Я. И. Грановский, М. М. Маламуд

ОБ АБСОЛЮТНОЙ НЕПРЕРЫВНОСТИ СПЕКТРА ОПЕРАТОРА ШТУРМА-ЛИУВИЛЛЯ С МАТРИЧНЫМИ СИНГУЛЯРНЫМИ КОЭФФИЦИЕНТАМИ

§1. Введение

Согласно классическому результату Титчмарша (см. монографию [9, глава 5]), реализация Дирихле оператора Штурма–Лиувилля $-\mathrm{d}^2/\mathrm{d}x^2+q$ с суммируемым потенциалом $q(\cdot)\in L^1(\mathbb{R}_+)$ имеет неотрицательный лебеговский спектр кратности 1 (см. Определение 2.6). На матричный случай этот результат был распространен разными методами в работах [16, 17, 21] и [4] (см. также монографию [11]). Отметим, что в [16] рассматривался также случай матричного оператора Шредингера с конечным числом точек дельта-взаимодействий. Касательно операторов с дельта-взаимодействиями см. монографии [12, 13], обзор [18] и литературу в них. Далее, в [17] результаты статьи [16] распространены на случай конечных некомпактных квантовых графов, а в [4] — на случай сингулярных потенциалов.

Основным объектом настоящей работы является трехчленное дифференциальное матричное выражение Штурма—Лиувилля вида:

$$\mathcal{L}(P, Q, R)y := R^{-1}(x) \left(-(P(x)y')' + Q(x)y \right), \quad y = (y_1, \dots, y_m)^{\top}. \quad (1.1)$$

Здесь матричные коэффициенты $P(\cdot)$ и $R(\cdot)$ предполагаются локально суммируемыми, а потенциальная матрица $Q(\cdot)$ – принадлежащей соболевскому пространству $W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$. При этом операторы,

Ключевые слова: операторы Шредингера, сингулярные потенциалы, регуляризация, граничные тройки, функции Вейля, абсолютно непрерывный спектр.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках реализации программы регионального Азово-Черноморского математического центра по соглашению No. 075-02-2025-1620.

Исследования второго автора в секциях 2.1 и 2.3 выполнены за счет гранта Российского научного фонда No. 23-11-00153, а его исследования в Секциях 2.2 и 3 выполнены при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках реализации научного проекта по соглашению No. 075-15-2025-013.

порожденные выражением (1.1), рассматриваются в весовом пространстве $L^2(\mathbb{R}_+; R; \mathbb{C}^m)$.

Наш основной результат распространяет результат работы [4] на случай коэффициентов $P(\cdot)$ и $R(\cdot)$ специального вида. Именно, мы показываем, что при условии $Q(\cdot) \in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m \times m})$ и некоторых необременительных условиях на $P(\cdot)$ и $R(\cdot)$, зависящих от малого параметра ε , неотрицательный спектр реализации Дирихле L^D , как и любой другой самосопряженной реализации выражения $\mathcal{L}(P,Q,R)$, является лебеговским кратности m, а ее сингулярный непрерывный спектр — пуст. Кроме того, в отличие от метода Титчмарша, наше исследование базируется на изучении решения Вейля E(x,z), а не решений задачи Коши уравнения (2.9). Полученный результат дополняет результат нашей работы [4].

При этом мы трактуем дифференциальное выражение (1.1), пользуясь регуляризацией, предложенной в статьях [7, 8]. Впоследствии эта регуляризация использовалась для исследования спектральных свойств операторов вида (1.1) во многих работах (см., например, статью [15] и литературу в ней).

В нашей статье основным инструментом исследования является аппарат граничных троек и соответствующих функций Вейля (см. [3, 5], а также монографию [20]). Именно, мы исследуем функцию Вейля, соответствующую специальной граничной тройке, и показываем, что соответствующая (неортогональная) спектральная мера из ее интегрального представления абсолютно непрерывна на \mathbb{R}_+ . Этот факт вместе с известным результатом о спектральной эквивалентности ортогональной и неортогональной спектральных мер самосопряженного оператора (см. [19]) позволяет получить упомянутые результаты об абсолютной непрерывности спектра самосопряженных реализаций выражения $\mathcal{L}(P,Q,R)$.

Обозначения.

$$\mathbb{R}_{+} := (0, \infty), \quad \mathbb{R}_{-} := (-\infty, 0), \quad \overline{\mathbb{R}}_{+} := [0, \infty), \quad \overline{\mathbb{R}}_{-} := (-\infty, 0],$$

$$\mathbb{C}_{+} := \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \}, \quad \overline{\mathbb{C}}_{+} := \mathbb{C}_{+} \cup \mathbb{R}; \quad \mathbb{C}^{m \times m}$$

— множество всех матриц порядка m с комплексными элементами; $\rho(T)$ — резольвентное множество замкнутого оператора T, $E_T(\,\cdot\,)$ — спектральная мера оператора $T=T^*$; $\sigma_{ac}(A)$, $\sigma_s(A)$, $\sigma_{pp}(A)$ — абсолютно непрерывный, сингулярный и чисто точечный спектр оператора A соответственно.

$\S 2$. Общий случай сингулярного $W^{-1,1}$ -потенциала

Здесь в результате регуляризации дифференциального выражения $\mathcal{L}(P,Q,R)$ мы получаем новое выражение $\mathcal{L}:=\mathcal{L}(P,R,\sigma_1,\sigma_2)$ и исследуем свойства функции Вейля $M^D(\,\cdot\,)$, соответствующей реализации Дирихле L^D выражения \mathcal{L} . Кроме того, находится формула для некасательного предела функции Вейля $M^D(\lambda+i0)$ на вещественной оси. Главная цель – показать, что неотрицательная часть произвольной самосопряженной реализации выражения \mathcal{L} является чисто абсолютно непрерывной с постоянной кратностью m. Также показано, что отрицательная часть каждой самосопряженной реализации дифференциального выражения \mathcal{L} — дискретна с нулевой предельной точкой.

2.1. Регуляризация. В дальнейшем предполагается, что коэффициенты $P(\cdot)$ и $R(\cdot)$ из выражения (1.1) имеют следующий вид:

$$P(x, \varepsilon_P) = \varepsilon_P I_m + P_1(x) = \left(\varepsilon_P^{-1} I_m + P_2(x)\right)^{-1}, \quad 0 < \varepsilon_P \leqslant 1,$$

$$P_1(\cdot) \in L^1(\mathbb{R}_+; \mathbb{C}^{m \times m}) \cap L^{\infty}(\mathbb{R}_+; \mathbb{C}^{m \times m}), \tag{2.1}$$

И

$$R(x, \varepsilon_R) = \varepsilon_R I_m + R_1(x) = R(x, \varepsilon_R)^* > 0$$
 для п.в. $x \in \mathbb{R}_+, 0 < \varepsilon_R \leqslant 1,$
 $R_1(\cdot) \in W^{1,1}(\mathbb{R}_+; \mathbb{C}^{m \times m}).$ (2.2)

Также далее мы считаем, что матричные функции $P(x, \varepsilon_P)$ и $R(x, \varepsilon_R)$ являются самосопряженными и обратимыми при п.в. $x \in \mathbb{R}_+$. Кроме того, будем предполагать, что $Q(\cdot) \in W^{-1,1}(\mathbb{R}_+; \mathbb{C}^{m \times m})$. Согласно классическому определению соболевского класса $W^{-1,1}$ (см. [10, глава 3]), это означает наличие представления:

$$Q(x) = \sigma_1(x) + \sigma_2'(x), \quad \sigma_j(\cdot) = \sigma_j(\cdot)^* \in L^1(\mathbb{R}_+; \mathbb{C}^{m \times m}), \quad j \in \{1, 2\}. \quad (2.3)$$

Здесь производная понимается в смысле теории распределений. Отметим еще, что всюду в дальнейшем в отношении $\sigma_2(\,\cdot\,)$ предполагается справедливость более сильного включения:

$$\sigma_2(\cdot) \in L^1(\mathbb{R}_+; \mathbb{C}^{m \times m}) \cap L^2(\mathbb{R}_+; \mathbb{C}^{m \times m}).$$
 (2.4)

Лемма 2.1.

(i) Скалярные коэффициенты ε_P и ε_R из условий (2.1) и (2.2) равны:

$$\varepsilon_P = \varepsilon_R := \varepsilon, \quad 0 < \varepsilon \leqslant 1.$$
(2.5)

(ii) Условия (2.1) на коэффициент $P_1(\cdot)$ влекут аналогичные условия на коэффициент $P_2(\cdot)$:

$$P_2(\,\cdot\,) \in L^1(\mathbb{R}_+; \mathbb{C}^{m \times m}) \cap L^\infty(\mathbb{R}_+; \mathbb{C}^{m \times m}). \tag{2.6}$$

Следуя [8], регуляризуем выражение (1.1) следующим образом:

$$\mathcal{L}(y) := R_{\varepsilon}^{-1}(x) \left(\sigma_1(x) y - (y^{[1]})' - \sigma_2(x) P_{\varepsilon}^{-1}(x) y^{[1]} - \sigma_2(x) P_{\varepsilon}^{-1}(x) \sigma_2(x) y \right), \tag{2.7}$$

где

$$y^{[1]} := P_{\varepsilon}(x)y' - \sigma_2(x)y \tag{2.8}$$

называют квазипроизводной функции y (см. [1, Добавление II]). Регуляризация (2.7) дает строгую трактовку формального выражения (1.1). Отметим, что если $Q(\cdot)$ является гладкой функцией, то выражения (1.1) и (2.7) совпадают.

Пусть $Y_{\varepsilon}(\,\cdot\,,z)$ – матричное решение уравнения $\mathcal{L}(y)=zy$, т.е.

$$\mathcal{L}(Y_{\varepsilon}(x,z)) = zY_{\varepsilon}(x,z), \quad x \in \mathbb{R}_{+}, \quad z \in \mathbb{C}.$$
 (2.9)

Обозначим через $AC_{loc}(\mathbb{R}_+)$ множество локально абсолютно непрерывных функций на \mathbb{R}_+ , т.е. $f \in AC_{loc}(\mathbb{R}_+)$, если $f \in AC[0,b]$ при каждом $b \in \mathbb{R}_+$. С дифференциальным выражением (2.7) связывают минимальный и максимальный операторы. Максимальный оператор L_{max} задается выражением \mathcal{L} на области:

$$\operatorname{dom}(L_{\max}) := \left\{ f \in L^2 \left(\mathbb{R}_+; R_{\varepsilon}; \mathbb{C}^m \right) : \begin{array}{l} f, f^{[1]} \in AC_{\operatorname{loc}}(\mathbb{R}_+; \mathbb{C}^m), \\ \mathcal{L}(f) \in L^2 \left(\mathbb{R}_+; R_{\varepsilon}; \mathbb{C}^m \right) \end{array} \right\}. \quad (2.10)$$

Минимальный оператор $A := L_{\min}$ является симметрическим сужением оператора L_{\max} на область:

$$dom(A) := \left\{ f \in dom(L_{max}) : f(0) = f^{[1]}(0) = 0 \right\}. \tag{2.11}$$

Хорошо известно, что $L_{\max} = L_{\min}^* (=A^*)$. Важно отметить, что оператор A является простым (см. Аппендикс). Также отметим, что в случае $Q(\cdot) \in L^1(\mathbb{R}_+; \mathbb{C}^{m \times m}) \Leftrightarrow \sigma_2'(\cdot) \equiv 0$ определения минимального и максимального операторов совпадают с классическими определениями (см. [1], [6]), поскольку условие $f^{[1]} \in AC_{\mathrm{loc}}(\mathbb{R}_+; \mathbb{C}^m)$ влечет $P_{\varepsilon}(\cdot)f' \in AC_{\mathrm{loc}}(\mathbb{R}_+; \mathbb{C}^m)$ и обратно.

Известно ([1, 20]), что индексы дефекта симметрического оператора A удовлетворяют неравенству:

$$m \leqslant n_{\pm}(A) \leqslant 2m$$
.

В следующей лемме мы показываем, что индексы дефекта оператора A, заданного выражением (2.11), являются минимальными.

Пемма 2.2. Пусть выполнены условия (2.1)–(2.4). Тогда верны следующие утверждения.

(і) Уравнение (2.9) имеет матричное решение Вейля

$$E_{\varepsilon}(\cdot,z) \in L^2(\mathbb{R}_+;\mathbb{C}^{m\times m}).$$

Кроме того, справедливы следующие соотношения:

$$E_{\varepsilon}(x,z) = e^{ix\sqrt{z}} \left[I_m + o_{m,\varepsilon}(1) \right] \quad npu \ x \to \infty, \quad z \in \mathbb{C}_+ \cup \mathbb{R}_+,$$

$$||E_{\varepsilon}(\cdot,z)||_{C(\mathbb{R}_+:\mathbb{C}^{m\times m})} < \infty, \quad z \in \overline{\mathbb{C}}_+ \setminus \{0\}.$$

$$(2.12)$$

(ii) Уравнение (2.9) также имеет экспоненциально растущее $m \times m-$ матричное решение $\widetilde{E}_{\varepsilon}(\,\cdot\,,z),\; y$ довлетворяющее соотношению:

$$\widetilde{E}_{\varepsilon}(x,z) = e^{-ix\sqrt{z}} \left[I_m + O_{m,\varepsilon}(1) \right] \quad npu \quad x \to \infty, \quad z \in \mathbb{C}_+ \cup \mathbb{R}_+.$$
 (2.13)

(iii) Индексы дефекта симметрического оператора A минимальны, m.e.

$$n_{\pm}(A) = m. \tag{2.14}$$

2.2. Функции Вейля самосопряженных реализаций. В этом параграфе всюду предполагается, что матричные коэффициенты $P_{\varepsilon}(\cdot)$, $R_{\varepsilon}(\cdot)$, $\sigma_1(\cdot)$, $\sigma_2(\cdot)$, входящие в выражение (2.7), удовлетворяют условиям (2.1)–(2.4), т.е.

$$P_{\varepsilon}(\cdot) = \varepsilon I_{m} + P_{1}(\cdot) = \left(\varepsilon^{-1}I_{m} + P_{2}(\cdot)\right)^{-1}, \quad 0 < \varepsilon \leqslant 1,$$

$$P_{1}(\cdot) \in L^{1}(\mathbb{R}_{+}; \mathbb{C}^{m \times m}) \cap L^{\infty}(\mathbb{R}_{+}; \mathbb{C}^{m \times m}),$$

$$R_{\varepsilon}(\cdot) = \varepsilon I_{m} + R_{1}(\cdot) = R_{\varepsilon}(\cdot)^{*} > 0, \quad R_{1}(\cdot) \in W^{1,1}(\mathbb{R}_{+}; \mathbb{C}^{m \times m}),$$

$$\sigma_{1}(\cdot) = \sigma_{1}(\cdot)^{*} \in L^{1}(\mathbb{R}_{+}; \mathbb{C}^{m \times m}),$$

$$\sigma_{2}(\cdot) \in L^{1}(\mathbb{R}_{+}; \mathbb{C}^{m \times m}) \cap L^{2}(\mathbb{R}_{+}; \mathbb{C}^{m \times m}).$$

$$(2.15)$$

Далее, определим реализацию Дирихле $L^D = A^* \upharpoonright \text{dom}(L^D)$ выражения (2.7), полагая

$$dom(L^D) := \{ f \in dom(A^*) : f(0) = 0 \}.$$
(2.16)

В следующей лемме строится граничная тройка оператора $A^* = L_{\max}.$

Лемма 2.3. Пусть выполнены условия (2.15). Тогда совокупность $\Pi = \Pi^D := \{\mathcal{H}, \Gamma_0, \Gamma_1\}$, в которой

$$\mathcal{H} = \mathbb{C}^m, \quad \Gamma_0 f = f(0), \quad \Gamma_1 f = f^{[1]}(0),$$

 $f = (f_1, \dots, f_m)^T \in \text{dom}(L_{\text{max}}),$ (2.17)

является граничной тройкой оператора $A^* = L_{\max}$. При этом расширение A_0 ,

$$A_0 := A^* \upharpoonright \ker(\Gamma_0),$$

является реализацией Дирихле выражения \mathcal{L} : $A_0 = L^D$.

Предложение 2.4. Пусть выполнены условия (2.15), $u - \varepsilon \in \rho(R_1(0))$. Пусть также $M_{\varepsilon}^D(\,\cdot\,)$ — функция Вейля, соответствующая граничной тройке (2.17). Тогда:

(і) Матричные функции

$$N_{0,\varepsilon}(z) := E_{\varepsilon}(0,z) \quad u \quad N_{1,\varepsilon}(z) := E_{\varepsilon}^{[1]}(0,z)$$
 (2.18)

корректно определены, голоморфны в $\mathbb{C}_+\setminus\{0\}$ и непрерывны в $\overline{\mathbb{C}}_+\setminus\{0\}$. Кроме того, при всех $z\in\overline{\mathbb{C}}_+\setminus\{0\}$ и $0<\varepsilon\leqslant 1$ функции $N_{0,\varepsilon}(z)$ и $N_{1,\varepsilon}(z)$ допускают следующие представления:

$$(I_{m}+\varepsilon^{-1}R_{1}(0)) N_{0,\varepsilon}(z) = I_{m} + \frac{1}{\varepsilon\sqrt{z}} \int_{0}^{\infty} \sin(t\sqrt{z})\sigma_{1}(t)E_{\varepsilon}(t,z)dt$$

$$-\int_{0}^{\infty} \cos(t\sqrt{z})(\varepsilon^{-1}I_{m} + P_{2}(t))\sigma_{2}(t)E_{\varepsilon}(t,z)dt$$

$$-\frac{1}{\varepsilon\sqrt{z}} \int_{0}^{\infty} \sin(t\sqrt{z})\sigma_{2}(t)(\varepsilon^{-1}I_{m} + P_{2}(t))\sigma_{2}(t)E_{\varepsilon}(t,z)dt$$

$$-\int_{0}^{\infty} \cos(t\sqrt{z})P_{2}(t)E_{\varepsilon}^{[1]}(t,z)dt$$

$$-\frac{1}{\varepsilon\sqrt{z}} \int_{0}^{\infty} \sin(t\sqrt{z})\sigma_{2}(t)(\varepsilon^{-1}I_{m} + P_{2}(t))E_{\varepsilon}^{[1]}(t,z)dt$$

$$-\frac{1}{\varepsilon} \int_{0}^{\infty} \cos(t\sqrt{z})R'_{1}(t)E_{\varepsilon}(t,z)dt - \frac{1}{\varepsilon} \int_{0}^{\infty} \cos(t\sqrt{z})R_{1}(t)E'_{\varepsilon}(t,z)dt,$$

$$(2.19)$$

u

$$N_{1,\varepsilon}(z) = i\varepsilon\sqrt{z}I_m - \int_0^\infty \cos(t\sqrt{z})\sigma_1(t)E_\varepsilon(t,z)dt$$

$$-\varepsilon\sqrt{z}\int_0^\infty \sin(t\sqrt{z})(\varepsilon^{-1}I_m + P_2(t))\sigma_2(t)E_\varepsilon(t,z)dt$$

$$+ \int_0^\infty \cos(t\sqrt{z})\sigma_2(t)(\varepsilon^{-1}I_m + P_2(t))\sigma_2(t)E_\varepsilon(t,z)dt$$

$$-\varepsilon\sqrt{z}\int_0^\infty \sin(t\sqrt{z})P_2(t)E_\varepsilon^{[1]}(t,z)dt$$

$$+ \int_0^\infty \cos(t\sqrt{z})\sigma_2(t)(\varepsilon^{-1}I_m + P_2(t))E_\varepsilon^{[1]}(t,z)dt$$

$$-\sqrt{z}\int_0^\infty \sin(t\sqrt{z})R_1'(t)E_\varepsilon(t,z)dt - \sqrt{z}\int_0^\infty \sin(t\sqrt{z})R_1(t)E_\varepsilon'(t,z)dt.$$

$$(2.20)$$

(іі) Справедливо соотношение:

$$M_{\varepsilon}^{D}(z)N_{0,\varepsilon}(z) = N_{1,\varepsilon}(z), \quad z \in \mathbb{C}_{+}.$$
 (2.21)

В следующей теореме мы исследуем функцию Вейля $M_{\varepsilon}^D(\cdot)$, соответствующую реализации Дирихле L^D . В частности, показывается, что на положительной полуоси \mathbb{R}_+ спектральная мера $\Sigma_{M_{\varepsilon}^D}(\cdot)$ функции Вейля $M_{\varepsilon}^D(\cdot)$ из интегрального представления (3.4) — абсолютно непрерывна, и указываем явный вид ее плотности.

Теорема 2.5. Пусть \mathcal{L} — дифференциальное выражение вида (2.7) при $\varepsilon \in (0,1]$, и выполнены условия предложения 2.4. Тогда для функции Вейля $M_{\varepsilon}^{D}(\,\cdot\,)$, соответствующей граничной тройке (2.17), справедливы следующие утверждения:

(i) Детерминант $d_{0,\varepsilon}(z) = \det(N_{0,\varepsilon}(z))$ определяет голоморфную в $\mathbb{C}\setminus [0,\infty)$ функцию. Множество ее нулей $\Lambda_{0,\varepsilon}$ является либо конечным, либо дискретным с единственно возможной предельной точкой ноль. В частности, $\Lambda_{0,\varepsilon}$ является компактным.

(ii) Функция Вейля допускает представление

$$M_{\varepsilon}^{D}(z) = N_{1,\varepsilon}(z)N_{0,\varepsilon}(z)^{-1}, \quad z \in \mathbb{C} \setminus \Lambda_{0,\varepsilon},$$

$$\Lambda_{0,\varepsilon} = \{ z \in \mathbb{C} : d_{0,\varepsilon}(z) = 0 \}.$$
(2.22)

(iii) При всех $\lambda \in \mathbb{R}_+$ существуют некасательные предельные значения

$$M_\varepsilon^D(\lambda+i0):=\lim_{z\to \succ \lambda}M_\varepsilon^D(z)$$

и справедливо равенство:

$$M_{\varepsilon}^{D}(\lambda) := M_{\varepsilon}^{D}(\lambda + i0) = N_{1,\varepsilon}(\lambda)N_{0,\varepsilon}(\lambda)^{-1}, \quad \lambda \in \mathbb{R}_{+}.$$
 (2.23)

Кроме того, для мнимой части $\mathrm{Im}(M^D_\varepsilon(\,\cdot\,))$ справедливо представление:

$$\operatorname{Im}(M_{\varepsilon}^{D}(\lambda)) = \varepsilon \sqrt{\lambda} \left(N_{0,\varepsilon}(\lambda) N_{0,\varepsilon}(\lambda)^{*} \right)^{-1}, \quad \lambda \in \mathbb{R}_{+}. \tag{2.24}$$

B частности, мнимая часть положительно определена для каждого $\lambda \in \mathbb{R}_+.$

(iv) Соответствующая спектральная мера $\Sigma_{M_{arepsilon}^D}(\,\cdot\,)$ функции Вейля $M_{arepsilon}^D(\,\cdot\,)$ на \mathbb{R}_+ является абсолютно непрерывной и допускает следующее представление:

$$\Sigma_{M_{\varepsilon}^{D}}(t) = \frac{\varepsilon}{\pi} \int_{0}^{t} \sqrt{\lambda} \left(N_{0,\varepsilon}(\lambda) N_{0,\varepsilon}(\lambda)^{*} \right)^{-1} d\lambda, \quad t \in \mathbb{R}_{+}.$$
 (2.25)

Более того, ее плотность $d\Sigma_{M_{\varepsilon}^{D}}(t)/dt$ является непрерывной на \mathbb{R}_{+} и имеет максимальный ранг, т.е.

$$\operatorname{rank}(d\Sigma_{M^D}(t)/dt) = m$$

 $npu\ scex\ t \in \mathbb{R}_+.$

Определение 2.6. Пусть K, – измеримое подмножество \mathbb{R} , $K \subseteq \mathbb{R}$. Говорят, что самосопряженный оператор T в \mathfrak{H} с разложением единицы $E_T(\cdot)$ имеет лебеговский спектр кратности d на K, если его часть $TE_T(K)$ унитарно эквивалентна оператору умножения на λ в пространстве $\bigoplus_1^d L^2(K, d\lambda)$, где $d\lambda$ – мера Лебега.

В следующей теореме изучаются спектральные свойства реализации Дирихле L^D оператора A. В частности, показывается, что его неотрицательная часть является чисто абсолютно непрерывной.

Теорема 2.7. Пусть выполнены условия теоремы 2.5, $\Pi^D = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ – граничная тройка вида (2.17), и L^D – реализация Дирихле вида (2.16). Тогда справедливы следующие утверждения:

(i) Неотрицательная часть $E_{L^D}(\overline{\mathbb{R}}_+)L^D$ оператора L^D имеет лебеговский спектр кратности m, m.e.

$$\sigma_{ac}(L^D) = [0, \infty), \quad \sigma_s(L^D) \cap \mathbb{R}_+ = \varnothing \quad u \quad N_{L^D}(t) = m, \quad t \in \overline{\mathbb{R}}_+.$$

(ii) Оператор L^D полуограничен снизу и его отрицательный спектр совпадает с множесством нулей $\Lambda_{0,\varepsilon}$ (см. (2.22)) голоморфной функции $d_0(\,\cdot\,)$, m.e.

$$\sigma_{pp}(L^D) = \sigma_{pp}(L^D) \cap \overline{\mathbb{R}}_- = \Lambda_{0,\varepsilon}.$$

Tаким образом, отрицательный спектр оператора L^D дискретен с единственной предельной точкой ноль. B частности, он компактен.

Замечание 2.8. Аналогичный результат справедлив для произвольного самосопряженного расширения $\widetilde{A} = \widetilde{A}^*$ минимального оператора A, т.е.

$$\sigma_{ac}(\widetilde{A}) = [0,\infty), \quad \sigma_s(\widetilde{A}) \cap \mathbb{R}_+ = \varnothing \quad \text{if} \quad N_{\widetilde{A}^{ac}}(t) = m, \quad t \in \overline{\mathbb{R}}_+.$$

Более того, положительные части $E_{\widetilde{A}}(\mathbb{R}_+)\widetilde{A}$ и $E_{L^D}(\mathbb{R}_+)L^D$ операторов \widetilde{A} и L^D унитарно эквивалентны, а отрицательная часть $E_{\widetilde{A}}(\mathbb{R}_-)\widetilde{A}$ оператора \widetilde{A} компактна.

2.3. Пример Глазмана. Рассмотрим скалярное дифференциальное выражение:

$$\ell_{a,\varepsilon}y := -((\varepsilon + (1+x)^a)y')', \quad x \in \mathbb{R}_+, \quad \varepsilon \in [0,1]. \tag{2.26}$$

Предложение 2.9. Пусть $A_{a,\varepsilon}$ – минимальный оператор, ассоциированный в $L^2(\mathbb{R}_+)$ с выражением (2.26) при a<-1 (см. (2.10)). Тогда при $\varepsilon\in[0,1]$ оператор $A_{a,\varepsilon}$ – неотрицательный и симметрический с индексами дефекта $\mathbf{n}_\pm(A_{a,\varepsilon})=1$. Более того, каждая самосопряженная реализация $\widetilde{A}_{a,\varepsilon}=(\widetilde{A}_{a,\varepsilon})^*$ выражения $\ell_{a,\varepsilon}$ имеет лебеговский спектр кратности 1, т.е.

$$\sigma(\widetilde{A}_{a,\varepsilon}) = \sigma_{ac}(\widetilde{A}_{a,\varepsilon}) = [0,\infty), \quad \sigma_s(\widetilde{A}_{a,\varepsilon}) = \varnothing \ u \ N_{\widetilde{A}_{a,\varepsilon}^{ac}}(t) = 1, \ t \in \overline{\mathbb{R}}_+. \ (2.27)$$

Доказательство. Так как при a < -1 справедливо включение

$$(1+x)^a \in L^1(\mathbb{R}_+) \cap L^\infty(\mathbb{R}_+),$$

то при $\varepsilon > 0$ выполнены условия теоремы 2.7. Поэтому она применима при любом $\varepsilon > 0$ и, значит, каждая самосопряженная реализация $\widetilde{A}_{a,\varepsilon} = (\widetilde{A}_{a,\varepsilon})^*$ выражения $\ell_{a,\varepsilon}$ имеет чисто лебеговский спектр кратности 1, т.е. выполнено (2.27).

Доказательство соотношений (2.27) для оператора $\widetilde{A}_{a,0}$ базируется на установлении предельного равенства $s-R-\lim_{\varepsilon\downarrow 0}\widetilde{A}_{a,\varepsilon}=\widetilde{A}_{a,0}$. \square

Замечание 2.10. В монографии И. М. Глазмана [2, глава II] отмечено, что индексы дефекта симметрического оператора $A_{a,0}$, ассоциированного в $L^2(\mathbb{R}_+)$ с выражением (2.26), при $\varepsilon=0$ и $a\leqslant 2$ минимальны, т.е. $\mathbf{n}_\pm(A_{a,0})=1$, а спектр его самосопряженных расширений $\widetilde{A}_{a,0}$ — непрерывен и определяется соотношениями

$$\sigma(\widetilde{A}_{a,0}) = \sigma_c(\widetilde{A}_{a,0}) = \begin{cases} [0,\infty) & \text{при} \quad a < 2, \\ [\frac{1}{4},\infty) & \text{при} \quad a = 2. \end{cases}$$

Предложение 2.9 дополняет результат Глазмана [2, глава II] (при $\varepsilon \neq 0$) и усиливает его при $\varepsilon = 0$ и a < -1, устанавливая абсолютную непрерывность (и даже лебеговость) спектра $\sigma(\widetilde{A}_{a,0})$ оператора $\widetilde{A}_{a,0}$, а не только его непрерывность.

§3. Аппендикс: граничные тройки, функция Вейля, и параметризация

Здесь мы приведем некоторые факты из теории граничных троек и соответствующих функций Вейля, используемые в основном тексте.

Пусть A – плотно заданный замкнутый симметрический оператор в \mathfrak{H} , $\mathfrak{N}_z=\mathfrak{N}_z(A):=\mathfrak{H}\ominus\mathrm{ran}(A-z^*)=\ker(A^*-z),\ z\in\mathbb{C}_\pm$ – его дефектные подпространства, а $\mathrm{n}_\pm(A):=\dim\mathfrak{N}_{\pm\mathrm{i}}(A)$ – его индексы дефекта. Пусть также $\mathrm{n}_+(A)=\mathrm{n}_-(A)\leqslant\infty$.

Определение 3.1 ([3], [5, глава 7]). Совокупность $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$, в которой \mathcal{H} – гильбертово пространство, а Γ_0 и Γ_1 – линейные отображения из $dom(A^*)$ в \mathcal{H} , называется граничной тройкой оператора A^* , если:

(і) справедливо тождество Грина

$$(A^*f, g) - (f, A^*g) = (\Gamma_1 f, \Gamma_0 g)_{\mathcal{H}} - (\Gamma_0 f, \Gamma_1 g)_{\mathcal{H}}, \quad f, g \in \text{dom}(A^*); (3.1)$$

(ii) отображение $\Gamma: f \mapsto \{\Gamma_0 f, \Gamma_1 f\}$ из $dom(A^*)$ в $\mathcal{H} \times \mathcal{H}$ сюръективно.

Граничная тройка для оператора A^* существует, лишь при условии $n_+(A) = n_-(A)$. В этом случае $n_\pm(A) = \dim \mathcal{H}$ и $\ker(\Gamma) = \ker(\Gamma_0) \cap \ker(\Gamma_1) = \dim(A)$. Понятие граничной тройки позволяет параметризовать все собственные расширения оператора A. В частности, справедлив следующий результат.

Предложение 3.2. Пусть A – замкнутый симметрический оператор в \mathfrak{H} с $\mathbf{n}_{\pm}(A) = m < \infty$. Пусть также $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ – граничная тройка оператора A^* . Тогда множество всех самосопряженных расширений оператора A параметризуется следующим образом:

$$\widetilde{A} = \widetilde{A}^* = A_{C,D} = A^* \upharpoonright \ker(D\Gamma_1 - C\Gamma_0),$$

$$CD^* = DC^*, \quad 0 \in \rho(CC^* + DD^*), \quad C, D \in \mathbb{C}^{m \times m}.$$
(3.2)

Среди всех самосопряженных расширений оператора A выделяют расширения $A_0 = A_0^*$ и $A_1 = A_1^*$, определяемые равенствами:

$$A_j := A^* \upharpoonright \ker(\Gamma_j), \quad j \in \{0, 1\}.$$

Определение 3.3 ([14], [5, глава 7]). Пусть $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ – граничная тройка для A^* . Функцией Вейля, соответствующей граничной тройке Π , называют оператор-функцию $M(\cdot)$, определяемую равенством

$$\Gamma_1 f_z = M(z) \Gamma_0 f_z, \quad f_z \in \mathfrak{N}_z, \quad z \in \rho(A_0).$$
 (3.3)

Функция Вейля определена корректно и является $R[\mathcal{H}]$ -функцией: $\mathrm{Im}z\cdot\mathrm{Im}M(z)>0$ и $M(\bar{z})=M^*(z).$ Кроме того, $0\in\rho(\mathrm{Im}M(i))$ (см. [14]).

Пусть A – простой симметрический оператор в \mathfrak{H} , т.е. не допускающий нетривиального ортогонального разложения $A = A' \oplus S$, в котором A' – симметрический оператор, а $S = S^*$. Тогда функция Вейля $M(\,\cdot\,)$ определяет пару $\{A,A_0\}$ однозначно с точностью до унитарной эквивалентности (см. [14]).

Хорошо известно, что $M(\cdot)$ допускает интегральное представление (см., напр. [1]):

$$M(z) = C_0 + C_1 z + \int_{\mathbb{R}} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) d\Sigma_M(t), \quad z \in \rho(A_0).$$
 (3.4)

Здесь $\Sigma_M(\,\cdot\,)$ является операторнозначной борелевской мерой на $\mathbb{R},$ удовлетворяющей соотношению $\int\limits_{\mathbb{R}} (1+t^2)^{-1} d\Sigma_M(t) \in \mathcal{B}(\mathcal{H}),$ и $C_j = C_j^* \in$

 $\mathcal{B}(\mathcal{H}), j \in \{0,1\}$, где $C_1 \ge 0$. Интеграл в (3.4) понимается в смысле сильной сходимости. Отметим, что $C_1 = 0$ в (3.4), если A является плотно определенным (см. [14]).

Список литературы

- 1. Н. И. Ахиезер, И. М. Глазман, *Теория линейных операторов в гильбертовом пространстве*. Т. II, Харьков, Вища школа (1978).
- 2. И. М. Глазман, *Прямые методы качественного спектрального анализа сингулярных дифференциальных операторов*, М., Государственное издательство физико-математической литературы (1963).
- 3. В. И. Горбачук, М. Л. Горбачук, Граничные задачи для дифференциальнооператорных уравнений, К., Наук. думка (1984).
- 4. Я. И. Грановский, М. М. Маламуд, Операторы Штурма-Лиувилля с $W^{-1,1}$ -матричными потенциалами. Зап. науч. семин. ПОМИ, **516** (2022), 20–39.
- В. А. Деркач, М. М. Маламуд, Теория расширений симметрических операторов и граничные задачи, К., Институт математики НАН Украины (2017).
- 6. М. А. Наймарк, Линейные дифференциальные операторы, М., Наука, (1969).
- 7. А. М. Савчук, А. А. Шкаликов, *Операторы Штурма-Лиувилля с сингулярными потенциалами.* Матем. заметки, **66**, No. 6 (1999), 897–912.
- А. М. Савчук, А. А. Шкаликов, Операторы Штурма-Лиувилля с потенциалами-распределениями. — Труды Московского математического общества, 64 (2003), 159–212.
- Э. Ч. Титчмарш, Разложения по собственным функциям, связанные с дифференциальными уравнениями второго порядка. Т. І, М., Издательство иностранной литературы (1960).
- R. A. Adams, J. J. F. Fournier, Sobolev spaces, Academic Press, an imprint of Elsevier Science, Vancouver (2003).
- T. Aktosun, R. Weder, Direct and Inverse Scattering for the Matrix Schrödinger Equation. — Appl. Math. Sci., 203 (2020).
- 12. S. Albeverio., F. Gesztesy., R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, AMS Chelsea Publ. (2005).
- 13. S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators and Schrödinger Type Operators, Cambridge Univ. Press (2000).
- V. Derkach, M. Malamud, Generalised resolvents and the boundary value problems for Hermitian Operators with gaps. — J. Funct. Anal., 95 (1991), 1–95.
- J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Weyl-Titchmarsh theory for Sturm-Liouville operators with distribution potentials. — J. Opuscula Math., 33, No. 3 (2013), 467–563.
- Ya. Granovskyi, M. Malamud, H. Neidhardt, A. Posilicano, To the spectral theory of vector-valued Sturm-Liouville operators with summable potentials and point interactions. — Func. Anal. and Oper. Theory for Quantum Phys. Pavel Exner Anniversary V. EMS Series of Congress Reports 12 (2017), 271–313.
- 17. Ya. Granovskyi, M. Malamud, H. Neidhardt, Non-compact Qiantum Graphs with Summable Matrix Potentials. Ann. Henri Poincaré 22 (2021), 1–47.

- 18. A. Kostenko, M. Malamud, 1-D Schrödinger operators with local point interactions: $a\ review.$ — In: Spectral Analysis, Differential Equations, and Mathematical Physics, H. Holden et al. (eds), Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc., **87** (2013), 235–262.
- 19. M. Malamud, H. Neidhardt, On the unitary equivalence of absolutely continuous parts of self-adjoint extensions. — J. Funct. Anal., 260, No. 3 (2011), 613–638.
- 20. K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space. Springer-Verlag, New York (2012).
- 21. R. Weder, Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions. — J. Math. Phys. 56 (2015), 092103; Erratum J. Math. Phys., 60 (2019), 019901.

Granovskii Ya. I., Malamud M. M. On the absolute continuity of the spectrum of Sturm-Liouville operator with matrix singular coefficients.

In the present work the spectral structure of realizations on the half-line of a matrix three-term Sturm-Liouville operator

$$\mathcal{L}(P, Q, R)y := R^{-1}(x) (-(P(x)y')' + Q(x)y), \quad y = (y_1, \dots, y_m)^{\top},$$

with singular potential $Q(\cdot) = Q(\cdot)^*$ on the half-line is investigated. It is shown that under certain conditions on the coefficients $P(\cdot)$ and $R(\cdot)$ depended from the small parameter ε , the Dirichlet realization L^D (and other self-adjoint realizations) in the case of $Q(\cdot) \in W^{-1,1}(\mathbb{R}_+; \mathbb{C}^{m \times m})$ has Lebesgue non-negative spectrum with constant multiplicity m.

ФГБОУ ВО

Поступило 25 сентября 2025 г.

"Донецкий национальный технический университет", ул. Артема, 58, Донецк, ДНР; ФГБНУ "Институт прикладной математики и механики", ул. Р. Люксембург, 74, Донецк, ДНР E-mail: yarvodoley@mail.ru

Санкт-Петербургский государственный университет Санкт-Петербург, Россия

E-mail: malamud3m@gmail.com