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Abstract. The rise of large language models (LLMs) has greatly
advanced code generation capabilities. A recent StackOverflow sur-
vey found that 70% of developers are using or planning to use AI
coding tools this year. However, most current methods focus on su-
pervised fine-tuning objectives derived from text generation, often
overlooking the distinct sequence-level properties of code, such as
compilability, and syntactic and functional correctness. To address
this gap, we introduce a novel approach that combines pre-trained
LLMs with software analysis tools commonly used to detect vul-
nerabilities and validate code. Our method leverages detailed feed-
back from code compilation and analysis, incorporating this spe-
cialized knowledge into the prompt chaining process. We present
CodePatchLLM, an extension of LLMs that uses Svace feedback
for improved code generation. CodePatchLLM is a model-agnostic
framework that supports multiple programming languages. Exten-
sive experiments on the LeetCode dataset show that our approach
outperforms the baseline CodeLlama model, achieving significant
improvements in compilation success rates and functional correct-
ness across Java, Python, and Kotlin. The CodePatchLLM frame-
work is available at https://github.com/dsshay/CodePatchLLM.

§1. Introduction

Code generation or program synthesis aims to automatically generate
source code that adheres to a specified programming requirement, which
is typically described in a natural language [1,2]. Recently, with the devel-
opment of large language models (LLM), techniques based on LLMs [3–6]
have demonstrated impressive ability in code generation. However, chal-
lenges persist with the use of generated code in complex systems [7–9,12],
indicating a remaining gap in fully meeting user expectations.

In this context, learning from automatic defect detection tools demon-
strates exciting potential to enhance the comprehension of complicated
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technical specifications and the quality of generated codes [10]. Feedback
from compilation and execution results is instrumental in directly ascer-
taining the functional correctness of programs [11, 12]. Researchers have
introduced leveraging compiler feedback from unit tests to guide the ex-
ploration of the output space of LLMs [13,14] using reinforcement learning
techniques. In other words, authors fine-tuned the model so that the output
program was built successfully and passed tests.

Nevertheless, optimizing LLMs for code generation via compiler feed-
back presents several challenges. First, the increasing complexity of human
requests to LLMs often results in the generation of longer code sequences,
and this worsens the final program quality [15,16]. Second, feedback solely
from independent unit tests and a compiler is not enough to ensure reliabil-
ity of such a program. Static analysis tools conduct more thorough source
code checks than compilers, which usually only detect syntax errors [17].

Automated code generation (or program synthesis) has attracted much
attention over the past few years [18] because of its potential to improve the
productivity of developers, as well as to speed up the software development
[19]. Companies that hastily implement generative solutions or succumb to
the “AI hype” may face a potential increase in cybersecurity risk. Recent
work [20, 21] highlights the importance of using robust implementations
of generative AI in a business environment to mitigate such risks. The
demand for reliable and secure code has never been higher.

To tackle these challenges, several approaches have been proposed, in-
cluding filtering and repairing the non-executable synthesized programs [22],
using energy-based generation models with execution constraints [23], and
reinforcement learning (RL) fine-tuning mechanisms [12,14, 30]. However,
existing approaches are often tailored to a specific programming language
(PL) or task, e.g., the work [30] is exclusively designed for program syn-
thesis task in Python.

We introduce a new approach, illustrated in Fig. 1, combining results
of program analysis and LLM for code generation.

Initially, the output of any pre-trained LLM tailored for code generation
is transferred to the program analysis module, SAFe (Software Analysis
Feedback). The module includes but is not limited to the use of a compiler
and a static analyzer. It is assumed that it is possible to include other anal-
ysis tools such as DAST [54] or IAST [24]. In particular, SAFe analyzes
the entire file generated by the program to identify potential vulnerabili-
ties in the architecture of the solution that may occur when using external
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Figure 1. An overview of the proposed approach. Gen-
erated code is first initialized from the pre-trained LLM
for the designed task and then transferred to the com-
piler and static analyzer (SAFe module) suitable for the
selected programming language. Detected warnings and
errors are collected in a single pool of messages that are
transmitted to the assist setting. Finally, the LLM prompt
is updated based on the obtained values and returned.

libraries and classes. The usual classic static analysis stages are performed
on the generated program, namely capturing the program build to generate
automatically the required intermediate representation, lightweight analy-
sis of the program’s syntax trees (AST-level analysis), and interprocedural
dataflow analysis (which is both context-sensitive and path-sensitive based
on symbolic execution). Eventually, the goal is to identify all possible errors
in the generated program, before it is used by humans. One distinctive fea-
ture of this approach is the utilization of feedback from program analysis
tools as additional contextual clues for the LLM.

Specifically, messages generated by the compiler and static analyzer
are incorporated into the LLM’s prompt as supplementary comments (in
“Assist Setting”). By enriching the prompt with insights gathered from
program analysis, the LLM gains a deeper understanding of the desired
code’s requirements, constraints, and potential pitfalls. Once the prompt
is augmented with relevant analysis feedback, the LLM is prompted to
generate a new code, embedding the provided comments into its output.
This iterative process fosters a symbiotic relationship between automated
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program analysis and advanced language modeling, facilitating the gener-
ation of code that not only adheres to syntactic rules but also aligns with
best practices, security guidelines, and architectural constraints.

In addition, we propose a novel framework, CodePatchLLM, which in-
tegrates the Svace static analyzer [48, 49] feedback into CodeLlama [6]
to enhance the reliability and security of generated code. Through a se-
ries of experiments and evaluations on Leetcode dataset [55] we seek to
demonstrate the effectiveness of our approach in improving code quality,
reducing the risk of defects, and ultimately enhancing the trustworthiness
of software systems in real-world applications.

To summarize, the major contributions of this paper are as follows:

• we introduce a novel approach that utilizes code-specific feedback
as the external source of knowledge in model instructions. The ap-
proach is independent of models architecture and generates higher-
quality codes;

• we develop the CodePatchLLM extension for CodeLlama that ap-
plies the Svace static analyzer to the generated code, and itera-
tively corrects the model’s prompt using all warnings and errors
detected by Svace;

• we demonstrate the effectiveness of CodePatchLLM through ex-
periments across diverse programming tasks (from the Leetcode
platform1) and program languages (Java, Python, Kotlin). Using
CodeLlama with CodePatchLLM improves the compilation rate
in 50% for Java and 10% for Kotlin more cases and functional
correctness over different languages by 5%.

The remainder of this paper is organized as follows. In Section 2 we
describe existing code generation models utilizing external knowledge and
structure-based approaches. Section 3 delves into the specifics of our pro-
posed approach and new CodePatchLLM framework that includes the
Svace static analyzer. The experimental evaluation of CodePatchLLM on
programming tasks written in three program languages (Java, Python,
Kotlin) and the case study can be found in Section 4. Finally, Section 5
concludes the paper.

1https://leetcode.com
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§2. Related work

2.1. Fine-tuning large language models for code generation. Re-
cently, LLMs have shown remarkable ability in understanding natural lan-
guage and code generation by training on large text corpora containing
code data. Several pre-trained language models (PLMs) demonstrate sig-
nificant potential for code generation including CodeGPT [18], PanGu-
Coder [25], SantaCoder [26]. In addition, supervised fine-tuning models
achieve more competitive performance such as CodeX [27], CodeLlama
Instruct [6].

Reinforcement learning is a method of learning the optimal policy by
exploring the environment and obtaining rewards [28]. Recently, some re-
searchers have introduced RL to LLMs and improved the quality of the
generated code by utilizing the unit test feedback to explore the output
space of the policy model [12–14,29,30]. For instance, Coberly [30] leverages
signal from unit tests as rewards and utilizes the actor-critic approach [31]
to enhance models on code generation. PPOCoder [14] refines Code by
employing the PPO algorithm [32] and RLTF [13] provides fine-grained
rewards through the error locations, but the reward space is still sparse.
However, the exploration of complex tasks in an environment character-
ized by a sparse reward is challenging. These methods still fall short of
effectively using RL to enhance the model’s performance in code genera-
tion [7].

2.2. Chain-of-thought prompting. With the recent advancements in
large language models, researchers have discovered that utilizing the chain-
of-thought (CoT) [33, 34] techniques can significantly improve reasoning
abilities. The authors of [33] introduced the concept of few-shot CoT,
which involves generating intermediate reasoning steps before arriving at
the final answer with in-context demonstrations. This approach deviates
from traditional few-shot prompting (also called in-context learning [35])
that directly generates the final answer. Zero-shot CoT [36] is another
method leveraging chain-of-thought which adding the prompt “Let’s think
step by step” after the task description to activate LLMs to generate ratio-
nales in order for improved task performance. Other researchers also pro-
pose various prompting methods to enhance model capabilities, including
auto-cot [37], least-to-more [38], decomposing prompting [39] and tree-of-
thought [40]. In our work, outputs of program analysis tools can be seen
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as kind of prompt chaining, since all this data serves as intermediate steps
for fixing bugs in the code.

2.3. Prompting with feedback. Despite the remarkable capabilities of
large language models, it can still be challenging sometimes to generate the
correct answer in a single attempt. Recently, people found that LLMs can
receive feedback from external environment or generated by themselves
and iteratively refine according to the feedback. Self-refine [41] launches
a novel approach that allows LLMs to iteratively refine outputs with the
feedback without any labeled data. Reflexion [42] proposes a “verbal rein-
forcement learning” that LLMs reflect on failures based on feedback and
store reflexion in a text style for future trials. REMEMBERER [43] em-
ploys a method that allows LLMs to learn experience which is stored in
an external memory from the feedback in the training set and transfer
that experience to the test set for a better performance. In our work, we
focus on code generation task and teach LLMs to improve code based on
feedback from program analysis tools such as a static analyzer.

2.4. Prompting for code. Prompting techniques have been extensively
utilized in tasks related to code. Some works including [44–46] focus on
leveraging prompting to enhance code generation. In [47] prompting is
used to facilitate code selection and develop a reviewer model. The main
distinction between our work and them is that we focus on using pro-
gram analysis tools to improve compilability and security of code without
loss of efficiency in solving the problem, whereas all these previous works
primarily rely on receiving execution results or error messages from the
interpreter or using only a binary signal from the compiler.

§3. Method

In this section, we focus on the methodological details of our approach,
which ensures the generation of a compiled program and a program tested
by a static analyzer, respectively, as shown in Fig. 1. And we describe
CodePatchLLM, a novel framework that uses Svace [48, 49] feedback for
correcting prompt for CodeLlama [6], illustrated in Fig. 3.

3.1. Preliminaries. Let s ∈ S denote a given input, which can be a
piece of partial code, natural-language description, or a buggy program.
Let t ∈ T denote the generated source code. Formally, the problem of
code generation can be formulated as learning a mapping f between the
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input space and target code space, i.e. f : S → T . This paper explores the
task of converting text into code across multiple programming languages,
including Java, Python, Kotlin, utilizing identical input data.

Text-to-Code Generation. It aims to generate a whole program based on
natural language description. Let d = {d1, d2, . . . , d|d|} refer to a sequence
of natural-language tokens. The text-to code generation task can be defined
as generating source code c = t ∈ T , given the corresponding natural
language description d = s ∈ S.

Feedback from a program analysis tool. As the whole program c is gen-
erated, even if it is a partial program, we feed it into a compiler to test
whether it can be compiled successfully. Formally, we define the compiler
feedback as

feedbackcompiler = Messagecompiler(c),

where the compiler feedback is a text (compiler message), and c denotes
the code snippet fed into the compiler.

Similar to compiler feedback, we define the static analyzer feedback as

feedbackanalyzer = Messageanalyzer(c).

Messages from external code verification systems serve as an additional
signal m for the program generation model c. These systems provide re-
sponses to the input code, which we denote as m = feedbackcompiler +
feedbackanalyzer.

Moreover, there are two ways to utilize this data. First, it can be em-
ployed to design a reward signal that can be integrated with reinforcement
learning [7,12,50]. Alternatively, it can be utilized as a clarifying comment
for the model through prompt chaining.

Using external feedback as comment rather than solely relying on fine-
tuning the model, we can explore more effective ways to improve code
generation processes. In the next section, we consider some advantages
and implications of prompting compared to fine-tuning.

3.2. Comparing prompting and fine-tuning approaches for code
generation tasks. Below, we discuss several key aspects underlying the
efficacy of prompting as a methodology over traditional fine-tuning prac-
tices. We begin by examining insights extracted from empirical studies [33,
39,46].

Better understanding. Consistent improvement of parts of the gener-
ated code can facilitate better understanding, improved error correction,
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and more intensive optimization, ultimately leading to improved overall
performance of the LLM [46].

Activating specific internal knowledge. Using prompting activates spe-
cific internal knowledge.

In the single step approach, the LLM is constrained to solve the entire
problem in a single step. Therefore, the maximum number of tokens it can
process is limited by s. In the n intermediary steps approach, the LLM
solves the problem in multiple steps, with each step handling a portion of
the task. Since the LLM can process tokens in each of the n intermediary
steps, the total number of tokens processed across all steps is s+ n×m.

Comparing the two approaches, we can see that the n intermediary steps
approach allows the LLM to process a total of s+ n×m tokens, which is
significantly higher than the token processing capacity of s in the single
step approach.

Independence from the model architecture and software tools. Fine-tuning
a model with a specific static analyzer can lead to overfitting, where the
model performs well on errors and warnings that can only be detected by
this static analyzer but poorly on unseen data.

Moreover, fine-tuning can sometimes lead to a loss of generalization
ability, meaning the model becomes too specialized for the specific task
it was fine-tuned for and performs poorly on related tasks or in different
environments.

The transferability of a fine-tuned model to different tasks or domains
may be limited. While fine-tuning may improve performance on a partic-
ular task, it might not transfer well to other tasks without further adjust-
ments or retraining.

Customizing without computational cost. Fine-tuning can be compu-
tationally expensive, especially if the pre-trained model is large and the
fine-tuning dataset is extensive. This can require significant computational
resources and time, making fine-tuning less practical in some scenarios [51].

Previous works [11, 12] that fine-tune a model based on compiler feed-
back use an approach where a reward or binary signal is usually returned
as feedback, and the context itself does not change. Thus, fine-tuning the
model requires a lot of resources, since the model has to explore all the
output spaces in order to find the best combination that will lead to a rare
reward, program compilability.

External signals do not detract the model from solving the problem. If the
previous code snippet is compilable, the generator can fool the compiler
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easily. Reinforcement learning is good at making use of this, resulting
in the generated code can be compiled, but seriously deviating from the
generation likelihood objective.

Previous works [12, 13] to avoid active model being too far away from
reference model added a Kullback-Leibler [7] penalty with expectation. To
alleviate the imbalance between the reward term and the penalty term
and improve the stability of training, authors in [52] used autoregressive
fine-tuning. This general setup leads to the fact that the original model
corrects only a small number of tokens at the input, which in turn may
not be optimal for quickly improving the compilability and security of the
code, since the entire solution architecture has to be changed.

Based on this, we propose a simple and convenient framework Code-
PatchLLM that extends CodeLlama [6] capabilities for code generation
through feedback from Svace [48].The flexible configuration of the frame-
work allows to use any architecture of the LM with CodePatchLLM that
solves the task. We believe that frameworks such as CodePatchLLM can
be used as add-ons on an arbitrary code generation model and can be used
when the specification requirement is higher than under normal conditions.

3.3. CodePatchLLM. Our proposed method CodePatchLLM enables
large language models to use the code debugging method through a static
analyzer. The CodePatchLLM can be used in cases where the requirements
for the generated code are much higher than in normal conditions: the code
must be vulnerability-tested and executable. It involves testing generated
code through the Svace static analyzer. Programmers can analyze the out-
put generated by the dialogue of LLM and Svace to understand how the
code has been changed and what errors were in the first version.

Figure 3 shows an example of the first iteration using CodePatchLLM
on the program generation task. We first let LLMs attempt solving the
programming problem based solely on the problem description, without
any extra information. The generated code, regardless of its size, is checked
by the Svace static analyzer (Stage SAFe) and code regeneration based on
feedback from program analysis tools (Stage Asssist Setting). The above
steps will be repeated until Svace finds errors and vulnerabilities in the
code or until several rounds of debugging attempts still fail to fix the
issues.

Next we provide a detailed discussion of every step.
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Generating code. For code generation we use Code Llama 70B Instruct2,
the largest and best-performing open-source model. We use a typical usage
prompt for many models [34]:

You are a helpful and honest code assistant expert in {LAN-
GUAGE}. Please, provide all answers to programming ques-
tions in {LANGUAGE}.

where {LANGUAGE} denotes the selected programming language. When
communicating with the model, we use the chat prompt format shown in
Fig. 2.3

Figure 2. Chat Prompt for CodeLlama-70B-Instruct.

SAFe stage In this stage, we proceed with code analysis that includes
the running the Svace static analyzer. Following the Svace user manual,
we initialize the directory in which the program file is located with the
command: svace init. We capture any error messages provided by the
Svace or the original compiler. It is important to note that even if the
execution encounters errors, we still collect the log generated prior to the
occurrence of the error. For instance, before running the analysis, Svace
needs to build intermediate representation generated when monitoring the
original compilation process (e.g. via the javac compiler for Java). And if
an error occurs at the compilation stage, we collect the event and message
in the log.

In our research, we use Svace as a base component for code analysis and
optimization. Svace identifies security vulnerabilities inherent in software
code, including potential buffer overflows, memory leaks, and other unsafe
coding practices. By proactively detecting these vulnerabilities at an early

2CodeLlama-70B is free for research: https://ai.meta.com/blog/
code-llama-large-language-model-coding/

3Source: https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf
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stage of development, Svace empowers users to mitigate security risks ef-
fectively, safeguarding software systems from potential cyber threats and
breaches. Additionally, Svace facilitates the identification of performance
bottlenecks within the codebase, such as inefficient algorithms, redundant
computations, or memory-intensive operations.

It is assumed that the module SAFe can be flexibly expanded with other
code analysis tools, for example, with a dynamic analyzer.

Assist settings. On the final step, we provide error messages to the
model turning all feedback into a sequence. Our approach aims to take into
account all feedback and instructions provided by program analysis tools.
This means that at each timestep, the model can only utilize the past time
steps data and itself. We instruct LLMs to regenerate the code considering
the comments found, as illustrated in Figure 3. LLMs are prompted to fix
an error in the code in a specific place (the line number and the method
used are known). In Figure 3, two messages generated by the SAFe module
are specified: a class declaration is expected for the compilation of the
program and the calculation of the average value may be overflowed.

§4. Experiments

We evaluate our CodePatchLLM framework with CodeLlama [6] as the
backbone. We investigate: (1) how CodePatchLLM framework can boost
LLM performance on real-world programming tasks benchmarks, (2) the
impact of the framework on code compilability and the reduction of defects,
and (3) the effect of the number of iterations.

Benchmark. We consider Leetcode datasets [55] for our evaluations.
LeetCode4 is one of the most visited platform for practicing programming.
We selected LeetCode as the primary source for our evaluation dataset,
as it programming tasks can be directly compiled by copying and pasting
contents from the LeetCode website. The dataset consists of 2 612 pro-
gramming tasks. Problems in the dataset are categorized into three levels
according to their difficulties.

Metrics. To evaluate the generated codes, we employ the pass@1 metric
following [27], which calculates the percentage of problems for which all
unit tests are passed using one synthetically generated program sample
per problem.

4https://leetcode.com
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Figure 3. Sample Java program generation with Code-
PatchLLM, utilizing the Svace feedback.
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Table 1. Performance results. Overall, CodePatchLLM
boosts the performance and compilability of CodeLlama
on the discussed metric.

Accepted Wrong Runtime Compiler
Answer Error Error

Java CodeLlama [6] 12% 22% 3% 62%
Our 25% 37% 5% 33%

Python CodeLlama [6] 36% 47% 17% 0%
Our same result

Kotlin CodeLlama [6] 10% 2% 24% 64%
Our 12% 10% 24% 54%

Implementation details. The experiment process was conducted on a
device with three NVIDIA A100 80G GPUs.

The weights of the model are loaded from HuggingFace. The maximum
output token length is set to 2048.

At each step of the code update, we submit the solution to the plat-
form Leetcode. And also at each stage reinitialize existing Svace project
directory from scratch.

4.1. Experimental results on Leetcode. In our study, we evaluate
CodePatchLLM with Java, Python, and Kotlin languages.

The experimental results are illustrated in Table 1. The reported re-
sults indicate that the model with CodePatchLLM improve performance
the model with basic settings for Java and Kotlin. And experiment shows
that in Python the extended model does not improve the quality. Mech-
anism feedback from Svace and original compiler designed to executable
and feasibility of the program. Therefore, in part, the extension does not
change the overall quality, since a Python program does not require a com-
piler. The lack of feedback from the compiler and the analyzer explains the
minimal deviations of the results from the original model. Experimental
results show that CodePatchLLM improves executability by 45% for Java
and by 10% for Kotlin. Additionally, it enhances the “Accepted” rate by
50% for Java.

In 37.3% of cases, CodeLlama incorrectly names the implemented class
method at the first request. For example, swapAdjacentNodes instead
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Table 2. Share of generated programs with errors and vul-
nerabilities. 98% of reviews have been corrected by Code-
PatchLLM.

Compiler Svace
feedback feedback

Java 62,3% 12,5%
Python — 0%
Kotlin 64,5% 3,1%

swapPairs. It is noteworthy that further dialogue with the model allows
you to correct this although in the task formulation there are no clarifica-
tions in the naming of methods and classes.

Since CodePatchLLM constrains the model on an example when pre-
dicting another one, the model can simply “copy” the example without
learning to understand the underlying task. In future, to address this, we
can randomly mask between 0% and 5% of past tokens during training,
which help regularize the model and prevent it from overfitting to the
specific examples seen during training [29,53].

Table 2 presents the percentage of generated programs with errors and
vulnerabilities, categorized based on the type of feedback received from the
original compiler and Svace static analyzer. the majority of the feedback
(98%) has been addressed by CodePatchLLM, indicating its effectiveness
in correcting errors. In Java, 12.5% of the generated programs had Svace
feedback indicating vulnerabilities, while for Kotlin, this percentage was
lower at 3.1%. No errors were detected in the generated Python programs,
likely due to the Python support in Svace being in the first release, so
that not many Svace checkers are supported for Python. It is worth noting
that the analyzer verification stage comes after the compiler verification,
and Svace identifies errors that do not influence whether the program can
be successfully built, as all programs being analyzed are already compiled
correctly. But the errors found can affect functional correctness.

Our approach allows to create a ready-made extension that can be used
in conjunction with any LLM to generate code. Experiments with Code-
PatchLLM demonstrate that the method of using feedback from the origi-
nal compiler and static analyzer improves compilability and prevents errors
for Kotlin and Java programs.
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§5. Conclusion

In this paper, we present CodePatchLLM, a novel framework that uti-
lizes feedback from compilers and static analyzers to refine code generation
prompts. Recognizing the limitations of fine-tuning LLMs for code gen-
eration, we developed a framework tailored specifically for programming
languages rather than natural language. By integrating feedback from com-
pilers and static analyzers, CodePatchLLM encourages the generation of
syntactically and logically correct code. Our experimental results demon-
strate that this approach significantly improves the syntactic and func-
tional accuracy of generated code compared to the base model without
CodePatchLLM. One limitation of CodePatchLLM is the increased com-
putational cost due to the additional time required for data exchange.
However, its primary advantage lies in enhancing pre-trained models’ per-
formance, which is more cost-effective than fine-tuning models for specific
tasks.

This research addresses the pressing need for reliable code generation
and has the potential to improve the development of more secure and
dependable software systems.

References
1. A. Svyatkovskiy, S.K. Deng, S. Fu, and N. Sundaresan, IntelliCode compose: Code

generation using Transformer, Proc. 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software En-
gineering (2020), 1433–1443.

2. S. Gulwani, O. Polozov, and R. Singh, Program synthesis. — Foundations and
Trends in Programming Languages 4, No. 1–2 (2017), 1–119.

3. D. Abulkhanov, N. Sorokin, S. Nikolenko, and V. Malykh, Lapca: Language-
agnostic pretraining with cross-lingual alignment, Proc. 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval (2023),
2098–2102.

4. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale, M. Clement, R. Das, et al., Llama 2: Open
foundation and fine-tuned chat models, ArXiv preprint arXiv:2307.09288 (2023).

5. A. Razzhigaev, M. Salnikov, V. Malykh, P. Braslavski, and A. Panchenko, A sys-
tem for answering simple questions in multiple languages, Proc. 61st Annual Meet-
ing of the Association for Computational Linguistics 3 (2023), 524–537.

6. B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X.E. Tan, Y. Adi, J. Liu, T.
Remez, J. Rapin, S. Sinha, et al., Code llama: Open foundation models for code,
ArXiv preprint arXiv:2308.12950 (2023).



248 D. SHAIKHELISLAMOV ET AL.

7. D.M. Ziegler, N. Stiennon, J. Wu, T.B. Brown, A. Radford, D. Amodei, P. Chris-
tiano, and G. Irving, Fine-tuning language models from human preferences, ArXiv
preprint arXiv:1909.08593 (2019).

8. F. Christopoulou, G. Lampouras, M. Gritta, G. Zhang, Y. Guo, Z. Li, Q. Zhang,
M. Xiao, B. Shen, L. Li, et al., Pangu-coder: Program synthesis with function-level
language modeling, ArXiv preprint arXiv:2207.11280 (2022).

9. D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns,
S. Puranik, H. He, D. Song, et al., Measuring coding challenge competence with
apps, ArXiv preprint arXiv:2105.09938 (2021).

10. Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J.
Keeling, F. Gimeno, A. Dal Lago, M. Lewis, et al., Competition-level code gener-
ation with alphacode. — Science 378, No. 6624 (2022), 1092–1097.

11. X. Wang, Y. Wang, Y. Wan, F. Mi, Y. Li, P. Zhou, J. Liu, H. Wu, X. Jiang, and
Q. Liu, Compilable neural code generation with compiler feedback, ArXiv preprint
arXiv:2203.05132 (2022).

12. S. Dou, Y. Liu, H. Jia, L. Xiong, E. Zhou, J. Shan, C. Huang, W. Shen, X. Fan,
Z. Xi, et al., StepCoder: Improve Code Generation with Reinforcement Learning
from Compiler Feedback, ArXiv preprint arXiv:2402.01391 (2024).

13. J. Liu, Y. Zhu, K. Xiao, Q. Fu, X. Han, W. Yang, and D. Ye, Rltf: Reinforcement
learning from unit test feedback, ArXiv preprint arXiv:2307.04349 (2023).

14. P. Shojaee, A. Jain, S. Tipirneni, and C.K. Reddy, Execution-based code generation
using deep reinforcement learning, ArXiv preprint arXiv:2301.13816 (2023).

15. J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and Z. Wang, Exploration
in deep reinforcement learning: From single-agent to multiagent domain. — IEEE
Transactions on Neural Networks and Learning Systems (2023).

16. P. Ladosz, L. Weng, M. Kim, and H. Oh, Exploration in deep reinforcement learn-
ing: A survey. — Information Fusion 85 (2022), 1–22.

17. B. Blanchet, P. Cousot, R. Cousot, J. Féret, L. Mauborgne, A. Miné, D. Monniaux,
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