
Записки научных
семинаров ПОМИ

Том 540, 2024 г.

N. Sukhanovskii, M. Ryndin

MMA: A FIGHT FOR MULTILINGUAL MODELS
ACCELERATION

Abstract. In this work we focus on common NLP model design:
fine-tuning a multilingual language model with data for the target
task in one language to solve this task in a different target language.
We aim to determine how popular speedup techniques affect mul-
tilingual capabilities of Transformer-based model and additionally
research the usage of this techniques in combination. As a result,
we obtain the NERC model that can be effectively inferred on CPU
and keeps multilingual properties across several test languages after
being tuned and accelerated with only English data available.

§1. Introduction

Multilingual named entity recognition (NER) tasks are particularly im-
portant in facilitating cross-lingual information retrieval, entity-based sen-
timent analysis, and multilingual document classification. By accurately
identifying and categorizing named entities across different languages, mul-
tilingual NER systems enable organizations to extract actionable insights
from diverse textual data sources, regardless of language barriers. However,
the computational demands of Transformer-based models pose challenges,
particularly in resource-constrained environments. This work focuses on in-
vestigating and implementing methods to accelerate neural networks, par-
ticularly models based on transformer architecture. The aim is to enhance
the efficiency of these models while retaining their multilingual capabili-
ties, specifically in the context of NER. Also it is worth mentioning that
datasets for many classes are often not available in many languages and it
is common to use solutions based on multilingual models. This backbone is
then finetuned for a target task on single-language data and used on target
language data. This approach is working thanks to the backbone’s multilin-
gual capabilities, and it is unclear how strong is multilingual generalization
after applying acceleration methods that “see” only single-language data.
By comparing selected algorithms based on their impact on model qual-
ity and speedup achieved on CPU execution, this study aims to identify

Key words and phrases: BERT, pruning, quantization, NERC.

214



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 215

an optimal combination of techniques. To address this, techniques such
as quantization, pruning, and model distillation are explored, among oth-
ers, to reduce model complexity and enhance inference speed on a CPU.
Evaluation criteria include assessing the loss in model quality on standard
NER datasets and measuring the achieved speedup during CPU execu-
tion. The main novelty of this work lies in the measurement of retention
of multilingual knowledge affected by techniques which reduce model size.
The ultimate goal is to identify a methodology that allows the model to
maintain its multilingual capabilities while significantly improving its effi-
ciency on a CPU. Despite our focus on performance on the CPU, all of the
techniques discussed will provide speedups for models that run on a GPU
if a proper runtime is used. For example, non-structural pruning requires
runtime with support for operations with sparse matrices.

§2. Background information

There exist several popular methods to modify models to speed up their
inference; the most widely used methods include pruning, distillation, and
quantization.

2.1. Pruning. Pruning entails the removal of redundant model compo-
nents, which can be categorized into structural pruning, involving the
deletion of model chunks, and unstructured pruning, which involves the
deletion of individual weights in tensors of the model. For BERT-based
models, structural pruning commonly targets attention heads, which can
be iteratively removed [3]. Conversely, unstructured pruning techniques
vary based on criteria for selecting weights for deletion. The metric that
determines the importance of heads for deletion is based on how deletion
of each individual head will affect the loss function.

The main difference between methods of unstructured pruning lies in
how weights are chosen for deletion. The first intuitive approach is to
delete weights with lowest absolute values iteratively, while the model is
trained or fine-tuned [23]. The main downside of this approach is that
when it is used with a pre-trained model some of the weights are not
applicable to fine-tuning tasks. To address this issue, a new metric of the
“importance” of weights was proposed in the work [6]. The main idea is
to remove weights with the lowest change during fine-tuning on target
tasks, hence its name is movement pruning. The current state of the art
method of unstructured pruning for Transformer-based networks is the



216 N. SUKHANOVSKII, M. RYNDIN

Optimal Brain Surgeon pruning approach [9,15]. This method uses second-
order information to determine weight deletions that minimize adverse
effects on model performance. The main downside of this method is its
high computational cost.

2.2. Quantization. Quantization, another approach to accelerate model
inference, involves converting high-precision numerical variables, such as
real numbers (FP32), into lower-precision variables, such as integers (INT8).
Notably, quantization techniques can be further categorized into static,
dynamic, and Quantization-Aware Training (QAT), each offering distinct
advantages and trade-offs in terms of inference speed and model accu-
racy [24]. In case of static quantization, the quantization levels are deter-
mined using sample data and remain consistent after conversion. Dynamic
quantization, on the other hand, adjusts the quantization levels based on
the input data characteristics during inference of the model. Quantization-
Aware Training (QAT) is a method employed during model training where
the model is trained while considering the effects of quantization, allow-
ing it to adapt its parameters to better accommodate the quantization
process. This involves simulating the effects of quantization during train-
ing, enabling the model to learn more robust representations that preserve
accuracy when deployed with reduced precision.

2.3. Distillation. Distillation of neural networks is the process of train-
ing a lightweight model called the student from the knowledge of a more
complex model, called the teacher. The most common algorithm is to add
a term to the student’s loss function that is responsible for how much the
student’s output coincides with that of the teacher. As a result, the student
model, in addition to regular learning, also learns to mimic the distribu-
tion of teacher responses [5]. Architectures of student models can vary [12],
and the loss of the student model can include terms that correspond to
similarity weight tensors between the student and the teacher [16,20].

§3. Experimental Setup

We have conducted our experiments on two datasets: conll2002 [17]
and conll2003 [21], commonly used to evaluate models on named entity
recognition tasks. The data consists of sentences in 3 different languages:
English (en), Dutch (nl), and Spanish (es), with annotations for persons,
organizations, locations and other classes. We used only the training split
of conll2003 (English language sentences) for fine-tuning and acceleration



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 217

Table 1. Results of baseline models.

Model es dev es test en dev en test nl dev nl test

mlbert 0.747 0.749 0.958 0.910 0.806 0.782
xlm 0.777 0.776 0.954 0.922 0.809 0.785

Table 2. Throughput result of baseline models.

Model Throughput Batch size Runtime

Base model 27.9 4 deepsparse
18.7 4 onnxruntime

procedures, so the model has never seen any sentences for the target lan-
guages it is evaluated on (Spanish and Dutch). Also, to simplify the un-
derstanding of results we introduced a new metric, the multilingual score
(mls). Mls is calculated as the sum of differences in the F1-score between
base and target models on all non-English datasets. For performance test-
ing, all models were converted into ONNX format and were tested in dif-
ferent inference engines (ONNX runtime1, deepsparse engine2) and with
different batch sizes (1, 4, 8) and fixed sequence length of 128 tokens. The
main metric for the models is the F1 score on each subset and metric for
performance is throughput on CPU (i7-11800H). Baseline models are pre-
trained BERT-base-multilingual-cased(mlbert) [19] and XLM-RoBERTa-
base(xlm) [18] from Hugging Face3 hub. These models were chosen because
they are the most popular BERT-like multilingual models. Their fine-tuned
or pre-trained versions were used as starting point for all experiments.
Their baseline results are shown on table 1 and 2.

3.1. Structural pruning.

3.1.1. Are sixteen heads really better than one? [3]. The initial point of
our approach involved fine-tuning the Multilingual BERT model. During
each iteration of the algorithm, we selected the 12 attention heads with
the lowest metric. Masked heads were excluded from these calculations.

1https://github.com/onnx/onnx
2https://github.com/neuralmagic/deepsparse
3https://huggingface.co/



218 N. SUKHANOVSKII, M. RYNDIN

Figure 1. Results of models with different numbers of at-
tention heads.

Subsequently, another set of 12 attention heads was chosen from the re-
maining heads, ensuring that at least one unmasked head remained on
each layer. Upon conversion to a computational graph, the masked atten-
tion heads were completely removed. Figure 1 illustrates that a reduction
of approximately 50% in the number of removed heads corresponds to a
decline in the F1 score across all languages. This decline closely aligns with
findings reported in the original article for similar tasks. Notably, despite
the assessment of attention head “importance” being conducted solely on
the English subset, the reduction in F1 score remains consistent across all
languages.

3.1.2. TextPruner [1]. The same model utilized in the previous experiment
served as the foundation for this one. As before, 12 heads were masked at
each iteration; however, in this instance, a configuration was implemented
where the number of masked heads on each layer remained consistent. The
reduction in the hidden size of the feed forward layer at each step mirrored
that of the previous experiment, resulting in a diminishing discrepancy in
layer sizes across iterations. All other parameters were maintained at sim-
ilar levels to those of the prior experiment. Figure 2 depicts the quality
of the model throughout iterative head removal. Notably, due to the fact



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 219

Figure 2. F1 score (TextPruner).

that the number of heads on each layer should remain constant, the overall
quality of the model was adversely affected. This decline in performance
begins not at a removal rate of 50%, as observed in previous instances, but
rather at 30%. This observation suggests that the significance of heads on
individual layers varies, and the constraint of uniform removal impedes the
model’s performance. Furthermore, despite the presumption that an equal
distribution of heads across layers would enhance model performance, the
conducted experiments did not substantiate this hypothesis. Model infer-
ence result for structural pruning can be found in Appendix A.

3.2. Unstructured pruning. The base models utilized in this case were
XLM-RoBERTa-base and BERT-base-multilingual-cased. The fine-tuning
process consisted of three stages: 1) initial tuning for the task, 2) iterative
removal of weights, and 3) final additional training of an already sparse
model. Similar to previous experiments, weights were iteratively masked
based on a specified metric, accounting for previously masked weights in
the calculations. Upon completion of training, the model was exported to
the ONNX format in a specialized manner, enabling the exploitation of
the resulting matrices’ sparsity to accelerate model inference. Through-
out training, a cyclic scheduler was employed, following recommendations
outlined in the referenced article [10]. Notably, this scheduler proved par-
ticularly effective for pruning, as a comparatively high learning rate during



220 N. SUKHANOVSKII, M. RYNDIN

Figure 3. F1 score on various languages during pruning
with the OBS algorithm up to 90% sparsity for the xlm-
roberta model with a cubic curve of sparsity percentage.

certain phases facilitated model adaptation to weight removal, while sub-
sequent reductions in the learning rate stabilized model performance. The
efficacy of this scheduler was validated through both personal experimen-
tation and the findings presented in the article [11].

Furthermore, each pruning algorithm featured specific parameters, ini-
tially drawn from their respective original articles and subsequently re-
fined where computational resources permitted. However, a comprehensive
search for hyperparameters for each algorithm was not undertaken. The
mask update rate served as a common parameter across all considered
pruning algorithms and remained consistent throughout the experiments.

The models underwent training to achieve 80% and 90% sparsity of
the weight matrices, serving as a global parameter for the entire model.
Hence, while individual structural elements of the model could exhibit
varying degrees of sparsity, the cumulative sparsity equated to the specified
percentage. The selected sparsity levels were chosen to balance noticeable
acceleration while maintaining robust performance across datasets.

During each training iteration, the model pursued a target sparsity per-
centage, and the manner in which this transition occurred from 0 to the
specified percentage influenced the final model quality. Two key parame-
ters influenced this transition: the initial sparsity, denoting the significant



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 221

Table 3. Results of models with different pruning configurations.

Model es
dev

es
test

en
dev

en
test

nl
dev

nl
test

mls
dev

mls
test

mlbert magnitude 80 0.128 0.076 0.892 0.790 0.068 0.057 -1.357 -1.398
mlbert movement 80 0.117 0.068 0.897 0.783 0.066 0.055 -1.37 -1.408
mlbert obs 80 0.648 0.646 0.935 0.888 0.622 0.589 -0.283 -0.296
xlm magnitude 80 0.483 0.484 0.901 0.855 0.524 0.490 -0.546 -0.557
xlm movement 80 0.481 0.485 0.903 0.851 0.527 0.491 -0.545 -0.555
xlm obs 80 0.628 0.641 0.933 0.882 0.651 0.604 -0.274 -0.286
xlm magnitude 90 0.533 0.536 0.904 0.859 0.498 0.464 -0.522 -0.531

percentage of weights removed at the onset of pruning, and the curve dic-
tating the trajectory towards the target sparsity percentage.

In Figure 3 and Figure 4 in Appendix A, the F1 score across different
model languages during pruning is depicted with linear and cubic curves
of the target sparsity percentage, respectively. Remaining parameters were
held constant. It is evident that the model with a linear curve exhibits
notably lower F1 scores, particularly in languages for which it was not
explicitly trained. This decline occurs sharply towards the end of training,
within the final 30% of sparsity. Prior to this point, the model with a linear
curve outperformed its cubic counterpart. This observation suggests that
the initial 40% of sparsity has minimal impact on model quality across all
languages, but as sparsity increases, the decline in quality becomes more
significant. Notably, this dependency is nonlinear, mirroring the resulting
acceleration of the model.

Table 3 presents the overall results. The models’ names consist of three
parts: 1) architecture (mlbert — Multilingual BERT, xlm — Multilingual
RoBERTa), 2) pruning algorithm (magnitude — based on absolute values,
movement — based on gradients, OBS — based on second-order informa-
tion, the Hessian), and 3) percentage of model sparsity.

Key takeaways from these results include the observation that higher-
order pruning algorithms generally yield better performance. However, al-
gorithms based on absolute values and gradients incur minimal additional
computational load beyond regular training, whereas OBS not only pro-
longs training time by at least threefold but also demands substantial video
memory, necessitating a professional graphics card for optimal operation.



222 N. SUKHANOVSKII, M. RYNDIN

Table 4. Results of distilled models in various languages.

Model es
dev

es
test

en
dev

en
test

nl
dev

nl
test

mls
dev

mls
test

DistillBERT
with teacher

0.708 0.729 0.947 0.900 0.802 0.758 -0.04 -0.04

DistillBERT
without teacher

0.690 0.699 0.942 0.901 0.760 0.725 -0.10 -0.11

MiniLM 0.763 0.757 0.945 0.905 0.793 0.761 -0.02 -0.01

In addition, it is important to note that first- and second-order algo-
rithms substantially diminish the multilingual capabilities of the BERT
model, unlike RoBERTa. Models pruned using second-order information-
based algorithms retain 95% of the base model’s F1 score in English and
81% to 85% in other languages.

3.3. Distillation. The base model was distilbert-base-multilingual-cased,
which was trained on Wikipedia articles in 104 of the most common lan-
guages using bert-base-multilingual-cased as a teacher. The basic model
was fine-tuned with and without a teacher already on the task of recog-
nizing nominal entities. A finely tuned xlm-roberta-base was used as the
teacher and only the label probability distribution from the teacher was
used for the student error function. Also for comparison, we took a MiniLM
model pre-trained in several languages, which was fine-tuned without a
teacher on an English-language data set. The choice of distilled models
is limited, because there is almost none models whose were pretrained on
multilingual data.

Table 4 presents the results of distilled models in various languages.
For the Supervised DistilBERT model, it retains 98.5% of the F1 score
compared to basic BERT in English and 95% to 97% in other languages.
The addition of a teacher model during fine-tuning does not alter the
score in English but improves it by 5% in other languages. This marginal
improvement in utilizing a teacher can be attributed to DistilBERT already
having a teacher during pre-training.

MiniLM, on the other hand, shows a minor decrease compared to basic
BERT, trailing by only 1% in English and 2% in Dutch, while outperform-
ing it by 4% in Spanish. The discrepancy in Spanish performance can be



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 223

Table 5. Throughput result of distilled models.

Model Throughput Batch size Runtime

DistillBERT

45.3 1 deepsparse
50.3 4 deepsparse
46.6 8 deepsparse
34.6 1 onnx
34.3 4 onnx
31.3 8 onnx

miniLM

93.8 1 deepsparse
111.8 4 deepsparse
112.7 8 deepsparse
64.9 1 onnx
70.0 4 onnx
60.1 8 onnx

attributed to variations in the dataset used for pre-training and distilla-
tion.

Overall, distillation proves to be an effective method, not only repli-
cating the results of the basic model but also preserving the multilingual
nature of the model. It is noteworthy that the selected models were dis-
tilled during model pre-training, while other methods were employed only
during fine-tuning. Additionally, it is important to highlight the computa-
tional cost associated with training, as both teacher and student models
need to be maintained in memory and executed, particularly for complex
training processes like MiniLM.

Table 5 presents the performance results of the distilled models. Since
all models diverge from baseline ones at the architectural level, the per-
formance gains are visible in runtimes. Since the Distillbert architecture is
basically a BERT with half as many layers, the performance gain is almost
90 percent. As for miniLM, the main contribution to the speedup of the
model is made by reducing the hidden size of weights by 2x, which, accord-
ing to the original work [22], gives a speedup of 2.7x. In our experiment,
the speed of the model increased by 3.8x compared to the baseline BERT.
This difference is due to the fact that testing is carried out in inference en-
gines and they are presumably better optimized for working with smaller
matrix sizes.



224 N. SUKHANOVSKII, M. RYNDIN

Table 6. Results of quantized models.

Quantization
type

es
dev

es
test

en
dev

en
test

nl
dev

nl
test

mls
dev

mls
test

Dynamic 0.748 0.761 0.946 0.899 0.792 0.778 -0.013 -0.014
Static 0.74 0.754 0.935 0.891 0.784 0.772 -0.029 -0.027
QAT 0.752 0.767 0.948 0.904 0.795 0.781 -0.006 -0.005
Without data 0.733 0.748 0.924 0.881 0.775 0.761 -0.045 -0.044

3.4. Quantization. A fine-tuned BERT-base-multilingual-cased model
served as the starting point for quantization, consistent with previous ex-
periments. The calibration dataset for static quantization comprised the
training portion of the CoNLL 2003 dataset. Dynamic quantization was
implemented using ONNX, thereby “hard-wiring” it into the model file and
ensuring compatibility with all launch environments that store models in
the ONNX format.

During quantization-aware training, the model underwent fine-tuning
for the same number of epochs as in the base model fine-tuning process.
To establish quantization boundaries in scenarios where data was absent,
randomly generated and nonsensical input data was utilized.

Table 6 presents the impact of different quantization methods on the
final quality and multilinguality of the model.

The quantization method during training yields the highest quality re-
sults, as expected, since it requires a substantial amount of real data and
computational resources for implementation. Dynamic quantization is the
optimal method for maintaining model quality without additional data,
while static quantization, despite the presence of a calibration dataset, still
yields slightly lower quality compared to dynamic quantization. Dataless
quantization provides the fastest model generation but sacrifices quality.

Interestingly, the results of models in non-target languages decline pro-
portionally to those in English, indicating that quantization does not nega-
tively impact the multilinguality of the model. Overall, the additional com-
putational costs associated with implementing quantization during train-
ing are deemed insignificant, making this method preferable, especially
when access to training data is available. Moreover, a model quantized
during training retains over 98% of the metrics of the base model, empha-
sizing its effectiveness.



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 225

Table 7. Throughput result of quantized models.

Quantization type Throughput Batch size Runtime

Dynamic 76,3 8 deepsparse
Static 96,5 8 deepsparse

Table 7 presents the performance results of various quantization ap-
proaches. The full table can be found in Appendix A. The table shows
only two methods, since the difference between the methods lies in the
method for converting the weights, and since all the final weights are de-
termined before running the model in case of static quantization, there is no
difference in performance. For static methods, the speedup is 340 percent.
Since dynamic quantization incurs additional computational overhead dur-
ing model execution, the speedup is only 270 percent.

3.5. Combined approach. To streamline the presentation, we will only
showcase the best configurations identified from previous chapters in ta-
ble 8. For instance, the pruning method based on second-order informa-
tion demonstrated superior performance in preserving both multilinguality
and accuracy across languages. All types of quantization were found to be
equally compatible with the described algorithms and can be applied to
fully trained models. However, quantization during training was found to
best preserve model accuracy, making it the preferred choice for combina-
tion.

During non-structural pruning of models, fine-tuning was conducted
using the same approach and model as described in the chapter on distil-
lation, including the utilization of teacher models for guidance. This con-
sistent approach ensures comparability and reliability across experiments.
The main outcome is that techniques combination does not create any
special properties: resulting model has aggregated speedup and trade-offs
of corresponding techniques but nothing extra. Full table with results of
throughput can be found in Appendix A.

§4. Conclusion

Throughout this study, we have explored key techniques for reducing
and accelerating neural network models, including quantization, pruning,



226 N. SUKHANOVSKII, M. RYNDIN

Table 8. Results of best combined methods.

Model es
dev

es
test

en
dev

en
test

nl
dev

nl
test

mls
dev

mls
test

xlm 80 q 0.610 0.623 0.906 0.857 0.632 0.587 -0.31 -0.32
xlm 90 q 0.587 0.600 0.873 0.825 0.609 0.565 -0.36 -0.37
distillbert q 0.687 0.708 0.9 0.9 0.779 0.736 -0.09 -0.09

Table 9. Throughput result of final models.

Model Throughput Batch size Runtime

xlm 80 q 124.87 4 deepsparse
xlm 90 q 219.44 4 deepsparse
distillbert q 158.44 8 deepsparse

distillation, and their application to Transformer-based models in multilin-
gual named entity recognition tasks. For pruning, sparsity thresholds that
preserve multilingual capabilities were identified. Research revealed vary-
ing support for sparse matrix operations across different runtimes, with
the deepsparse framework proving advantageous for sparse matrix models.
Notably, the second-order pruning method (OBS) emerged as the most
effective, albeit demanding increased training equipment resources.

Among the quantization methods examined, all yielded modest speed
enhancements with negligible impact on the models’ multilingual nature.
These methods have broad software support and entail manageable com-
putational overhead. Our experiments recommend the use of static quan-
tization with boundaries determined during model training (QAT).

Distilled models surpassed their full-scale counterparts while maintain-
ing quality metrics.

Combining the most promising acceleration methods yielded compelling
results. Models produced using proposed approach demonstrated a 1.5 to 2
times speed improvement over individually applied methods and an 11.5-
fold enhancement over baseline models, all while preserving progressive
multilingual quality metrics.



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 227

§5. Additional figures and tables

In the appendix, we show additional figures and tables with experimen-
tal results from our study.

Figure 4. F1 score on various languages during pruning
with the OBS algorithm up to 90% sparsity of xlm-roberta
model with a linear curve of sparsity percentage.

Figure 5. F1 score on various languages during pruning
with the magnitude pruning algorithm up to 90% sparsity
of xlm-roberta model with a cubic curve of sparsity per-
centage.



228 N. SUKHANOVSKII, M. RYNDIN

Figure 6. Throughput results for Are sixteen heads really
better than one? in onnxrunime.

Figure 7. Throughput results for Are sixteen heads really
better than one? in deepsparce engine.



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 229

Figure 8. Throughput results for TextPruner in onnxrunime.

Figure 9. Throughput results for TextPruner in
deepsparce engine.



230 N. SUKHANOVSKII, M. RYNDIN

Table 10. Throughput result of final models.

Model Throughput Batch size Runtime

xlm 80 q

85.32 1 deepsparse
124.87 4 deepsparse
113.40 8 deepsparse
38.75 1 onnx
35.33 4 onnx
30.04 8 onnx

xlm 90 q

162.75 1 deepsparse
219.44 4 deepsparse
199.97 8 deepsparse
38.09 1 onnx
34.46 4 onnx
29.94 8 onnx

distillbert q

133.34 1 deepsparse
154.27 4 deepsparse
158.44 8 deepsparse
71.91 1 onnx
56.98 4 onnx
54.87 8 onnx

Table 11. Throughput result of quantized models.

Quantization type Throughput Batch size Runtime

Dynamic

53,6 1 deepsparse
74,6 4 deepsparse
76,3 8 deepsparse
30,7 1 onnx
28,1 4 onnx
20,9 8 onnx

Static

67,8 1 deepsparse
94,5 4 deepsparse
96,5 8 deepsparse
38,9 1 onnx
35,5 4 onnx
26,5 8 onnx

References
1. Z. Yang, Y. Cui, and Z. Chen, TextPruner: A Model Pruning Toolkit for Pre-

Trained Language Models, Proc. 60th Annual Meet. Assoc. Comput. Linguist.:
Syst. Demonstr. (2022), pp. 35–43.



MMA: A FIGHT FOR MULTILINGUAL MODELS ACCELERATION 231

2. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding, ArXiv preprint
arXiv:1810.04805 (2019).

3. P. Michel, O. Levy, and G. Neubig, Are Sixteen Heads Really Better than One?.
— Adv. Neural Inf. Process. Syst. 32 (2019).

4. E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, Analyzing Multi-Head
Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned,
Proc. 57th Annual Meet. Assoc. Comput. Linguist. (2019), pp. 5797–5808.

5. V. Sanh, L. Debut, J. Chaumond, and T. Wolf, DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter, ArXiv preprint arXiv:1910.01108
(2019).

6. F. Lagunas, E. Charlaix, V. Sanh, and A.M. Rush, Block Pruning For Faster
Transformers, ArXiv preprint arXiv:2109.04838 (2021).

7. J.S. McCarley, Pruning a BERT-based Question Answering Model, ArXiv preprint
arXiv:1910.06360 (2019).

8. T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural net-
works. — J. Mach. Learn. Res. 22(1) (2021), pp. 10882–11005.

9. E. Kurtic, D. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran, M. Goin,
and D. Alistarh, The Optimal BERT Surgeon: Scalable and Accurate Second-Order
Pruning for Large Language Models, ArXiv preprint arXiv:2203.07259 (2022).

10. L.N. Smith, No More Pesky Learning Rate Guessing Games, ArXiv preprint
arXiv:1506.01186 (2015).

11. E. Kurtic, D.F. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran, M. Goin,
and D. Alistarh, The Optimal BERT Surgeon: Scalable and Accurate Second-Order
Pruning for Large Language Models. — Conf. Empir. Methods Nat. Lang. Process.
(2022).

12. W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, MiniLM: Deep Self-
Attention Distillation for Task-Agnostic Compression of Pre-Trained Transform-
ers, ArXiv preprint arXiv:2002.10957 (2020).

13. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov, RoBERTa: A Robustly Optimized BERT Pretraining
Approach, ArXiv preprint arXiv:1907.11692 (2019).

14. S.P. Singh and D. Alistarh, WoodFisher: Efficient Second-Order Approximation
for Neural Network Compression, ArXiv preprint arXiv:2004.14340 (2020).

15. B. Hassibi and D.G. Stork, Second Order Derivatives for Network Pruning: Op-
timal Brain Surgeon. — Adv. Neural Inf. Process. Syst. (1992).

16. X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu, Tiny-
BERT: Distilling BERT for Natural Language Understanding, ArXiv preprint
arXiv:1909.10351 (2020).

17. E.F. Tjong Kim Sang, Introduction to the CoNLL-2002 Shared Task: Language-
Independent Named Entity Recognition, ArXiv preprint arXiv:cs/0209010 (2002).

18. A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán,
E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, Unsupervised Cross-lingual
Representation Learning at Scale, ArXiv preprint arXiv:1911.02116 (2020).



232 N. SUKHANOVSKII, M. RYNDIN

19. T. Pires, E. Schlinger, and D. Garrette, How multilingual is Multilingual BERT?,
ArXiv preprint arXiv:1906.01502 (2019).

20. Z. Yang, Y. Cui, Z. Chen, W. Che, T. Liu, S. Wang, and G. Hu, TextBrewer:
An Open-Source Knowledge Distillation Toolkit for Natural Language Processing,
Proc. 58th Annual Meet. Assoc. Comput. Linguist.: Syst. Demonstr. (2020), pp. 9–
16.

21. E.F. Tjong Kim Sang and F. De Meulder, Introduction to the CoNLL-2003
Shared Task: Language-Independent Named Entity Recognition, ArXiv preprint
arXiv:cs/0306050 (2003).

22. W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, MiniLM: Deep Self-
Attention Distillation for Task-Agnostic Compression of Pre-Trained Transform-
ers, ArXiv preprint arXiv:2002.10957 (2020).

23. T. Gale, E. Elsen, and S. Hooker, The State of Sparsity in Deep Neural Networks,
ArXiv preprint arXiv:1902.09574 (2019).

24. H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, Integer Quantization
for Deep Learning Inference: Principles and Empirical Evaluation, ArXiv preprint
arXiv:2004.09602 (2020).

Поступило 15 ноября 2024 г.Ivannikov Institute for System Programming
of the Russian Academy of Sciences, Moscow, Russia
E-mail : {sukhanovskii.nl, mxrynd}@ispras.ru


