{3/2}} O\left(\frac{\varepsilon^{-1/6}\xi + \varepsilon^{2/3}}{\eta_{n}^{2}}\right). \end{split}$$

Интегрирование $I_n^{(2)}$ по частям дает $I_n^{(2)} = I_n^{(3)} + I_n^{(4)},$ где

$$I_n^{(3)} = -2 \int_{\frac{1}{2}\varepsilon^{1/3}}^{\varepsilon^{1/3}} e^{h(u)} \frac{\varepsilon^{-1/3} \chi'(\varepsilon^{-1/3} u) h''(u)}{(h'(u))^3} du,$$

$$I_n^{(4)} = \int_{\frac{1}{2}\varepsilon^{1/3}}^{\varepsilon^{1/3}} e^{h(u)} \frac{\varepsilon^{-2/3} \chi''(\varepsilon^{-1/3} u)}{(h'(u))^2} du.$$

Оценивая $I_n^{(3)}$ и $I_n^{(4)}$ аналогично оценке $I_n^{(1)}$, получим

$$I_n^{(3)} = e^{-\frac{4\sqrt{2}}{3}q^{3/2}} \, O\left(\frac{\varepsilon^{-1/6}\xi + \varepsilon^{5/6}}{\eta_n^3}\right), \quad I_n^{(4)} = e^{-\frac{4\sqrt{2}}{3}q^{3/2}} \, O\left(\frac{\varepsilon^{1/3}}{\eta_n^2}\right).$$

Полученные оценки завершают доказательство леммы.

Если $|\eta_n|\geqslant C>0$ при каждом $n\in\mathbb{Z}$, то, как следует из леммы 6,

$$\left|\widetilde{\Sigma}_{2}\right| \leqslant C\left(1 + \varepsilon^{-1/2}\xi\right)e^{-\frac{4\sqrt{2}}{3}q^{3/2}}.$$

Распространяя определение (1.4) на все $n \in \mathbb{Z}$, мы можем написать

$$\eta_n = \eta - 2\pi n = 2(1 - \pi(n - 1/2) - \tau) = 2(\tau_n - \tau),$$

поэтому рассмотренный случай имеет место, когда $|\tau - \tau_n| \ge C > 0$ при всех $n \in \mathbb{N}$ (при $n \in \mathbb{Z} \setminus \mathbb{N}$ всегда $|\tau - \tau_n| \ge \pi/2$).

Наконец, рассмотрим второй случай. Пусть для некоторого $N \in \mathbb{N}$ и для достаточно малого $\delta_1 > 0$ выполнено $|\eta_N| \leqslant 2\delta_1$, или, что то же самое, $|\tau - \tau_N| \leqslant \delta_1$. Определив спецфункцию $\mathcal G$ формулой (2.23), мы можем написать

$$I_N = \mathcal{G}\left(\frac{\xi}{\varepsilon^{1/3}}, \frac{\eta_N}{\varepsilon^{1/3}}, q\right) + \Delta I_N,$$

$$\Delta I_N = \int_0^{\varepsilon^{1/3}} e^{i\eta_n \varepsilon^{-1/3} u - \frac{4\sqrt{2}}{3} (q+u)^{3/2} + \sqrt{2}i(q+u)^{1/2} \frac{\xi}{\varepsilon^{2/3}}} \left(\chi(\varepsilon^{-1/3} u) - 1 \right) du$$
$$= e^{-\frac{4\sqrt{2}}{3} q^{3/2}} O(\varepsilon^{1/3}),$$

где оценка ΔI_N получается с использованием неравенства (5.2) аналогично оценкам интегралов в доказательстве леммы 6. Поскольку при

всех $n\in\mathbb{Z}\setminus\{N\}$ для I_n верна оценка из леммы 6, то для суммы $\widetilde{\Sigma}_2$ мы теперь имеем

$$\widetilde{\Sigma}_2 = \varepsilon^{-1/3} \mathcal{G}\left(\frac{\xi}{\varepsilon^{1/3}}, \frac{\eta_N}{\varepsilon^{1/3}}, q\right) + e^{-\frac{4\sqrt{2}}{3}q^{3/2}} O\left(1 + \varepsilon^{-1/2}\xi\right).$$

С учетом формул (2.20) и (5.15) полученные для $\widetilde{\Sigma}_2$ результаты завершают доказательство теоремы 3.

Приложение A. Функция R.

В качестве решения разностного уравнения (2.2) мы выбираем функцию R, построенную и изученную в работе [3], поскольку именно такой выбор обеспечивает сходимость рядов в (2.6) и (2.7). Опишем эту функцию. Положим $\mathbb{C}_0 = \mathbb{C} \setminus \{p \in \mathbb{R} \mid |p| \geqslant 1\}$ и фиксируем в области \mathbb{C}_0 аналитические и непрерывные вплоть до ее границы ветви Q_0 и ρ_0 многозначных функций Q и ρ из (2.1) условием $Q_0(p+i0) \geqslant 0$ при $p \geqslant 1$. Определим аналитическую в \mathbb{C}_0 и непрерывную вплоть до границы \mathbb{C}_0 функцию l_0 формулами

$$l_0(p) = -i \ln \rho_0(p), \quad l_0(0) = 0.$$

Заметим, что $l_0/2$ – аналитическая в \mathbb{C}_0 ветвь арксинуса.

Будем называть кривую $\gamma \subset \mathbb{C}$ вертикальной, если вдоль этой кривой p является кусочно непрерывно дифференцируемой функцией переменной $\operatorname{Im} p \in \mathbb{R}$ и производная $dp/d\operatorname{Im} p$ равномерно ограничена. Для точки $p_0 \in \mathbb{C}$ будем обозначать через $\gamma(p_0)$ вертикальную кривую, проходящую через p_0 . Справедливо

Предложение 1 ([3, предложение 1]). При $p \in \mathbb{C}_0$ положеим

$$R_0(p) = \exp\left(\frac{i}{\varepsilon} \int_0^p L_0(s) \, ds\right), \quad L_0(p) = \frac{\pi}{2i\varepsilon} \int_{\gamma(p)} \frac{l_0(s) \, ds}{\cos^2\left(\frac{\pi(p-s)}{\varepsilon}\right)}, \quad (A.1)$$

где контур интегрирования $\gamma(p)\subset\mathbb{C}_0$ ориентирован так, что Im p вдоль него возрастает. Функции L_0 и R_0 аналитичны в \mathbb{C}_0 , и R_0 непрерывна вплоть до границы \mathbb{C}_0 . Функция R_0 решает разностное уравнение (2.2) с коэффициентом $\rho=\rho_0$, а L_0 удовлетворяет соотношениям

$$L_0(p+\varepsilon/2) - L_0(p-\varepsilon/2) = \varepsilon l_0'(p), \quad p \pm \varepsilon/2 \in \mathbb{C}_0.$$
 (A.2)

Мы определим функцию R при $p \geqslant 1$ формулой

$$R(p) = R_0(p+i0).$$

Определенная таким образом функция R является при $p \geqslant 1$ решением разностного уравнения (2.2) с $\rho(p) = \rho_0(p+i0)$.

Приложение §В. К обсуждению теоремы 2

Докажем формулы (2.16) и (2.17). Пусть θ_n определено формулой (2.14). При каждом $n \in \mathbb{N}$ знаменатель в формуле (2.11) может быть записан в виде

$$1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)}\rho(p) = 1 + (1 + O(p-1))e^{i\theta_n}\rho(p).$$
 (B.1)

При $c_2 \varepsilon^{\alpha_1} \leqslant p-1 \ll 1$ мы имеем

$$\sqrt{p-1-\varepsilon/2} = \sqrt{p-1} + O\left(\varepsilon/\sqrt{p-1}\right), \tag{B.2}$$

$$Q(p - \varepsilon/2) = \sqrt{2}\sqrt{p - 1 - \varepsilon/2} \left(1 + O(p - 1)\right)$$

= $\sqrt{2}\sqrt{p - 1} \left(1 + O\left(\varepsilon^{1 - \alpha_1} + (p - 1)\right)\right),$ (B.3)

$$\rho(p) = -(Q(p) - p)^2 = -1 + 2\sqrt{2}\sqrt{p-1} + O(p-1).$$
 (B.4)

Из (В.1) и (В.4) видно, что знаменатель в (2.11) принимает наименьшие значения, когда θ_n близко́ к нулю. Пусть θ_n мало́, тогда

$$1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)}\rho(p) = 2\sqrt{2}\sqrt{p-1}\left(1 + O\left(\sqrt{p-1} + \frac{|\theta_n|}{\sqrt{p-1}}\right)\right),$$

$$4pQ(p-\varepsilon/2)\frac{e^{i\left(2p(1-\tau)+\frac{p\xi}{Q(p)}\right)}\rho(p)}{1-e^{i\left(2p(1-\tau)+\frac{p\xi}{Q(p)}\right)}\rho(p)}=2\left(1+O\left(\sqrt{p-1}+\frac{|\theta_n|}{\sqrt{p-1}}\right)\right).$$

Таким образом, при $p-1\ll 1$ и $|\theta_n|\leqslant \delta_1\sqrt{p-1}$, где $\delta_1>0$ мало́, формула (2.11) принимает упрощенный вид (2.16). Условие $|\theta_n|\leqslant \delta_1\sqrt{p-1}$ для некоторого малого $\delta_1>0$ равносильно условию

$$\left| \xi - 2 \frac{Q(p)}{p} (\tau - \tau_n) \right| \leqslant \delta_2(p - 1)$$

для некоторого малого $\delta_2 > 0$, откуда видно, что формула (2.16) имеет место в окрестностях порядка (p-1) прямых (2.15). Если же, напротив, для некоторого достаточно большого $C_1 > 0$ выполнено $|\theta_n| \geqslant$

 $C_1\sqrt{p-1}$ при каждом $n\in\mathbb{N}$, или, что то же самое, для некоторого достаточно большого $C_2>0$ выполнено

$$\left| \xi - 2 \frac{Q(p)}{p} (\tau - \tau_n) \right| \geqslant C_2(p-1), \quad n \in \mathbb{N},$$

то знаменатель в (2.11) можно оценить снизу по модулю как

$$\left|1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)}\rho(p)\right| = \left|1 - e^{i\theta_n} + O\left(\sqrt{p-1}\right)\right| \geqslant C\left|\theta_n\right| \geqslant C\left|\theta\right|,$$

где C > 0 и $|\theta| = \min_{n \in \mathbb{N}} \{ |\theta_n| \}$. Как следствие, с учетом (В.3) и (В.4) формула (2.11) принимает вид (2.17).

Приложение §С. К обсуждению теоремы 3

С.1. Асимптотические формулы для функции \mathcal{G} . Докажем формулы (2.25) и (2.26). Отметим, что при s=0 эти формулы уже были доказаны в [2, приложение А.1]. В приведенных ниже выкладках при получении оценок "хвостов" интегралов мы пользуемся неравенством (5.2). Мы имеем при $q \to +0$

$$\begin{split} \mathcal{G}\left(s,w,q\right) &= \int\limits_{0}^{\infty} e^{iwu - \frac{4\sqrt{2}}{3}(q+u)^{3/2} + \sqrt{2}i(q+u)^{1/2}s} \, du \\ &= O(q) + \int\limits_{2q}^{1/q} e^{iwu - \frac{4\sqrt{2}}{3}u^{3/2} + \sqrt{2}iu^{1/2}s + O\left(qu^{1/2} + qu^{-1/2}s\right)} \, du + O\left(e^{-\frac{4\sqrt{2}}{3}q^{-3/2}}\right) \\ &= O(q) + \int\limits_{2q}^{1/q} e^{iwu - \frac{4\sqrt{2}}{3}u^{3/2} + \sqrt{2}iu^{1/2}s} \, du \\ &+ q \int\limits_{2q}^{1/q} e^{iwu - \frac{4\sqrt{2}}{3}u^{3/2} + \sqrt{2}iu^{1/2}s} \, O\left(u^{1/2} + u^{-1/2}s\right) \, du \\ &= \int\limits_{0}^{\infty} e^{iwu - \frac{4\sqrt{2}}{3}u^{3/2} + \sqrt{2}iu^{1/2}s} \, du + O\left(q(1+s)\right). \end{split}$$

Формула (2.25) доказана. Пусть теперь $q \to +\infty$, тогда

$$\begin{split} e^{\frac{4\sqrt{2}}{3}}q^{3/2}e^{-\sqrt{2}iq^{1/2}s}\,\mathcal{G}\left(s,w,q\right) \\ &= \int\limits_{0}^{q^{1/6}}e^{\left(iw-2\sqrt{2}q^{1/2}+\frac{is}{\sqrt{2}q^{1/2}}\right)u+O\left(\left(1+\frac{s}{q}\right)\frac{u^2}{q^{1/2}}\right)}\,du + O\left(e^{-Cq^{1/4}}\right) \\ &= \int\limits_{0}^{q^{1/6}}e^{\left(iw-2\sqrt{2}q^{1/2}+\frac{is}{\sqrt{2}q^{1/2}}\right)u}\,du \\ &+ \frac{1}{q^{1/2}}\left(1+\frac{s}{q}\right)\int\limits_{0}^{q^{1/6}}O\left(e^{-2\sqrt{2}q^{1/2}u}\,u^2\right)\,du + O\left(e^{-Cq^{1/4}}\right) \\ &= \int\limits_{0}^{\infty}e^{\left(iw-2\sqrt{2}q^{1/2}+\frac{i}{\sqrt{2}}q^{-1/2}s\right)u}\,du + O(q^{-2}+sq^{-3}) \\ &= \frac{1}{2\sqrt{2}q^{1/2}-iw-\frac{is}{\sqrt{2}q^{1/2}}} + O(q^{-2}+sq^{-3}). \end{split}$$

Формула (2.26) доказана.

С.2. О согласованности асимптотик Ψ . Очевидно, слагаемые в асимптотических формулах из теорем 2 и 3, соответствующие падающей и отраженной волнам, согласованы, поскольку в обоих случаях получены из леммы 3. Достаточно проверить слагаемые, соответствующие сумме преломленных волн. Сделаем это вблизи границы потенциальной ямы, при $\xi = O\left(p-1\right) = O\left(\varepsilon^{2/3}q\right)$. Фиксируем $N \in \mathbb{N}$. Пусть $|\tau - \tau_N| < \delta$ для некоторого малого $\delta > 0$. Используя формулу (2.26), а также формулу (B.2) и первую часть формулы (B.3) из Приложения В, нетрудно при $1 \ll q \ll \varepsilon^{-2/15}$, т. е. при $\varepsilon^{2/3} \ll p-1 \ll \varepsilon^{8/15}$, упростить слагаемое в скобках в (2.20), описывающее асимптотику суммы преломленных волн, следующим образом:

$$\begin{split} 4\sqrt{2}\,q^{1/2}\phi(\xi,\tau,p) &= 4p\,Q(p-\varepsilon/2)\,e^{iQ(p-\varepsilon/2)\xi/\varepsilon} \\ &\quad \times \left(\frac{1}{2\sqrt{2}\sqrt{p-1}-i\theta_N} + O\left(\varepsilon^{-1/3}q^{-2}\right)\right), \end{split}$$

где $\theta_N=2(\tau_N-\tau)-\frac{p\xi}{Q(p)}$. Теорема 2 же, с учетом (В.1) и (В.4), дает в этом случае для соответствующего слагаемого

$$4p Q(p - \varepsilon/2) \frac{e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)} \rho(p)}{1 - e^{i\left(2p(1-\tau) + \frac{p\xi}{Q(p)}\right)} \rho(p)} e^{iQ(p-\varepsilon/2)\xi/\varepsilon}$$

$$= \frac{4p Q(p - \varepsilon/2) e^{iQ(p-\varepsilon/2)\xi/\varepsilon}}{2\sqrt{2}\sqrt{p-1} - i\theta_N} \left(1 + O\left(\sqrt{p-1} + |\theta_N|\right)\right).$$

Видно, что при малых $|\theta_N|$ эти асимптотические формулы совпадают в старшем порядке. Если же при некотором C>0 для всех $n\in\mathbb{N}$ выполнено $|\theta_n|\geqslant C$, то, как нетрудно установить, в обеих теоремах рассматриваемые слагаемые есть $o\left(1\right)$ и являются малыми по сравнению с отраженной волной.

Автор выражает благодарность своему учителю, А. А. Федотову, за ценные комментарии и исправления.

Список литературы

- V. A. Fock, Electromagnetic Diffraction and Propagation Problems, in: International series of monographs on electromagnetic waves, Vol. 1, Pergamon Press (1965).
- A. A. Fedotov, V. A. Sergeev, Adiabatic evolution generated by a Schrödinger operator with a continuous spectrum. — Math. Notes, 118, No. 2 (2025), 382–397.
- A. A. Fedotov, Adiabatic evolution generated by a one-dimensional Schrödinger operator with decreasing number of eigenvalues. — Math. Notes, 116, No. 4 (2024), 804–830.
- V. A. Sergeev, A. A. Fedotov, On the delocalization of a quantum particle under the adiabatic evolution generated by a one-dimensional Schrödinger operator. — Math. Notes, 112, No. 5 (2022), 726–740.
- V. A. Sergeev, A. A. Fedotov, On the surface wave arising after delocalization of a quantum particle in the course of adiabatic evolution. — St. Petersburg Math. J., 36 (2025), 147–167.

Sergeev V. A. Adiabatic evolution generated by a Schrödinger operator with a continuous spectrum. II.

We consider the non-stationary one-dimensional Schrödinger equation, the potential being a potential well linearly shrinking with time, with a small parameter ε in front of the derivative with respect to time τ . The solution to this equation that we study, Ψ , depends on the parameter E,

which takes values in the continuous spectrum of the stationary Schrödinger operator. For a fixed τ , the solution Ψ is close to the generalized eigenfunction of the continuous spectrum of the stationary operator. We obtain for Ψ asymptotics outside the potential well as $\varepsilon \to 0$.

Лаборатория им. П. Л. Чебышева, Санкт-Петербургский государственный университет Санкт-Петербург, Россия E-mail: vasily.sergeev@spbu.ru

Поступило 4 октября 2025 г.