Д. В. Кориков

ОПТИМАЛЬНЫЕ ОЦЕНКИ УСТОЙЧИВОСТИ ВОССТАНОВЛЕНИЯ НЕОРИЕНТИРУЕМОЙ ПОВЕРХНОСТИ С КРАЕМ ПО ЕЕ ДН-ОПЕРАТОРУ

Введение. Пусть (M,g) – поверхность (двумерное компактное гладкое риманово многообразие) с метрикой g и краем (Γ,dl) ; здесь и далее dl это элемент длины на Γ , индуцированный метрикой g. Для простоты далее будем считать, что край Γ диффеоморфен окружности. Обозначим через u^f гармоническое продолжение функции $f \in C^{\infty}(\Gamma;\mathbb{R})$ внутрь (M,g). Отображение $\Lambda: f \mapsto \partial_{\nu} u^f|_{\Gamma}$, где ν – единичный вектор внешней нормали на Γ , называется ДН-оператором поверхности (M,g). Известно (см. [1,2]), что Λ определяет (M,g) с точностью до конформной эквивалентности: если (M',g') – другая поверхность с тем же краем $(\Gamma;dl)$ и ДН-оператором Λ' , то $\Lambda' = \Lambda$ если и только если существует конформный диффеоморфизм β из (M,g) на (M',g'), который не двигает точки общего края Γ . Классы поверхностей (M,g) относительно указанной эквивалентности будут обозначаться через [(M,g)].

В работах [3, 4, 5] получен следующий результат об устойчивости определения поверхности по ее ДН-оператору. Далее будем считать, что рассматриваемые поверхности имеют один и тот же край (Γ, dl) и один и тот же топологический тип (χ, o) , где $\chi = \chi(M)$ – эйлерова характеристика M и o = + (o = -) если M ориентируема (неориентируема). Пространство $\mathcal{M}_{m,o}$ конформных классов таких поверхностей наделяется естественной метрикой Тейхмюллера d_T , которая определяется следующим образом. Пусть $\beta: M \to M'$ – диффеоморфизм; число

$$K_{\beta}(x) := \sqrt{\max_{a \in T_x M} \frac{\beta^* g'(a, a)}{g(a, a)} / \min_{a \in T_x M} \frac{\beta^* g'(a, a)}{g(a, a)}}$$

называется дилатацией отображения β в точке x, а его максимум $K_{\beta} := \max_{x \in M} K_{\beta}(x)$ — дилатацией β . Логарифм дилатации является естественной мерой отклонения отображения β от конформности;

Ключевые слова: электроимпедансная томография поверхностей, ДНоператоры, устойчивость решений, расстояние Тейхмюллера, оценки устойчивости.

в частности, $K_{\beta} \geqslant 1$ и $K_{\beta} = 1$ если и только если β конформно. Величина $d_T([(M,g)],[(M',g')])$ определяется как инфимум $\frac{1}{2}\log K_\beta$ на множестве все конформных диффеоморфизмов β , которые не двигают точки общего края Γ . Отметим, что $d_T([(M,g)],[(M',g')])$ не зависит от выбора представителей конформных классов [(M,g)] и [(M',g')]и действительно является метрикой на $\mathcal{M}_{m,o}$. В то же время множество $\mathcal{D}_{m,o}$ всех ДН-операторов поверхностей с краем (Γ, dl) и топологического типа (m,o) наделяется метрикой $d_{\rm op}(\Lambda,\Lambda')=\|\Lambda' \Lambda\|_{H^1(\Gamma;\mathbb{R}) o L_2(\Gamma;\mathbb{R})}$. Введем "решающее" отображение $\mathcal{R}: \mathcal{D}_{m,o} o \mathcal{M}_{m,o}$, такое, что $\mathcal{R}(\Lambda)$ является конформным классом [(M,g)] всех поверхностей (M,g) с ДН-оператором Л. В [4,5] доказано, что отображение $\mathcal{R}: (\mathcal{D}_{m,o}, d_{op}) \to (\mathcal{M}_{m,o}, d_T)$ непрерывно. Иными словами, если поверхность (M', g') диффеоморфна (M, g), имеет тот же край (Γ, dl) и ее ДН-оператор Λ' близок к ДН-оператору Λ поверхности (M,g) по операторной норме, то между (M,q) и (M',q') существует почти конформный (т.е. обладающий близкой к единице дилатацией) диффеоморфизм, не двигающий точки Г. Более того, в [5] доказаны локальные оценки устойчивости:

$$c(\Lambda)d_{\mathrm{op}}(\Lambda, \Lambda') \leqslant d_T(\mathcal{R}(\Lambda), \mathcal{R}(\Lambda')) \leqslant C(\Lambda)d_{\mathrm{op}}(\Lambda, \Lambda')$$

$$(o = +, d_{\mathrm{op}}(\Lambda, \Lambda') \in [0, t_0(\Lambda));$$

$$c(\Lambda)d_{\mathrm{op}}(\Lambda, \Lambda') \leqslant d_T(\mathcal{R}(\Lambda), \mathcal{R}(\Lambda')) \leqslant C(\Lambda)d_{\mathrm{op}}(\Lambda, \Lambda')^{1/3}$$

$$(o = -, d_{\mathrm{op}}(\Lambda, \Lambda') \in [0, t_0(\Lambda)),$$

$$(1)$$

где положительные константы c, C, t_0 зависят только от Λ . В ориентируемом случае оценка (1) является оптимальной, а отображение \mathcal{R} – поточечно билипшицевым.

Результат. В этой заметке мы выводим оптимальную оценку устойчивости

$$d_T(\mathcal{R}(\Lambda), \mathcal{R}(\Lambda')) \leqslant C(\Lambda)d_{\text{op}}(\Lambda, \Lambda') \quad (o = -, d_{\text{op}}(\Lambda, \Lambda') \in [0, t_0(\Lambda)) \quad (2)$$

в неориентируемом случае. С этой целью мы применяем аргументы из предыдущей статьи [5], которые сводят доказательство (2) к исследованию свойств определенных нелинейных уравнений, содержащих ДН-оператор Λ .

Редукция доказательства оценки (2) с помощью метода [5]. Пусть (M,g) – фиксированная неориентируемая поверхность с краем (Γ,dl) и ДН-оператором Λ , а (M',g') – произвольная поверхность

[4, 5].

с тем же краем и того же топологического типа, что и (M,g), а ее ДН-оператор Λ' удовлетворяет оценке $\|\Lambda' - \Lambda\|_{H^1(\Gamma;\mathbb{R}) \to L_2(\Gamma;\mathbb{R})} \leqslant \varepsilon$, где arepsilon – малый параметр. Пусть $\pi: (\mathbf{M}, \mathbf{g}) o (M, g)$ – двулистное неразветвленные локально изометрическое накрытие, где поверхность М и \mathbf{M}' ориентируема и наделена инволюцией τ , причем $\pi \circ \tau = \pi$ (тогда **М** называется двулистным ориентируемым накрытием M). Граница $\Gamma = \partial \mathbf{M} \equiv \Gamma \times \{+, -\}$ представляет собой две копии края (Γ, dl) . Конформный класс метрики д и ориентация определяют комплексную структуру (комплексный атлас) на \mathbf{M} . Обозначим через $\mathcal{A}^{\infty}(\mathbf{M})$ алгебру (гладких вплоть до края) голоморфных функций на М. Тогда (антиголоморфная) инволюция au на ${\bf M}$ индуцирует инволюцию \dagger : $w\mapsto w^{\dagger}:=\overline{w\circ\tau}$ на алгебре $\mathcal{A}^{\infty}(\mathbf{M})$. Введем пространство $\mathfrak{H}^{\infty}(\mathbf{M})=$ $\{\mathbf{w}\in\mathcal{A}^{\infty}(\mathbf{M})\mid\overline{\mathbf{w}\circ\tau}=\mathbf{w}\}$ эрмитовых элементов в $\mathcal{A}^{\infty}(\mathbf{M})$, тогда $\mathcal{A}^{\infty}(\mathbf{M}) = \mathfrak{H}^{\infty}(\mathbf{M}) + i\mathfrak{H}^{\infty}(\mathbf{M})$. Обозначим (инъективный) оператор следа $\mathbf{w} \mapsto \mathbf{w}|_{\Gamma}$ на $\mathcal{A}^{\infty}(\mathbf{M})$ через Tr. Аналогичным образом вводится двулистное ориентируемое накрытие $(\mathbf{M}', \mathbf{g}', \tau', \pi')$ поверхности (M', g'), алгебра $\mathcal{A}^{\infty}(\mathbf{M}')$ голоморфных функций на нем, оператор следа Tr' и

Мы рассматриваем голоморфные вложения $\mathcal{E}=(\mathbf{w}_1,\ldots,\mathbf{w}_n), \, \mathcal{E}'=(\mathbf{w}_1',\ldots,\mathbf{w}_n')$ римановых поверхностей \mathbf{M} и \mathbf{M}' в \mathbb{C}^n (здесь функции \mathbf{w}_k и \mathbf{w}_k' голоморфны на \mathbf{M} и \mathbf{M}' соответственно). Поверхности $\mathcal{E}(\mathbf{M})$ и $\mathcal{E}'(\mathbf{M}')$ наделяются метриками, индуцируемыми объемлющим пространством \mathbb{C}^n ; при таком выборе метрик $\mathcal{E}(\mathbf{M})$ и $\mathcal{E}'(\mathbf{M}')$ конформно эквивалентны (\mathbf{M},\mathbf{g}) и $(\mathbf{M}',\mathbf{g}')$, соответственно. Выбирая достаточно большую размерность $n=n(M,g)=n(\Lambda)$, можно подчинить вложение \mathcal{E} дополнительному условию проективности: для любой точки $\xi_0 \in \mathcal{E}(M)$ существует такое \mathbb{C} -линейное отображение ("проекция") $P:\mathbb{C}^n \to \mathbb{C}$ и такая область $\mathcal{D} \ni P(\xi_0)$, что сужение P на $\mathcal{E}(M) \cap P^{-1}(\mathcal{D})$ инъективно. Напомним, что расстоянием Хаусдорфа $d_H(K,K')$ между двумя компактами K и K' в \mathbb{C}^n называется такое минимальное $\epsilon \geqslant 0$, что ϵ -окрестность K содержит K' и ϵ -окрестность K' содержит K.

Теорема 0.1 (см. [4, 5]). Пусть \mathcal{E} – голоморфное проективное вложение римановой поверхности с гладким краем Γ в \mathbb{C}^n . Тогда существуют такие достаточно малые положительные числа $t_0 = t_0(\mathcal{E})$ и $c = c(\mathcal{E})$, что для любого голоморфного отображения \mathcal{E}' из римановой

Для доказательства (1) мы используем следующий результат работ

поверхности, \mathbf{M}' с тем же краем Γ в \mathbb{C}^n , подчиненного оценке

$$t(\mathcal{E}, \mathcal{E}') := \|\mathcal{E}'|_{\Gamma} - \mathcal{E}|_{\Gamma}\|_{C^{7}(\Gamma; \mathbb{C}^{n})} < t_{0}, \tag{3}$$

отображение \mathcal{E}' является проективным вложением, образы $\mathcal{E}(\mathbf{M})$ и $\mathcal{E}'(\mathbf{M}')$ близки по метрике Хаусдорфа $d_H(\mathcal{E}(\mathbf{M}),\mathcal{E}'(\mathbf{M}')) \leqslant ct(\mathcal{E},\mathcal{E}')$ и существует диффеоморфизм $\alpha: \mathcal{E}(\mathbf{M}) \to \mathcal{E}'(\mathbf{M}')$, который является почти изометрией

$$\max_{\xi \in \mathcal{E}(\mathbf{M})} \max_{a \in T_{\xi} \mathcal{E}(\mathbf{M})} \left| \frac{\|d\alpha[a]\|_{T_{\alpha(\xi)}(\mathbb{C}^n)}}{\|a\|_{T_{\varepsilon}(\mathbb{C}^n)}} - 1 \right| \leqslant ct(\mathcal{E}, \mathcal{E}'),$$

и удовлетворяет соотношению $\alpha \circ \mathcal{E} = \mathcal{E}'$ на Γ . Как следствие, отображение $\beta := \mathcal{E}'^{-1} \circ \alpha \circ \mathcal{E} : \mathbf{M} \to \mathbf{M}'$ является почти конформным диффеоморфизмом $|K_{\beta} - 1| \leqslant ct(\mathcal{E}, \mathcal{E}')$, не двигающим точки общего края Γ поверхностей \mathbf{M} и \mathbf{M}' ; в частности, $d_T([\mathbf{M}], [\mathbf{M}']) \leqslant ct(\mathcal{E}, \mathcal{E}')$.

Если при этом поверхности \mathbf{M} , \mathbf{M}' наделены антиголоморфными инволюциями τ и τ' , $\tau|_{\Gamma} = \tau'_{\Gamma}$, $M = \mathbf{M}/\tau$, $M' = \mathbf{M}'/\tau'$ – (ориентируемые и ли неориентируемые) поверхности с одним и тем же гладким краем $\Gamma = \Gamma/\tau \cong \Gamma/\tau'$ и оба вложения симметричны относительно соответствующих инволюций $\mathcal{E} \circ \tau = \overline{\mathcal{E}}$, $\mathcal{E}' \circ \tau' = \overline{\mathcal{E}'}$ (где верхняя черта обозначает покомпонентное комплексное сопряжение), то $\alpha(\overline{\xi}) = \overline{\alpha(\xi)}$ при всех $\xi \in \mathcal{E}(\mathbf{M})$ и, в частности, β удовлетворяет соотношению $\beta \circ \tau = \tau' \circ \beta$ и потому правило $\beta \circ \pi = \pi' \circ \beta$ определяет почти конформный диффеоморфизм $\beta : M \to M'$, $|K_{\beta} - 1| \leqslant ct(\mathcal{E}, \mathcal{E}')$; в частности,

$$d_T([(M,g)],[(M',g')]) \leqslant ct(\mathcal{E},\mathcal{E}'). \tag{4}$$

Таким образом, для вывода оценки (2) достаточно построить "почти тождественное" вещественно-линейное отображение $\iota : \operatorname{Tr} \mathfrak{H}^{\infty}(\mathbf{M}) \to \operatorname{Tr} \mathfrak{H}^{\infty}(\mathbf{M}')$, удовлетворяющее оценкам

$$\|\iota \boldsymbol{\eta} - \boldsymbol{\eta}\|_{C^1(\Gamma:\mathbb{R})} \leqslant c(\Lambda, \boldsymbol{\eta}, l) \varepsilon \qquad \forall \, \boldsymbol{\eta} \in \text{Tr} \,\mathfrak{H}^{\infty}(\mathbf{M})$$
 (5)

и определить (по любому фиксированному проективному вложению $\mathcal{E} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$) индуцированное вложение $\mathcal{E}' = (\mathbf{w}_1', \dots, \mathbf{w}_n')$ правилом

$$\mathbf{w}_k'|_{\mathbf{\Gamma}} = \iota \mathbf{w}_k|_{\mathbf{\Gamma}}.$$

Тогда величина $t(\mathcal{E}, \mathcal{E}')$ в (3) и (4) допускает оценку $t(\mathcal{E}, \mathcal{E}') \leqslant C(\mathcal{E})\varepsilon$.

Для построения отображения ι мы используем характеризацию следов эрмитовых голоморфных функций на ориентируемом накрытии

(неориентируемой) поверхности в терминах ее ДН-оператора, полученную в [7]. Обозначим через ∂_{γ} оператор дифференцирования по длине на $\Gamma = \partial M$ и введем оператор интегрирования ∂_{γ}^{-1} , обращающий ∂_{γ} на пространстве $\partial_{\gamma}C^{\infty}(\Gamma;\mathbb{R})$ и аннулирующий константы. Введем функцию σ , равную ± 1 на компоненте связности $\Gamma \times \{\pm\}$ границы $\Gamma = \partial M$. Введем линейный оператор $\mathfrak D$ и нелинейные отображения $\mathfrak N$, $\mathcal G$, действующие на $C^{\infty}(\Gamma;\mathbb{R})$ по следующим правилам

$$\mathfrak{D}f := (\partial_{\gamma} + \Lambda \partial_{\gamma}^{-1} \Lambda) f,$$

$$\mathfrak{N}(f) := \frac{1}{2} \Lambda [f^{2} - (\partial_{\gamma}^{-1} \Lambda f)^{2}] - f \Lambda f - (\partial_{\gamma}^{-1} \Lambda f) \partial_{\gamma} f,$$

$$\mathfrak{G}(f) := \mathfrak{D}f \cdot \partial_{\gamma} \mathfrak{N}(f) - \mathfrak{N}(f) \partial_{\gamma} \mathfrak{D}f.$$
(6)

Лемма 0.2 (см. [6, 7]). Пусть $f \in C^{\infty}(\Gamma; \mathbb{R})$ отлична от константы и $\widetilde{\Gamma}$ – сегмент кривой Γ сколь угодно малой длины. Тогда справедливы следующие утверждения.

- (1) Критерий ориентируемости (см. Следствие 2.4, [6]): $\mathfrak{D}f$ аннулируется на $\widetilde{\Gamma}$, если и только если (M,g) ориентируема и $f = \Re w|_{\Gamma}$, где w голоморфна на M (относительно комплексной структуры, задаваемой конформным классом метрики g и выбором ориентации на M).
- (2) Характеризация следов голоморфных функций на накрытии (см. Лемму 1, [7]): $\mathcal{G}(f) = 0$ если и только если отношение $\mathfrak{N}(f)/\mathfrak{D}f = c_f$ является константой и функция

$$\boldsymbol{\eta} := f \circ \pi + i\sigma((\partial_{\gamma}^{-1}\Lambda f) \circ \pi + c_f) \tag{7}$$

является следом на Γ некоторой эрмитовой голоморфной функции $\mathbf{w} \in \mathfrak{H}^\infty(\mathbf{M}).$

То же самое верно для поверхностей (M',g'), $(\mathbf{M}',\mathbf{g}')$ и ассоциированных с ними отображений \mathfrak{D}' , \mathfrak{N}' , \mathcal{G}' , $f\mapsto c_f'=\mathfrak{N}'(f)/\mathfrak{D}'f$. В частности, $\mathcal{G}'(f')=0$ если и только если

$$\eta' := f' \circ \pi' + i\sigma \left((\partial_{\gamma}^{-1} \Lambda' f') \circ \pi' + c'_{f'} \right) \tag{8}$$

является следом на Γ некоторой эрмитовой голоморфной функции $\mathbf{w}' \in \mathfrak{H}^\infty(\mathbf{M}').$

Поскольку все ДН-операторы являются ПДО первого порядка (см. [8]) и на пространстве таких ПДО любые две нормы

$$\|\cdot\|_{H^{l+1}(\Gamma;\mathbb{R})\to H^l(\Gamma;\mathbb{R})} \quad \text{if} \quad \|\cdot\|_{H^{s+1}(\Gamma;\mathbb{R})\to H^s(\Gamma;\mathbb{R})} \quad (l,s=0,1,\dots)$$

эквивалентны, справедливы оценки

$$\|\Lambda - \Lambda'\|_{C^{l+2}(\Gamma:\mathbb{R}) \to C^{l}(\Gamma:\mathbb{R})} \leqslant c_{l}\varepsilon. \tag{9}$$

Ввиду последнего факта и формул (7) и (8) построение отображения ι , удовлетворяющего (5), сводится к построению "почти тождественного" отображения $\mathfrak{Y}: \mathcal{G}^{-1}(\{0\}) \to \mathcal{G}^{'-1}(\{0\})$, то есть к доказательству устойчивости (нелинейного) уравнения $\mathcal{G}(f) = 0$ к малым возмущениям \mathcal{G}' оператора \mathcal{G} .

Хотя отображение $\mathcal G$ нелинейно, оно положительно однородно со степенью однородности 3, т.е. $\mathcal G(cf)=c^3\mathcal G(f)$ при любых $f\in C^\infty(\Gamma;\mathbb R)$ и c>0. Кроме того, множество $\mathcal G^{-1}(\{0\})$ совпадает со множеством вещественных частей следов эрмитовых голоморфных функций $\mathbf w\in\mathfrak H^\infty(\mathbf M)$ на $\Gamma\times\{+\}\cong\Gamma$ и потому является линейным пространством коразмерности $-\chi(M)$. (Те же самые факты верны для оператора $\mathcal G'$, ассоциированного с (M',g').) В общем случае мы называем непрерывное положительно однородное отображение $G:E\to F$ (где E и F — нормированные пространства) (χ,α) — допустимым если степень однородности G равна α и $G^{-1}(\{0\})$ является линейным подпространством коразмерности χ в $\mathcal E$. Множество $\mathfrak Q_{\chi,\alpha}(E;F)$ всех (χ,α) — допустимых отображений из E в F наделяется метрикой

$$\mathfrak{d}(\mathcal{G}',\mathcal{G}) = \sup_{\|f\|_E = 1} \|\mathcal{G}'(f) - \mathcal{G}(f)\|_F.$$

Таким образом, введенные формулой (6) отображения \mathcal{G} , \mathcal{G}' являются (χ,α) -допустимыми, где $\chi=-\chi(M)=-\chi(M'),\ \alpha=3,\ E=C^{l+4}(\Gamma;\mathbb{R}),\ F=C^l(\Gamma;\mathbb{R}),$ а из оценок (9) следует, что

$$\mathfrak{d}(\mathcal{G}',\mathcal{G}) \leqslant c(E)\varepsilon. \tag{10}$$

Для построения отображения $\mathfrak Y$ используется следующая лемма, доказанная в [5].

Лемма 0.3. Пусть $\mathcal{G} \in \mathfrak{Q}_{\chi,\alpha}(E;F)$ и $h_1,\ldots,h_\alpha \in E$ линейно независимы по модулю $\mathcal{G}^{-1}(\{0\})$. Для каждого $f \in \mathcal{G}^{-1}(\{0\})$ введем функцию

$$\mathfrak{e}_{f}(t) := \sup \left\{ |\vec{d}| \mid \vec{d} = (d_{1}, \dots, d_{\chi})^{T} \in \mathcal{C}^{\chi}, \right.$$

$$\|\mathcal{G}\left(f - \sum_{k=1}^{\chi} d_{k} h_{k}\right)\|_{F} \leqslant t \|f\|_{E}^{\alpha} \right\}$$
(11)

(тогда $\lim_{t\to 0} \mathfrak{e}_f(t) = 0$ при кажедом $f \in E$).

Тогда существует такое достаточно малое $\mathfrak{d}_0 > 0$, что для кажедого отображения $\mathcal{G}' \in \mathfrak{Q}_{\chi,\alpha}(E;F)$, подчиненного неравенству $\mathfrak{d}(\mathcal{G}',\mathcal{G})$ $< \mathfrak{d}_0$, элементы h_1, \ldots, h_α линейно независимы по модулю $\mathcal{G}^{'-1}(\{0\})$ и прямое разложение

$$f = \sum_{k=1}^{\chi} d_k(f) h_k + \mathfrak{Y} f \quad (d_k(f) \in \mathbb{C}, \ \mathfrak{Y} f \in \mathcal{G}^{'-1}(\{0\}))$$

определяет отображение $\mathfrak{Y}: \mathcal{G}^{-1}(\{0\}) \to \mathcal{G}^{'-1}(\{0\})$, которое при каждом $f \in \mathcal{G}^{-1}(\{0\})$ подчинено оценке

$$\|\mathfrak{Y}f - f\|_E \leqslant c\mathfrak{e}_f(\mathfrak{d}(\mathcal{G}', \mathcal{G})),\tag{12}$$

rде c не зависит от f и \mathcal{G}' .

Итак, Лемма 0.3 доставляет отображение $\mathfrak{Y}: \mathcal{G}^{-1}(\{0\}) \to \mathcal{G}^{'-1}(\{0\}),$ удовлетворяющее оценкам (12). Определим отображение

$$\iota: \operatorname{Tr} \mathfrak{H}^{\infty}(\mathbf{M}) \to \operatorname{Tr}' \mathfrak{H}^{\infty}(\mathbf{M}')$$

правилом $\iota \eta = \eta'$, где η, η' заданы формулами (7), (8) и f и f' связаны равенством $f' = \mathfrak{Y}f$. Тогда из оценок (12), (10) и (9) следует, что

$$\|\iota \boldsymbol{\eta} - \boldsymbol{\eta}\|_{C^{l}(\Gamma;\mathbb{R})} \le c_{l}[\mathfrak{e}_{f}(C\varepsilon) + \varepsilon],$$
 (13)

где $f \circ \pi = \Re \eta$ и c_l, C не зависят от \mathcal{G}' и η . Таким образом, для того, чтобы доказать неравенства (5) и, тем самым, оценку (2), достаточно доказать, что при всех $f \in \mathcal{G}^{-1}(\{0\})$ функция \mathfrak{e}_f удовлетворяет оценке

$$\mathfrak{e}_f(s) = O(s) \qquad (s \to 0). \tag{14}$$

Отметим, что в [5] доказаны более грубые оценки $\mathfrak{e}_f(s) = O(s^{1/3})$, подстановка которых в (13), (3) и (4) дает оценку $t(\mathcal{E}, \mathcal{E}') = O(\varepsilon^{1/3})$ и второе неравенство в (1).

Доказательство оценок (14). Вторую формулу в (6) можно переписать в виде $\mathfrak{N}(f)=\mathcal{Q}(f,f)/2$, где \mathcal{Q} – билинейное отображение, заданное правилом

$$\mathcal{Q}(f,h) := \Lambda \left[f \cdot h - (\partial_{\gamma}^{-1} \Lambda f) \cdot (\partial_{\gamma}^{-1} \Lambda h) \right] - f \cdot \Lambda h - h \cdot \Lambda f - (\partial_{\gamma}^{-1} \Lambda f) \cdot \partial_{\gamma} h - (\partial_{\gamma}^{-1} \Lambda h) \cdot \partial_{\gamma} f.$$
 (15)

Тогда

$$\mathfrak{N}(f+h) = \mathfrak{N}(f) + \mathcal{Q}(f,h) + \mathfrak{N}(h).$$

Отсюда и из (6) вытекает разложение

$$\mathcal{G}(f+h) = \sum_{k=0}^{3} \mathcal{G}_{f,(k)}(h)$$

для оператора \mathcal{G} . Здесь $\mathcal{G}_{f,(0)}(h) := \mathcal{G}(f), \, \mathcal{G}_{f,(3)}(h) := \mathcal{G}(h)$ и

$$\mathcal{G}_{f,(1)}(h) := \partial_{\gamma} \mathfrak{N}(f) \cdot \mathfrak{D}h - \mathfrak{N}(f) \cdot \partial_{\gamma} \mathfrak{D}h
+ (\mathfrak{D}f) \cdot \partial_{\gamma} \mathscr{Q}(f,h) - (\partial_{\gamma} \mathfrak{D}f) \cdot \mathscr{Q}(f,h),
\mathcal{G}_{f,(2)}(h) := (\mathfrak{D}f) \cdot \partial_{\gamma} \mathfrak{N}(h) - (\partial_{\gamma} \mathfrak{D}f) \cdot \mathfrak{N}(h)
+ \partial_{\gamma} \mathscr{Q}(f,h) \cdot \mathfrak{D}h - \mathscr{Q}(f,h) \cdot \partial_{\gamma} \mathfrak{D}h.$$
(16)

Каждый член $\mathcal{G}_{f,(k)}: E \to F$ является непрерывным положительно однородным отображением со степенью однородности k, то есть $\mathcal{G}_{f,(k)}(sh) = s^k \mathcal{G}_{f,(k)}(h)$ для всех s>0 и $f\in C^\infty(\Gamma;\mathbb{R})$. Более того, $\mathcal{G}_{f,(1)}$ является линейным оператором.

Следующее утверждение является ключевым для доказательства оценок (14) и (2).

Пемма 0.4. При каждом $f \in \mathcal{G}^{-1}(\{0\}) \setminus \{0\}$ для линейного оператора (16) справедливо равенство

$$\operatorname{Ker} \mathcal{G}_{f,(1)} = \mathcal{G}^{-1}(\{0\}).$$
 (17)

Доказательство. Пусть $f \neq \text{const}$ (случай f = const тривиален). Ввиду неориентируемости M и утверждения f. Леммы f по определения f по оператора f следует, что уравнение f по условию f принимает вид f принимает вид

$$\begin{split} \mathcal{G}_{f,(1)}(h) &:= c_f \left[\partial_\gamma \mathfrak{D} f \cdot \mathfrak{D} h - \mathfrak{D} f \cdot \partial_\gamma \mathfrak{D} h \right] \\ &+ (\mathfrak{D} f) \cdot \partial_\gamma \mathcal{Q}(f,h) - (\partial_\gamma \mathfrak{D} f) \cdot \mathcal{Q}(f,h) \\ &= (\mathfrak{D} f)^{-2} \partial_\gamma \left(\frac{\mathcal{Q}(f,h) - c_f \cdot \mathfrak{D} h}{\mathfrak{D} f} \right). \end{split}$$

Поэтому $\mathcal{G}_{f,(1)}(h) = 0$ если и только если

$$\mathcal{Q}(f,h) = c_f \cdot \mathfrak{D}h + \widetilde{c}_{f,h}\mathfrak{D}f \tag{18}$$

при некоторых $c_f, \widetilde{c}_{f,h} \in \mathbb{R}$.

Введем функции

$$\mathbf{f} = f \circ \pi, \quad \mathbf{p} = \sigma((\partial_{\gamma}^{-1} \Lambda f) \circ \pi + c_f),$$

$$\mathbf{h} = h \circ \pi, \quad \mathbf{q} = \sigma((\partial_{\gamma}^{-1} \Lambda h) \circ \pi + \widetilde{c}_{f,h})$$
(19)

и обозначим через $\mathbf{u^f}$ гармоническое продолжение \mathbf{f} внутрь накрытия (\mathbf{M},\mathbf{g}) . Из условия $\mathcal{G}(f)=0$ и утверждения 2. Леммы 0.2 следует, что функция $\mathbf{w}:=\mathbf{u^f}+i\mathbf{u^p}$ голоморфна на накрытии (\mathbf{M},\mathbf{g}) . Условие Коши-Римана для \mathbf{w} можно представить в виде

$$\mathbf{\Phi} \nabla \mathbf{u}^{\mathbf{f}} = \mathbf{\nabla} \mathbf{u}^{\mathbf{p}},\tag{20}$$

где $\Phi: T\mathbf{M} \to T\mathbf{M}$ – непрерывное семейство

$$\begin{split} \mathbf{g}(\mathbf{\Phi}a,\mathbf{\Phi}b) &= \mathbf{g}(a,b), \quad \mathbf{g}(\mathbf{\Phi}a,b) = -\mathbf{g}(a,\mathbf{\Phi}b), \\ \mathbf{\Phi}^2a &= -a \quad (a,b \in T_\mathbf{x}\mathbf{M}, \ \mathbf{x} \in \mathbf{M}), \end{split}$$

(иногда называемое почти комплексной структурой, см. [9]).

Пусть ν – единичный вектор внешней нормали на Γ и Λ : $\mathbf{f} \mapsto \mathbf{u}^{\mathbf{f}}|_{\Gamma}$ – ДН-оператор поверхности (\mathbf{M}, \mathbf{g}) . Ввиду локальной изометричности накрытия π : $(\mathbf{M}, \mathbf{g}) \to (M, g)$ справедливы соотношения

$$\mathbf{u}^{f \circ \pi} = u^f \circ \pi, \quad d\pi[\nu] = \nu, \quad \mathbf{\Lambda}(h \circ \pi) = (\Lambda h) \circ \pi. \tag{21}$$

Введем единичный касательный вектор $\gamma := \Phi \nu$; тогда $\gamma = d\pi [\sigma \gamma]$ – единичный касательный вектор на Γ .

Сужая уравнение (20) на Γ и учитывая (21), получаем

$$\partial_{\gamma} \mathbf{p} = \mathbf{\Lambda} \mathbf{f} = (\Lambda f) \circ \pi, \quad \mathbf{\Lambda} \mathbf{p} = -\partial_{\gamma} \mathbf{f} = -\sigma \cdot (\partial_{\gamma} f) \circ \pi,$$
 (22)

где Λ — ДН-оператор поверхности (\mathbf{M},\mathbf{g}) (напомним, что $\Lambda(h\circ\pi)=(\Lambda h)\circ\pi).$

Пусть U — односвязная область в \mathbf{M} , содержащая сегмент $\widetilde{\Gamma}$ кривой Γ . Поскольку функция $\mathbf{u}^{\mathbf{h}}$ гармонична на U, из леммы Пуанкаре вытекает существование такой (определенной с точностью до аддитивной константы) функции \mathbf{v}_U на U, что функция $\widetilde{\mathbf{w}}_U := \mathbf{u}^{\mathbf{h}} + i\mathbf{v}_U$ голоморфна на U. Сужая уравнение Коши-Римана $\Phi \nabla \mathbf{u}^{\mathbf{h}} = \nabla \mathbf{v}_U$ для $\widetilde{\mathbf{w}}_U$ на сегмент $\widetilde{\Gamma}$ и учитывая соотношение $d\pi[\sigma \gamma] = \gamma$, получаем

$$\partial_{\gamma} \mathbf{v}_{U} = \partial_{\nu} \mathbf{u}^{\mathbf{h}} = \mathbf{\Lambda} \mathbf{h} = (\Lambda h) \circ \pi, \quad \partial_{\nu} \mathbf{v}_{U} = -\partial_{\gamma} \mathbf{h} = -\sigma \cdot (\partial_{\gamma} h) \circ \pi.$$
 (23)

Сравнивая (23) с (19), получаем $\partial_{\gamma} \mathbf{v}_U = \partial_{\gamma} \mathbf{q}$. Таким образом, функцию \mathbf{v}_U можно выбрать так, чтобы на $\widetilde{\Gamma}$ выполнялось равенство $\mathbf{v}_U = \mathbf{q}$.

Поскольку **w** и $\widetilde{\mathbf{w}}$ голоморфны на U, функция

$$\operatorname{Re}(\mathbf{w}\widetilde{\mathbf{w}}_{II}) = \mathbf{u}^{\mathbf{f}}\mathbf{u}^{\mathbf{h}} - \mathbf{u}^{\mathbf{p}}\mathbf{v}_{II}$$

гармонична на U, причем на $\widetilde{\Gamma}$ выполнены равенства

$$\operatorname{Re}(\mathbf{w}\widetilde{\mathbf{w}}_U) = \mathbf{fh} - \mathbf{pq} = \left[fh - \left(\partial_{\gamma}^{-1} \Lambda f + c_f \right) \cdot \left(\partial_{\gamma}^{-1} \Lambda h + \widetilde{c}_{f,h} \right) \right] \circ \pi =: \mathbf{Y}$$
 и (ввиду (22) и (23))

$$\begin{split} \partial_{\boldsymbol{\nu}} \operatorname{Re}(\mathbf{w} \widetilde{\mathbf{w}}_{U}) &= \mathbf{h} \cdot \boldsymbol{\Lambda} \mathbf{f} + \mathbf{f} \cdot \boldsymbol{\Lambda} \mathbf{h} - \mathbf{q} \cdot \boldsymbol{\Lambda} \mathbf{p} - \mathbf{p} \partial_{\boldsymbol{\nu}} \mathbf{v}_{U} \\ &= \mathbf{h} \cdot \boldsymbol{\Lambda} \mathbf{f} + \mathbf{f} \cdot \boldsymbol{\Lambda} \mathbf{h} + \mathbf{q} \partial_{\boldsymbol{\gamma}} \mathbf{f} + \mathbf{p} \partial_{\boldsymbol{\gamma}} \mathbf{h} \\ &= \left[h \boldsymbol{\Lambda} f + f \boldsymbol{\Lambda} h + \left(\partial_{\boldsymbol{\gamma}}^{-1} \boldsymbol{\Lambda} h + \widetilde{\boldsymbol{c}}_{f,h} \right) \partial_{\boldsymbol{\gamma}} f + \left(\partial_{\boldsymbol{\gamma}}^{-1} \boldsymbol{\Lambda} f + \boldsymbol{c}_{f} \right) \partial_{\boldsymbol{\gamma}} h \right] \circ \boldsymbol{\pi}. \end{split}$$

Из последних двух формул и определений (15), (6) формы $\mathcal Q$ и оператора $\mathfrak D$ имеем

$$\begin{split} \mathscr{Q}(f,h) \circ \pi &:= \left[\Lambda \big[fh - (\partial_{\gamma}^{-1} \Lambda f) (\partial_{\gamma}^{-1} \Lambda h) \big] \right] \circ \pi \\ &- \big[f\Lambda h - h\Lambda f - (\partial_{\gamma}^{-1} \Lambda f) \partial_{\gamma} h - (\partial_{\gamma}^{-1} \Lambda h) \partial_{\gamma} f \big] \circ \pi \\ &= \mathbf{\Lambda} \mathbf{Y} + \left[\widetilde{c}_{f,h} \Lambda \partial_{\gamma}^{-1} \Lambda f + c_{f} \Lambda \partial_{\gamma}^{-1} \Lambda h \right] \circ \pi \\ &- \partial_{\boldsymbol{\nu}} \operatorname{Re}(\mathbf{w} \widetilde{\mathbf{w}}_{U}) + \left[\widetilde{c}_{f,h} \partial_{\gamma} f + c_{f} \partial_{\gamma} h \right] \circ \pi \\ &= \partial_{\boldsymbol{\nu}} \big[\mathbf{u}^{\mathbf{Y}} - \operatorname{Re}(\mathbf{w} \widetilde{\mathbf{w}}_{U}) \big] + \left[\widetilde{c}_{f,h} \mathfrak{D} f + c_{f} \mathfrak{D} h \right] \circ \pi. \end{split}$$

Таким образом, уравнение (18) эквивалентно выполнению равенства

$$\partial_{\boldsymbol{\nu}} [\mathbf{u}^{\mathbf{Y}} - \operatorname{Re}(\mathbf{w}\widetilde{\mathbf{w}}_{U})] = 0$$
 на $\widetilde{\boldsymbol{\Gamma}}$ (24)

при любых U и $\widetilde{\Gamma}$. Поскольку функции $\mathbf{u}^{\mathbf{Y}}$ и $\mathrm{Re}(\mathbf{w}\widetilde{\mathbf{w}}_U)$ гармонические на U, из (24), из (24) и теоремы о единственности решений задачи Коши для эллиптических уравнений следует, что

$$\mathbf{u}^{\mathbf{Y}} = \operatorname{Re}(\mathbf{w}\widetilde{\mathbf{w}}_U)$$
 на U .

Последнее равенство можно переписать в виде

$$\mathbf{v}_U = \frac{\mathbf{u^f}\mathbf{u^h} - \mathbf{u^Y}}{\mathbf{u^p}},$$

причем здесь правая часть определена глобально на \mathbf{M} , а левая часть гладкая и гармоническая на любой окрестности U и удовлетворяет условию Коши-Римана $\mathbf{\Phi} \mathbf{\nabla} \mathbf{u}^{\mathbf{h}} = \mathbf{\nabla} \mathbf{v}_U$ на U. Таким образом, функция

$$\widetilde{\mathbf{w}} := \mathbf{u}^{\mathbf{h}} + i \frac{\mathbf{u}^{\mathbf{f}} \mathbf{u}^{\mathbf{h}} - \mathbf{u}^{\mathbf{Y}}}{\mathbf{u}^{\mathbf{p}}}.$$

(глобально) голоморфна на (\mathbf{M},\mathbf{g}) , причем $\overline{\widetilde{\mathbf{w}}\circ \tau}=\widetilde{\mathbf{w}}$ и

$$\widetilde{\mathbf{w}}|_{\Gamma} = \mathbf{h} + i \frac{\mathbf{fh} - \mathbf{Y}}{\mathbf{p}} = \mathbf{h} + i \mathbf{q} = h \circ \pi + i \sigma ((\partial_{\gamma}^{-1} \Lambda h) \circ \pi + \widetilde{c}_{f,h}).$$

Отсюда и из утверждения 2. Леммы 0.2 следует, что $\mathcal{G}(h)=0$. Тем самым доказано включение $\mathrm{Ker}\mathcal{G}_{f,(1)}\subset\mathcal{G}^{-1}(\{0\})$.

Теперь пусть $h \in \mathcal{G}^{-1}(\{0\})$; тогда из утверждения 2. Леммы 0.2 следует, что функция $\acute{\mathbf{w}} = \mathbf{u^h} + \mathbf{u^q}$ голоморфна, где \mathbf{h} и \mathbf{q} заданы формулой (19) и $\widetilde{c}_{f,h}$ – некоторая константа. Тогда функция $\mathrm{Re}(\acute{\mathbf{w}}\mathbf{w})$ гармонична на (\mathbf{M},\mathbf{g}) и $\mathrm{Re}(\acute{\mathbf{w}}\mathbf{w}) = \mathbf{Y}$ на $\widetilde{\Gamma}$, откуда следует $\mathbf{u^Y} = \mathrm{Re}(\acute{\mathbf{w}}\mathbf{w})$ и равенство (24) на Γ . Поскольку последнее равенство эквивалентно уравнениям (18) и $\mathcal{G}_{f,(1)}(h) = 0$, доказано включение $\mathrm{Ker}\mathcal{G}_{f,(1)} \supset \mathcal{G}^{-1}(\{0\})$.

Пусть функция $f \in \mathcal{G}^{-1}(\{0\})$ непостоянна. Поскольку функции h_1, \ldots, h_{χ} из леммы 0.3 линейно независимы по модулю $\mathcal{G}^{-1}(\{0\})$, из формулы (17) и компактности единичной сферы $S^{\chi-1}$ в \mathbb{C}^{χ} следует, что

$$\inf_{\vec{e} \in S^{\chi - 1}} \left\| \mathcal{G}_{f,(1)} \left(\sum_{k=1}^{\chi} e_k h_k \right) \right\| \geqslant C(\mathcal{G}, f) > 0.$$
 (25)

Из (25) и непрерывности и однородности (степени k) каждого отображения $\mathcal{G}_{f,(k)}$ следует, что

$$\begin{split} & \left\| \mathcal{G} \Big(f - \sum_{k=1}^{\chi} d_k h_k \Big) \right\|_F = \left\| \sum_{n=1}^{3} \mathcal{G}_{f,(n)} \Big(- \sum_{k=1}^{\chi} d_k h_k \Big) \right\|_F \\ & = \left\| \sum_{n=1}^{3} |\vec{d}|^n \mathcal{G}_{f,(n)} \Big(- \sum_{k=1}^{\chi} \frac{d_k}{|\vec{d}|} h_k \Big) \right\|_F \\ & \geqslant |\vec{d}| \left\| \mathcal{G}_{f,(1)} \Big(- \sum_{k=1}^{\chi} \frac{d_k}{|\vec{d}|} h_k \Big) \right\|_F - \sum_{n=2,3} |\vec{d}|^n \left\| \mathcal{G}_{f,(n)} \Big(- \sum_{k=1}^{\chi} \frac{d_k}{|\vec{d}|} h_k \Big) \right\|_F \\ & \geqslant C(\mathcal{G}, f) |\vec{d}| - c(\mathcal{G}, f) |d|^2 \geqslant C(\mathcal{G}, f) |\vec{d}|/2 \end{split}$$

при достаточно малых $\vec{d} \in \mathbb{C}^{\chi}$. Отсюда и из определения (11) функции \mathfrak{e}_f немедленно следует оценка (14).

Наконец, подстановка (14) в формулы (13), (3) и (4) дает оценку $t(\mathcal{E},\mathcal{E}')=O(\varepsilon)$ и неравенство (2). Таким образом, мы приходим к следующему утверждению.

Следствие 0.5. При всех m = 0, 1, ... и $o = \pm$ решающее отображение $\mathcal{R}: (\mathcal{D}_{m,o}, d_{op}) \to (\mathcal{M}_{m,o}, d_T)$ поточечно билипшицево.

Оценки устойчивости определения поверхности с краем по ДН-оператору, заданному на части границы. Пусть (M,g) — (ориентируемая или неориентируемая) поверхность с краем и (Γ,dl) — компонента связности ∂M (dl — элемент длины, индуцированный метрикой g на Γ). Введем оператор Лапласа—Бельтрами Δ_g на (M,g) и обозначим через u^f решение задачи

$$\Delta_g u^f = 0$$
 в $M \backslash \partial M$, $u^f = f$ на Γ , $\partial_{\nu} u^f = 0$ на $\partial M \backslash \Gamma$,

где ν — единичный вектор внешней нормали на ∂M . Определим (частичный) ДН-оператор поверхности (M,g) правилом $\Lambda f = \partial_{\nu} u^f|_{\Gamma}$. Мы пишем [(M,g)] = [(M',g')] если (Γ,dl) является общей частью краев ∂M и $\partial M'$ и между (M,g) и (M',g') существует конформный диффеоморфизм, не двигающий точки Γ ; тогда [(M,g)] = [(M',g')] если и только если их ДН-операторы совпадают. Как и раньше, пространство M конформных классов [(M,g)] поверхностей (M,g) фиксированного топологического типа наделяется метрикой Тейхмюллера $d_T([(M,g)],[(M',g')])=\inf \frac{1}{2} \log K_{\beta}$ (где инфимум берется по всем диффеоморфизмам между M и M', не двигающим точки Γ), а пространство $\mathcal D$ соответствующих им ДН-операторов — метрикой d_{op} .

Вне зависимости от ориентируемости поверхности M для нее определено двулистное (разветвленное) накрытие $(M,g,\bar{\tau})$, такое, что $(M,g)/\bar{\tau}=(M,g)$ (если M ориентируема, то M получается склеиванием двух копий M вдоль $M\backslash\Gamma$, если же M неориентируема, то M получается из двулистного ориентируемого накрытия (M,g,τ,π) поверхности M отождествлением таких точек \mathbf{x} и $\tau(\mathbf{x})$, что $\tau(\mathbf{x}) \in M\backslash\Gamma$). Для таких накрытий по-прежнему верна Теорема 0.1, а характеризация граничных следов голоморфных функций \mathbf{w} , симметричных относительно инволюции $(\overline{\mathbf{w}} \circ \bar{\tau} = \mathbf{w})$ – такая же, как в утверждении 2. Леммы 0.2 (этот факт доказан в Лемме 2, [10]). Поэтому повторение рассуждений выше приводит к следующему утверждению.

Предложение 0.6. Решающее отображение $\mathcal{R}: (\mathcal{D}, d_{\mathrm{op}}) \to (\mathcal{M}, d_T)$ поточечно билипшицево.

Список литературы

- M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map. — The Annales scientifiques de l'École normale supérieure 34, No. 5 (2001), 771–787.
- M. I. Belishev, The Calderon problem for two-dimensional manifolds by the BC-method. SIAM J. Math. Anal. 35, No. 1 (2003), 172–182.
- 3. M. I. Belishev, D. V. Korikov, Stability of determination of Riemann surface from its DN-map. J. Inverse Ill-posed Problems 31, No. 2 (2023), 159–176.
- M. I. Belishev, D. V. Korikov, Stability of Determination of Riemann Surface from its Dirichlet-to-Neumann Map in Terms of Teichmüller Distance. — SIAM J. Math. Analysis 55, No. 6 (2023), 7426–7448.
- D. V. Korikov, Stability Estimates in Determination of Non-orientable Surface from Its Dirichlet-to-Neumann Map. — Complex Analysis and Operator Theory 18, No. 29 (2024).
- M. I. Belishev, D. V. Korikov, On the EIT problem for nonorientable surfaces. J. Inverse and Ill-posed Problems 18 (2020).
- M. I. Belishev, D. V. Korikov, On determination of nonorientable surface via its Diriclet-to-Neumann operator. — SIAM J. Math. Anal. 53, No. 5 (2021), 5278– 5287
- 8. J. M. Lee, G. Uhlmann, Determining anisotropic realanalytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42 (1989), 1097–1112.
- 9. Е. М. Чирка, *Римановы поверхности. Лекционные курсы НОЦ*, М., вып. 1 (2006).
- A. V. Badanin, M. I. Belishev, D. V. Korikov, Electric impedance tomography problem for surfaces with internal holes. — Inverse Problems 37, No. 10 (2021).

Korikov D. V. Optimal stability estimates for determination of a non-orientable surface with boundary via its DN-map.

As is well-known, a surface with boundary is determined, up to conformal equivalence, by its Dirichlet-to-Neumann (DN) map. In this note, we prove the local estimates of the Teichmüller distance between the conformal classes of non-orientable surfaces (M,g) and (M',g') with given boundary $\Gamma = \partial M = \partial M'$ and the topology via the operator norm of the difference between their DN-maps. These estimates are optimal and they refine the corresponding results of previous works [4, 5].

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, Фонтанка 27, 191023 Санкт-Петербург, Россия *E-mail*: thecakeisalie@list.ru

Поступило 15 сентября 2025 г.