М. И. Белишев, А. Ф. Вакуленко

ОБ УСТОЙЧИВОСТИ ТРЕУГОЛЬНОЙ ФАКТОРИЗАЦИИ ПОЛОЖИТЕЛЬНЫХ ОПЕРАТОРОВ

§1. Введение

• Треугольная факторизация (ТФ) операторов является классическим инструментом решения обратных задач анализа и математической физики (М. Г. Крейн, В. А. Марченко, И. М. Гельфанд, Б. М. Левитан, Л. Д. Фаддеев, Р. Ньютон и др.). Метод граничного управления [9, 3, 10] в обратных задачах — один из подходов, использующих ТФ. Этот метод (точнее, его динамическая версия) обеспечивает оптимальное по времени восстановление параметров, многообразий и метрик. В настоящий момент не известны результаты о его устойчивости, то есть о непрерывности соответствия между данными обратных задач и восстанавливаемыми объектами. Возможный подход к её исследованию — анализ устойчивости ТФ. Этот путь сталкивается со значительными препятствиями в случае, когда факторизуемый оператор не является изоморфизмом. В приложениях последнее типично для многомерных обратных задач и отражает их сильную некорректность.

Хотя мотивация исходит из конкретных обратных задач, мы изучаем устойчивость $T\Phi$ на общем операторном уровне. В то же время мы надеемся, что полученные результаты и их дальнейшее развитие окажутся полезными для приложений.

• Если не оговорено иное, мы имеем дело с ограниченными операторами.

Пусть $\mathfrak{f} = \{\mathscr{F}_s\}_{s \in [0,T]}$ – гнездо в гильбертовом пространстве \mathscr{F} , т.е. расширяющееся семейство подпространств [8, 11] ¹. Пусть X_s – (ортогональный) проектор в \mathscr{F} на \mathscr{F}_s . С учетом возможных будущих приложений, мы предполагаем, что гнездо \mathfrak{f} непрерывно и окаймлено,

Kлючевые слова: треугольная факторизация, операторная диагональ, амплитудный интеграл, каноническая факторизация, устойчивость канонической факторизации.

 $^{^{1}}$ в отечественной литературе употребляется термин $\mathit{uenoчкa}$ [8]

т.е. выполнены условия

$$\mathscr{F}_s \subset \mathscr{F}_{s'}, \ 0 \leqslant s < s' \leqslant T; \quad s - \lim_{s' \to s} X_{s'} = X_s; \quad \mathscr{F}_0 = \{0\}, \ \mathscr{F}_T = \mathscr{F}.$$
 (1)

Пусть C — положительный оператор в $\mathscr{F},$ т.е. (Cf,f)>0 для всех $f\neq 0.$ Представление

$$C = V^*V$$
 при условии $VX_s = X_sVX_s$, $s \in [0,T]$

(эквивалентно $V\mathscr{F}_s\subset\mathscr{F}_s$) называется треугольной факторизацией (ТФ) оператора C относительно гнезда \mathfrak{f} . Факторизация устойчива, если из $C^{\alpha}\underset{\alpha\to\infty}{\to} C$ и $C^{\alpha}=V^{\alpha}*V^{\alpha}$ следует $V^{\alpha}\to V$ (при соответствующем понимании сходимостей). Если C имеет вид $C=\mathbb{I}+K$ с компактным K и является положительно определённым, т.е. выполняется $(Cf,f)\geqslant \gamma\|f\|^2$ с $\gamma>0$, то ТФ реализуется классической конструкцией операторного интеграла треугольного усечения (М. С. Бродский, И. Ц. Гохберг и М. Г. Крейн [8]), которая обеспечивает устойчивую (так называемую специальную) факторизацию $C=(\mathbb{I}+L)^*(\mathbb{I}+L)$ [8, 11].

В то же время, существует другая конструкция (амплитудный интеграл, АИ), обобщающая конструкцию Бродского на более широкий класс факторизуемых операторов и обеспечивающая их каноническую $T\Phi$ [1, 4]. Для факторизации с помощью АИ оператор не обязан быть положительно определённым (изоморфизмом). Однако возникает вопрос: является ли факторизация, достваляемая АИ, устойчивой? Мы показываем, что при определённых дополнительных предположениях относительно C^{α} и C ответ утвердительный.

• Ключевым элементом АИ является $\partial uaronanb$ оператора. Для оператора W и гнезда $\mathfrak f$ она определяется как

$$D_W = \text{w-}\lim_{r \to 0} \sum_{k=0}^{N} (P_{s_k} - P_{s_{k-1}}) W (X_{s_k} - X_{s_{k-1}}) =: \int_{[0,T]} dP_s W dX_s, \quad (2)$$

где $0 = s_0 < s_1 < \dots < s_N = T$ — разбиение отрезка [0,T] ранга r, а X_s и P_s суть проекторы в \mathscr{F} на \mathscr{F}_s и $\overline{W\mathscr{F}_s}$ соответственно. Предел, если он существует, называется диагональю оператора W относительно гнезда \mathfrak{f} . Диагональ сплетает проекторы:

$$D_W X_s = P_s D_W, \qquad D_W^* P_s = X_s D_W^*.$$
 (3)

Мы говорим, что положительный оператор C допускает каноническую $T\Phi$ относительно гнезда \mathfrak{f} , если его (положительный) квадратный корень имеет диагональ $D_{\sqrt{C}}$, которая удовлетворяет условию $D_{\sqrt{C}}D_{\sqrt{C}}^*=\mathbb{I}$, и справедливо представление

$$C = V^*V, \qquad V = D^*_{\sqrt{C}}\sqrt{C} \tag{4}$$

с множителем V, удовлетворяющим условию $VX_s = X_s V X_s$ в силу (3). Такое понятие мотивировано приложениями [9, 10, 6, 7].

• Наш основной результат – Теорема 1, которая устанавливает устойчивость канонической ТФ следующим образом.

Определение 1. В обозначениях из (2), мы говорим, что W^{α} сходится κ W регулярно на гнезде \mathfrak{f} , если соотношения $\sup_{\alpha \to \infty} W^{\alpha} = W$ и $\sup_{\alpha \to \infty} P_s^{\alpha} = P_s$ выполняются для всех $s \in [0,T]$. В этом случае мы пишем $W^{\alpha} \stackrel{\text{reg}}{\to} W$.

В конце статьи, в разделе "Комментарии", приведены примеры, которые подкрепляют и мотивируют введение такого типа сходимости.

Теорема 1. Пусть $C^{\alpha} \stackrel{s}{\to} C$, операторы C и C^{α} допускают каноническую $T\Phi$ (4) и при этом выполнено $\sqrt{C^{\alpha}} \stackrel{\text{reg}}{\to} \sqrt{C}$. Пусть интегральные суммы, определяющие $D_{\sqrt{C}}$ и $D_{\sqrt{C^{\alpha}}}$ согласно (2), сходятся к своим (слабым) пределам равномерно по α . Тогда имеет место сходимость треугольных факторов $V^{\alpha} \stackrel{\text{W}}{\to} V$.

Ее доказательству предшествуют соответствующие предварительные сведения. Подчеркнем, что C и C^{α} предполагаются положительными, но не обязательно положительно определенными.

• На эвристическом уровне АИ и диагональ были введены в [1]. Впоследствии его конструкция была строго обоснована и развита [4, 9, 6]; была осознана его связь с классическим интегралом треугольного усечения $[2, 5]^2$.

Авторы признательны С. А. Симонову за полезное обсуждение результатов работы.

 $^{^2{\}rm B}$ статье [5] по вине первого автора содержится ошибочное утверждение (Предложение 2.6)

§2. Каноническая ТФ и её устойчивость

Треугольность. Итак, мы имеем дело с гильбертовым пространством $\mathscr F$ и семейством его (замкнутых) подпространств $\mathfrak f = \{\mathscr F_s\}_{s\in[0,T]}$, которое является гнездом: см. (1). Оператор V в $\mathscr F$ называется треугольным (относительно гнезда $\mathfrak f$), если выполняется $V\mathscr F_s\subset \mathscr F_s$ для всех s. Последнее эквивалентно условию $VX_s=X_sVX_s$.

Оператор C допускает треугольную факторизацию (относительно \mathfrak{f}), если существует треугольный оператор V, такой что $C=V^*V$. Это, конечно, влечет $C\geqslant \mathbb{O}$. Такая факторизация не единственна: если оператор U треугольный и выполнено $U^*U=\mathbb{I}$, то UV также треугольный и факторизует C. Ниже определяется канонический фактор V.

Диагональ. В отличие от (2), здесь понятие диагонали вводится в более общей ситуации – для оператора, связывающего разные пространства. Обобщение мотивировано приложениями [10, 9, 4].

Пусть \mathscr{H} – еще одно гильбертово пространство. Для оператора $W: \mathscr{F} \to \mathscr{H}$ подпространства $\overline{W\mathscr{F}_s}, \ s \in [0,T]$ образуют гнездо (но не обязательно непрерывное [6]). Через P_s мы обозначаем проекторы в \mathscr{H} на $\overline{W\mathscr{F}_s}$. Зададим $T < \infty$ и выберем разбиение $\Xi = \{s_k\}_{k=0}^n: 0 = s_0 < s_1 < \dots < s_n = T$ отрезка [0,T], ранга $r_W^\Xi := \max_{k=1,\dots,K} (s_k - s_{k-1})$.

$$D_W^\Xi \,:=\, \sum_{k=1}^n \Delta P_{s_k}\, W\, \Delta X_{s_k}\,.$$

Обозначим $\Delta X_{s_k} := X_{s_k} - X_{s_{k-1}}, \ \Delta P_{s_k} := P_{s_k} - P_{s_{k-1}}, \$ и положим

Определение 2. Оператор

$$D_W := \text{w-}\lim_{r_W^\Xi \to 0} D_W^\Xi = \int_{[0,T]} dP_s W dX_s$$

называется диагональю оператора W относительно гнезда \mathfrak{f} .

Предел понимается по Риману: для произвольных $\varepsilon>0$ и элементов $f\in \mathscr{F},\,h\in \mathscr{H}$ существует $\delta>0$ такое, что

$$|([D_W - D_W^{\Xi}]f, h)| < \varepsilon$$

выполняется для любого разбиения Ξ ранга $r^{\Xi} < \delta$. Такой предел существует не всегда (А. Б. Пушницкий [5, 11]).

Диагональ сплетает гнезда: выполняются соотношения

$$D_W X_s = P_s D_W, \quad D_W^* P_s = X_s D_W^*, \qquad s \in [0, T]$$
 (5)

Для сопряженного оператора имеем $D_W^* = \int_{[0,T]} dX_s W^* dP_s$, где интеграл сходится (или расходится) в том же смысле, что и для D_W . Справедливо соотношение $||D_W|| \le ||W||$ [6].

Факторизация. В дальнейшем мы имеем дело с $\mathcal{H}=\mathcal{F}$. Пусть C – положительный оператор в \mathcal{F} . Пусть его положительный квадратный корень \sqrt{C} имеет диагональ $D_{\sqrt{C}}=\int_{[0,T]}dP_s\sqrt{C}\,dX_s$, где P_s – проектор в \mathcal{F} на $\overline{\sqrt{C}\mathcal{F}_s}$. Как легко видеть из (5), оператор $V:=D_{\sqrt{C}}^*\sqrt{C}$ является треугольным: выполняется $V\mathcal{F}_s\subset\mathcal{F}_s$. Если, кроме того, диагональ удовлетворяет условиям

$$\operatorname{Ran} D_{\sqrt{C}} = \mathscr{F}, \qquad D_{\sqrt{C}} D_{\sqrt{C}}^* = \mathbb{I}, \tag{6}$$

то ТФ

$$C = V^*V, \qquad V = D^*_{\sqrt{C}}\sqrt{C} \tag{7}$$

имеет место и называется канонической. Её особенность и преимущество заключается в том, что треугольный фактор V определяется конструктивно через факторизуемый оператор C [6]. Условия (6) мотивированы приложениями: они реализуются в многомерных обратных задачах [4, 9, 10].

Устойчивость. Докажем теорему 1.

Доказательство. Выберем произвольно $\varepsilon>0$ и $f,g\in \mathscr{F}$. Представим разность $V-V^{\alpha}$ в виде

$$V - V^{\alpha} = D_{\sqrt{C}}^* \sqrt{C} - D_{\sqrt{C^{\alpha}}}^* \sqrt{C^{\alpha}} = (D_{\sqrt{C}}^* - D_{\sqrt{C}}^{\Xi_*}) \sqrt{C}$$
$$- (D_{\sqrt{C^{\alpha}}}^* - D_{\sqrt{C^{\alpha}}}^{\Xi_*}) \sqrt{C^{\alpha}} + (D_{\sqrt{C}}^{\Xi_*} - D_{\sqrt{C^{\alpha}}}^{\Xi_*}) \sqrt{C} + D_{\sqrt{C^{\alpha}}}^{\Xi_*} (\sqrt{C} - \sqrt{C^{\alpha}});$$

тогда

$$\begin{split} |([V-V^{\alpha}]f,g)| &\leqslant \Big| \left(\sqrt{C}f, (D_{\sqrt{C}} - D_{\sqrt{C}}^{\Xi})g \right) \Big| \\ &+ \Big| \left(\sqrt{C^{\alpha}}f, (D_{\sqrt{C^{\alpha}}} - D_{\sqrt{C^{\alpha}}}^{\Xi})g \right) \Big| \\ &+ \Big| \left(\sqrt{C}f, (D_{\sqrt{C}}^{\Xi} - D_{\sqrt{C^{\alpha}}}^{\Xi})g \right) \Big| \\ &+ \Big| \left((\sqrt{C} - \sqrt{C^{\alpha}})f, D_{\sqrt{C^{\alpha}}}^{\Xi}g \right) \Big| \\ &=: I + I\!I + I\!I\!I + I\!V. \end{split}$$

Выбирая $r^{\Xi} < r$ для достаточно малого r, мы обеспечим $I < \frac{\varepsilon}{4}$ и $II < \frac{\varepsilon}{4}$ равномерно по α . В слагаемом III имеем

$$(D_{\sqrt{C}}^{\Xi} - D_{\sqrt{C^{\alpha}}}^{\Xi}) g = \sum_{k=1}^{N} \left[\Delta P_{s_k} \sqrt{C} - \Delta P_{s_k}^{\alpha} \sqrt{C^{\alpha}} \right] \Delta X_{s_k} g$$
$$= \sum_{k=1}^{N} \left[\left(P_{s_k} \sqrt{C} - P_{s_k}^{\alpha} \sqrt{C^{\alpha}} \right) - \left(P_{s_{k-1}} \sqrt{C} - P_{s_{k-1}}^{\alpha} \sqrt{C^{\alpha}} \right) \right] \widetilde{g}_k,$$

где $\widetilde{g}_k := \Delta X_{s_k} g = X_{s_k} \Delta X_{s_k} g \in X_{s_k} \mathscr{F}$. В силу последнего вложения, выполнены равенства

$$P_{s_k}\sqrt{C}\,\widetilde{g}_k = \sqrt{C}\,\widetilde{g}_k$$
 и $P_{s_k}^{\alpha}\sqrt{C^{\alpha}}\,\widetilde{g}_k = \sqrt{C^{\alpha}}\,\widetilde{g}_k,$

что влечет

$$III \leqslant \sum_{k=1}^{N} \left[\| (\sqrt{C} - \sqrt{C^{\alpha}}) \, \widetilde{g}_{k} \| + \| (P_{s_{k-1}} \sqrt{C} - P_{s_{k-1}}^{\alpha} \sqrt{C^{\alpha}}) \, \widetilde{g}_{k} \| \right]$$

$$= \sum_{k=1}^{N} \left[\| (\sqrt{C} - \sqrt{C^{\alpha}}) \, \widetilde{g}_{k} \| + \| (P_{s_{k-1}} - P_{s_{k-1}}^{\alpha}) \right]$$

$$\times \sqrt{C} + P_{s_{k-1}}^{\alpha} (\sqrt{C} - \sqrt{C^{\alpha}}) \, \widetilde{g}_{k} \|$$

$$\leqslant \sum_{k=1}^{N} \left[2 \| (\sqrt{C} - \sqrt{C^{\alpha}}) \, \widetilde{g}_{k} \| + \| (P_{s_{k-1}} - P_{s_{k-1}}^{\alpha}) \sqrt{C} \, \widetilde{g}_{k} \| \right].$$

Поскольку $\sqrt{C^{\alpha}} \stackrel{\text{reg}}{\to} \sqrt{C}$ подразумевает $\sqrt{C^{\alpha}} \stackrel{\text{s}}{\to} \sqrt{C}$ и $P_{s_{k-1}}^{\alpha} \stackrel{\text{s}}{\to} P_{s_{k-1}}$, для достаточно больших α мы обеспечиваем $I\!I\!I, I\!V < \frac{\varepsilon}{4}$ и в итоге получаем $|([V-V^{\alpha}]f,g)| \leqslant \varepsilon$. Таким образом, сходимость $V^{\alpha} \stackrel{\text{w}}{\to} V$ имеет место.

§3. Комментарии и примеры

• Понятие сходимости $\stackrel{\text{reg}}{\to}$ мотивировано следующим вопросом общего характера. Пусть \mathscr{H} — гильбертово пространство, $\mathscr{M} \subset \mathscr{H}$ — подпространство, W и W^{α} суть операторы в \mathscr{H} , и выполнено $W^{\alpha} \to W$ (в некоторой операторной топологии). Пусть P^{α} и P — проекции на $\overline{W^{\alpha}}$ и \overline{W} соответственно. Гарантирована ли сходимость $P^{\alpha} \to P$? Очевидно, ответ отрицательный: например, $\alpha^{-1}\mathbb{I} =: W^{\alpha} \to W = \mathbb{O}$ по норме, но, взяв $\mathscr{M} = \mathscr{H}$, мы получим $\mathbb{I} = P^{\alpha} \not\to P = \mathbb{O}$. Приведённый

ниже пример показывает, что положительность W^{α} и W не помогает. В такой ситуации важны и интересны достаточные (проверяемые в приложениях) условия на W^{α} , W и \mathcal{M} , обеспечивающие сходимость $P^{\alpha} \to P$.

• Приведем пример. Пусть $\{\phi_k\}_{k=1}^{\infty}$, $(\phi_k,\phi_l)=\delta_{kl}$ — базис в \mathscr{H} , $\mathscr{M}:=$ span $\{\phi_k\}_{k=2}^{\infty}=\mathscr{H}\ominus$ span $\{\phi_1\}$. Определим W и W_n формулами

$$W\phi_k = \frac{1}{k}\phi_k, \qquad k \geqslant 1$$

и, для $n \geqslant 1$,

$$W_n \phi_k = W \phi_k = \frac{1}{k} \phi_k, \qquad k \neq 1, k \neq n,$$

$$W_n \phi_1 = \phi_1 + \frac{1}{n} \phi_n,$$

$$W_n \phi_n = \frac{1}{n} \phi_1 + \frac{2}{n^2} \phi_n,$$

так что действие W отличается от действия W_n только на подпространстве span $\{\phi_1,\phi_n\}$. В то же время, имеем $W^n \stackrel{\|\cdot\|}{\to} W$ при $n \to \infty$. Возьмём $\psi_n := \phi_1 - \frac{n}{2} \phi_n$, $\|\psi_n\|^2 = 1 + \frac{n^2}{4}$, и пусть $\tilde{\psi}_n := \|\psi_n\|^{-1} \psi_n$.

Возьмём $\psi_n := \phi_1 - \frac{n}{2} \phi_n$, $\|\psi_n\|^2 = 1 + \frac{n^2}{4}$, и пусть $\tilde{\psi}_n := \|\psi_n\|^{-1} \psi_n$. При этом $\tilde{\psi}_n \stackrel{\text{w}}{\to} 0$. Как легко проверить, для образов \mathscr{M} и проекций на образы выполнено

$$W\mathcal{M} = \mathcal{M}, \qquad P = \mathbb{I} - (\cdot, \phi_1)\phi_1$$

И

$$W_n \mathcal{M} = \mathcal{H} \ominus \operatorname{span} \{\psi_n\}, \qquad P_n = \mathbb{I} - (\cdot, \tilde{\psi}_n)\tilde{\psi}_n.$$

Устремляя $n \to \infty$, получаем $P_n \stackrel{\mathrm{s}}{\to} \mathbb{I} \neq P$.

• Пусть C и C^{α} – положительно определённые операторы (изоморфизмы), допускающие каноническую $T\Phi$, и пусть выполнено $\|C^{\alpha} - C\| \to 0$. Тогда имеет место сходимость $\sqrt{C^{\alpha}} \stackrel{\text{reg}}{\to} \sqrt{C}$. Действительно, справедливо представление

$$P_s = \sqrt{C} \dot{X}_s \left(\dot{X}_s^* C \dot{X}_s \right)^{-1} \dot{X}_s^* \sqrt{C}, \qquad s \in [0, T],$$

где \dot{X}_s – проектор X_s , рассматриваемый как оператор из \mathscr{F} в \mathscr{F}_s , так что \dot{X}_s^* вкладывает \mathscr{F}_s в \mathscr{F} , и выполняются соотношения $\dot{X}_s\dot{X}_s^*=\mathbb{I}_{\mathscr{F}_s}$,

 $\dot{X}_s^*\dot{X}_s=X_s$. Для его проверки достаточно проверить характеристические свойства проектора P_s , а именно: $P_s^2=P_s, P_s^*=P_s$ и $\operatorname{Ran} P_s=\mathscr{F}_s$. Представляя P_s^{α} таким же образом, легко заключить, что имеет место сильная сходимость $P_s^{\alpha}\to P_s$. Таким образом, регулярность сходимости $\sqrt{C^{\alpha}}\to \sqrt{C}$ на гнезде $\mathfrak f$ действительно имеется.

Как следствие, в случае $C=\mathbb{I}+K>\mathbb{O}$ с компактным K, каноническая $\mathrm{T}\Phi$ (7) совпадает с классической специальной факторизацией Гохберга-Крейна и оказывается устойчивой.

• Рассмотрим ещё один случай. Пусть C и C^{α} допускают каноническую $T\Phi$ (4), и пусть интегральные суммы, определяющие $D_{\sqrt{C}}$ и $D_{\sqrt{C^{\alpha}}}$, сходятся равномерно по α . Пусть выполннены соотношения

$$\mathscr{F}=\oplus\sum_{l>1}\mathscr{F}^l;\;F^lX_s=X_sF^l,\;F^l\,C^\alpha=C^\alpha F^l,\;F^l\,C=CF^l,\;s\in[0,T]$$

где F^l – проектор в \mathscr{F} на \mathscr{F}^l . Они означают, что C^{α} и C (и, следовательно, $\sqrt{C^{\alpha}}$ и \sqrt{C}) приводятся подпространствами (каналами) \mathscr{F}^l .

Предположим, что части опреаторов в каналах $C_l^{\alpha}:=C^{\alpha}\upharpoonright \mathscr{F}_l$ и $C_l:=C\upharpoonright \mathscr{F}_l$ являются изоморфизмами при всех l и удовлетворяют условиям Теоремы 1. Тогда в каждом канале имеем $T\Phi\colon C_l^{\alpha}=V_l^{\alpha*}V_l^{\alpha},$ $C_l=V_l^*V_l$ и выполняется $V_l^{\alpha}\overset{\mathrm{W}}{\to} V_l$. В результате мы получаем факторизации $C^{\alpha}=V^{\alpha*}V^{\alpha},$ $C=V^*V$ и сходимость $V^{\alpha}\overset{\mathrm{W}}{\to} V$. В то же время, если нижние границы спектров C_l^{α} и C_l стремятся к нулю при $l\to\infty$, то ни C^{α} , ни C не являются изоморфизмами.

• Последний случай встречается в приложениях, но не слишком содержателен. Опуская детали, отметим, что он реализуется при определении потенциала в операторе Шрёдингера $-\Delta+q$ в шаре со сферически симметричным q. Важная нерешённая проблема — найти хотя бы достаточные условия, обеспечивающие $\sqrt{C^{\alpha}} \stackrel{\text{reg}}{\to} \sqrt{C}$ и эффективно проверяемые в приложениях. Говоря об определения потенциала, мы имеем в виду случай произвольной области и q из достаточно представительного класса.

Список литературы

- 1. М. И. Белишев, *Граничное управление и продолжение волновых полей.* Препринт ЛОМИ П-1-90 (1990).
- М. И. Белишев, О треугольной факторизации изоморфизмов. Зап. Научн. Семин. ПОМИ, 264 (2000), 33–43.

- 3. М. И. Белишев, Граничное управление и томография римановых многообразий. — Успехи математических наук, **72**, No. 4(436) (2017), 3–66.
- М. И. Белишев, А. П. Качалов, Операторный интеграл в многомерной спектральной обратной задаче. Зап. Научн. Семин. ПОМИ, 215 (1994), 9–37.
- М. И. Белишев, А. Б. Пушницкий, О треугольной факторизации положительных операторов. — Зап. Научн. Семин. ПОМИ, 239 (1997), 45–60.
- М. И. Белишев, С. А. Симонов, Треугольные и функциональные модели операторов и систем. Алгебра и анализ, 36, No. 5 (2024). arXiv:2401.16054v1 [math-ph] 29 Jan 2024.
- М. И. Белишев, С. А. Симонов, Модель и характеристика класса симметричных полуограниченных операторов. — arXiv:2504.01000v1 [math-ph] 1 Apr 2025
- 8. И. Ц. Гохберг, М. Г. Крейн, *Теория и применения вольтерровых операторов в гильбертовом пространстве.* М.: Наука (1967).
- 9. M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Problems, 13(5) (1997), R1–R45.
- M. I. Belishev, New notions and constructions of the boundary control method. — Inverse Problems and Imaging, 16, No. 6 (2022), 1447–1471. doi:10.3934/ipi.2022040.
- K. R. Davidson, Nest algebras. Pitman Research Notes in Mathematics Series (1988). ISSN 0269-3674;191. ISBN 0-582-01993-1.

Belishhev M. I., Vakulenko A. F. On stability of triangular factorization of positive operators.

Let $\mathfrak{f}=\{\mathscr{F}_s\}_{s>0}$ be a nest and C a bounded positive operator in a Hilbert space \mathscr{F} . The representation $C=V^*V$ provided $V\mathscr{F}_s\subset\mathscr{F}_s$ is a triangular factorization (TF) of C w.r.t. \mathfrak{f} . The factorization is stable if $C^{\alpha}\underset{\alpha\to\infty}{\to} C$ and $C^{\alpha}=V^{\alpha}*V^{\alpha}$ implies $V^{\alpha}\to V$. If C is positive definite (isomorphism), then TF is stable. The paper deals with the case of positive but not positive definite C. We impose some assumptions on C^{α} and C which provide the stability of TF.

Санкт-Петербургское отделение Математического института им. В.А.Стеклова РАН, Фонтанка 27, Санкт-Петербург, Россия, 191023 E-mail: belishev@pdmi.ras.ru E-mail: vak@pdmi.ras.ru

Поступило 25 сентября 2025 г.