
Записки научных
семинаров ПОМИ

Том 540, 2024 г.

S. Muravyov, V. Kazakovtsev, I. Usov, P. Shpineva,
O. Muravyova, A. Shalyto

AN OPENSOURCE LIBRARY FOR AUTOML
MULTIMODAL CLUSTERING ON APACHE SPARK

Abstract. We present a library that allows to choose and config-
ure the clustering algorithm for multimodal datasets, i.e., for data
where every object is stored not as a single vector but can be pre-
sented as a vector, text, and an image at the same time, and every
modality is significant. Our library automatically finds a tradeoff
between exploration and exploitation for the input data among a
set of implemented clustering algorithms according to the selected
internal clustering validation index. The library also implements a
recommender system for the internal validation index and can pre-
dict the best fitting measure for the input data. We used Apache
Spark to implement clustering algorithms, thus, it can be used on
distributed computing system to clusterize big multimodal data.

§1. Introduction

Clustering is a classical and popular problem in unsupervised machine
learning. It does not have a precise mathematical definition, but can be
informally described as the task of dividing a set of objects into subsets,
where objects within each subset are highly similar to one another and
distinctly different from those in other subsets. Similarity is usually defined
formally by a specified measure [1].

Solving clustering problems often entails tackling research dilemmas.
Even with sufficient computational resources to explore all possible config-
urations of clustering algorithms, there remains ambiguity regarding how
to evaluate the outcomes. Selecting an appropriate clustering algorithm
primarily requires expertise and is influenced by numerous factors. As this
process is predominantly carried out manually, oversights are common,
rendering decision-making laborious and time-consuming [2].

Key words and phrases: automatic machine learning, multimodal models, clustering,
Apache Spark.

This work was carried out as part of ITMO University project No. 623097 “Devel-
opment of libraries of promising machine learning methods”.

178



AUTOML MULTIMODAL CLUSTERING ON APACHE SPARK 179

There exist a lot of different clustering algorithms, but the topic is far
from exhausted: new research emerges every year. In addition to improv-
ing the accuracy and performance of algorithms, researchers are focused
on self-configuring algorithms [3], automatic machine learning technolo-
gies [4], and big data clustering. Many problems require to choose a specific
approach, a specific selection of the clustering algorithm and its hyperpa-
rameter tuning, which is extremely time-consuming without an automatic
machine learning approach. Also, the development of information reposi-
tories and Internet technologies poses new challenges, including processing
large multimodal datasets, where each object is described by more than
one vector (for example, each object is simultaneously described by a row
in a table, an image, and a text).

In this work, we propose a special distance measure that aggregate dis-
tances between objects calculated for individual modalities. We modify
several clustering algorithms and implement them on Apache Spark to
work in a distributed computing systems (clusters of computers). AutoML
methods were implemented for selecting and configuring the most suit-
able clustering algorithm and selecting the clustering quality measure to
optimize.

§2. Related Work

2.1. AutoML methods for unsupervised machine learning mod-
els. The work [1] presents an algorithm that serves as a method for se-
lecting and configuring unsupervised learning algorithms. The MASSCAN
algorithm works as follows.

A set of machine learning algorithms is given, each associated with its
corresponding hyperparameter space. The goal is to find an algorithm op-
timal in terms of a specified clustering quality measure within fixed time. If
it is reasonable to divide the tuning time budget among different clustering
algorithms, a significant portion of time may be spent on tuning poten-
tially ineffective algorithms. On the other hand, prioritizing the tuning of
one algorithm without considering others may lead to a loss of information
about the performance of other clustering algorithms, which could poten-
tially improve the quality of the resulting partition. Thus, it is necessary to
develop an algorithm that takes into account the compromise between the
two extremes described above. This compromise is called the “exploration–
exploitation tradeoff”. To achieve the exploration-exploitation trade-off, an
algorithm based on reinforcement learning, specifically solving the multi-
armed bandit problem, was proposed in [1]. In this problem, an agent



180 S. MURAVYOV ET AL.

iteratively pulls various so-called “arms” and receives a reward after each
iteration. The goal of the agent is to develop a strategy for the sequence
of arm activations to maximize the reward, and in general, to optimize the
target function. The arms in this context represent optimization algorithms
that tune the hyperparameters of each clustering algorithm. Importantly,
the algorithm should be iterative so that its execution can be “paused”, its
current state saved and continued later in case the arm is selected again.
The reward is represented as a chosen cluster quality measure improve-
ment.

In [5], the authors proposed a meta-learning based method for choosing
cluster validity index (CVI). In a broad sense, meta-learning refers to a set
of approaches, methods, and techniques aimed at transferring knowledge
about solving one set of tasks to expedite the search for solutions to other
tasks. In a narrow sense, meta-learning involves the use of meta-models
(meta-classifiers), an approach to solving the algorithm selection problem
where machine learning algorithms, specifically classification algorithms,
are applied to meta-data about previous machine learning experiments.

In the context of the problem formulation of meta-learning in the nar-
row sense, characteristics of algorithms’ performance are predicted based
on data characteristics (meta-features). In such a task, datasets serve as
objects, so in [5] the meta-classifier is trained on the dataset of datasets.

2.2. Existing machine learning methods for multimodal datasets.
One of the basic methods is learning a joint representation. This method
involves independently transforming data from different modalities into
vector representations and subsequently merging the vectors into a com-
mon semantic subspace using a merging model (such as EmbraceNet, Em-
braceNet+, simple vector concatenation, or BiT [6]). However, this ap-
proach has drawbacks as well. The resulting representation tends to pre-
serve the general semantics between modalities while ignoring the spe-
cific information inherent to each modality. Moreover, after applying this
method it is impossible to extract the representation of each modality
separately.

The coordinated representation model uses separate representations for
each modality and then “merges“ them into a unified coordinated space.
Such representation allows to consider modality-specific characteristics [7].

Encoder-decoder architectures translate the representation of one modal-
ity into another. The encoder translates the representation of the first



AUTOML MULTIMODAL CLUSTERING ON APACHE SPARK 181

modality into a hidden vector, while the decoder constructs the represen-
tation of the second modality from this vector. The model may consist of
multiple encoders and decoders to separate multiple independent charac-
teristics of one modality (for example, multiple recorded musical instru-
ments for audio). The hidden vector is created not only considering the
input modality, as it might seem, but also the output (target) modality, as
the translation error propagates from the decoder to the encoder, taking
into account both modalities [8].

Another important approach for multimodality are deep multimodal
Boltzmann machines (DBM). DBMs are probabilistic graphical models
consisting of two restricted Boltzmann machines with a shared representa-
tion layer. Modalities are connected using a correlation-based loss function.
Additionally, the networks are bidirectional, allowing for data translation
between modalities. A seriouse disadvantage of such models is the amount
of needed computational resources [9].

Autoencoder architectures allow for the reconstruction of any modal-
ity even if one modality is missing. The training process for autoencoders
involves minimizing the loss after reconstructing modalities. In [10], reg-
ularization of the loss function weight for different modalities is proposed
to reduce redundancy in the resulting representation. The model is also
capable of identifying modality-specific features.

Despite existing methods operating on multimodal data, none of the
considered approaches is suitable for clustering problems. We cannot train
our models on existing datasets since in the general case the clustering
problem does not require any labels.

§3. Proposed methodology

Let X = (X1, X2, . . . , Xn) be a multimodal dataset, where we denote by
Xi = (X1

i , X
2
i , ..., X

m
i ) a single multimodal object, Xk

i is the representa-
tion of the kth modality of object Xi. We denote the partition of dataset X
into disjoint set of objects as G(X) and target measure as Q : G(X)→ R.

We aim to find the partition Ĝ(X), that maximises the target measure:
Ĝ(X) = argmaxG(X)Q(G(X))

3.1. Target measure recommendation. We based our recommender
system on the hypothesis [5] that allow us to assume that we can deter-
mine the best fitting CVI based on aggregated data from the dataset. Thus,
we can calculate several statistical measures and predict the measure from



182 S. MURAVYOV ET AL.

these statistics. The OpenML artificial set of datasets [11] was used to train
the predictor model. For each dataset the best fitting CVI was determined
by experts visually, allowing to create labeled dataset with internal mea-
sures as labels. Available measures include the Calinski-Harabasz measure,
silhouette index, generalized Dunn index, and Score-Function.

To make the process of selecting a quality measure automatical, a dis-
tributed algorithm based on meta-learning was developed. In a broad
sense, meta-learning encompasses a set of methods aimed at transferring
knowledge about solving one task to accelerate the search for solutions to
other tasks. In a narrow sense, meta-learning involves the use of meta-
models (meta-classifiers) for algorithm selection, where machine learning
algorithms, particularly classification algorithms, are applied to meta-data
about previous machine learning experiments.

In the context of the narrow task setting of meta-learning, character-
istics of algorithm performance are predicted based on data characteris-
tics (meta-features). The objects in such a task are datasets. Thus, meta-
classifiers are trained on datasets.

3.2. Intermodal distance. To handle multimodal objects and preserve
semantics, we propose to compute distances between objects in the follow-
ing way:

D(Xi, Xj) =

√√√√ m∑
k=1

αkd̂k
2
(Xk

i , X
k
j ),

αk =
dim(k)
m∑
t=1

dim(t)
,

d̂k(X
k
i , X

k
j ) =

dk(X
k
i , X

k
j )

max
p,q∈1,2,...,n

dk(Xk
p , X

k
q )
.

where D(Xi, Xj) is the intermodal distance, αk is the weight coefficient
for the kth modality, dim(k) is the dimensionality of vector representation
for the kth modality, d̂k is the normalised intramodal distance, and dk is the
intramodal distance between vector representations for the kth modality.

In other words, we calculate distances between objects in the multi-
modal space as a radius vector, where its coordinates are weighted inner-
modal distances.



AUTOML MULTIMODAL CLUSTERING ON APACHE SPARK 183

Obviously, the Euclidean norm is not the only one that can be used in
the future. Moreover, this approach makes it possible to calculate inner-
modal distances in a specific for each modality way.

Overall, such an approach have several advantages:
• computational simplicity;
• no need to train a complicated supervised model;
• huge variety for modifications and customizations.

3.3. Optimisation of clustering hyperparameters. Now, having found
way to estimate distances between multimodal objects, we can utilise ex-
isting clustering algorithms to obtain partitions G(X).

Let C(p1, p2, . . . , ph) : X → G(X) be a clustering algorithm with
hyperparameters p1, p2, . . . , ph. We denote the set of all possible values
for hyperparameter pi as Pi and the search space for algorithm C as
P (C) = P1 × P2 × · · · × Ph. Pi can be both discrete (integer, categori-
cal hyperparameters) or continuous (real numeric hyperparameters).

As a subtask we aim to find the optimal configuration for hyperparam-
eters (p̂1, p̂2, . . . , p̂h) = argmax(p1,p2,...,ph)

Q(C(p1, p2, . . . , ph))). Let SC :

()→ P (C) be the configuration sampler, which on each iteration provides
the algorithm with a new set of hyperparameters. There exist many config-
uration samplers (random search, grid search, Bayes optimisation, and so
on) and we utilise the Tree Parzen Estimator implemented in the Optuna
framework [12].

This approach allows to “pause“ the process of hyperparameter opti-
mization and calculate the reward for multiarmed bandits [1]. Also, the
Optuna framework [12] is easy to install, easy to integrate to the project,
and does not demand a lot of requirements, which is significant for an open
source project.

3.4. Multi-armed bandit. Let C1, C2, . . . , Ca be different clustering al-
gorithms with the corresponding configuration samplers SC1 , SC2 , . . . , SCa .
On each iteration, we pick one of the algorithms, sample its configuration,
and return the dataset partition G(X) is returned. We denote an iteration
as Cj

i , meaning the jth configuration for the clustering algorithm Ci, con-
sumed time budget to evaluate and estimate the algorithm configuration
as time(Cj

i ), and the number of executed configurations for algorithm Ci

as runs(Ci).
To face the bias-variance tradeoff, we use a multi-armed bandit strategy

to choose the next clustering algorithm. For each clustering algorithm the



184 S. MURAVYOV ET AL.

following reward function is introduced:

R(Ci) = Qr(Ci) + Tr(Ci),

Qr(Ci) =
Qa(Ci)

maxp=1,2,...,aQa(Cp)
,

Qa(Ci) = max
j=1,2,...,runs(Ci)

(Q(Cj
i ))− Q̂,

Q̂ = argminG(X)Q(G(X)),

Tr(Ci) = 1− Ta(Ci)∑a
p=1 Ta(Cp)

,

Ta(Ci) =

runs(Ci)∑
j=1

time(Cj
i ),

where R(Ci) is the reward for clustering algorithm Ci on the current iter-
ation; Qr(Ci) is the quality component of a reward; Qa(Ci) is the the best
clustering algorithm’s target measure estimation; Q̂ is the estimation of
the “worst” possible partition for dataset X, approximated by evaluating
Q on a randomised partition Grandom(X); Tr(Ci) is the time component
of a reward; Ta is the total time consumption for all configurations of
clustering algorithm Ci.

In simple words, on every iteration the multiarmed bandit tries to pre-
dict the most promising algorithm in terms of target function improoving.

3.5. Overall pipeline. First of all, the user uploads her dataset for pre-
processing. Then we run the target measure recommendation system, if
needed. Finally, the user should set a time limit and start the optimiza-
tion process. On each step, the optimizer chooses an algorithm to configure
its hyperparameters for a limited time, then MASSCAN re-calculates the
reward and starts over while the time limit is not exceeded. Figure 1 shows
the pipeline of the process.

§4. Implementation notes

4.1. Distributed computing tool. As previously mentioned, distrubu-
ted datasets are the main priority of the library, which inevitably leads to
implementation constraints such as the computation paradigm, both time
and memory complexity of the algorithms, and performance issues.



AUTOML MULTIMODAL CLUSTERING ON APACHE SPARK 185

Figure 1. Overall optimization pipeline.

To operate on huge datasets, we chose to use Apache Spark. This frame-
work is a powerful tool for clustering data on a computer cluster, thanks
to its high performance due to in-memory processing, simplicity of API
usage, scalability both vertically and horizontally, and in-built machine
learning tools. All of the above makes Apache Spark suitable for handling
large volumes of data and for solving clustering problems. It is also im-
portant to note that Apache Spark is very popular and widespread among
software developers, which is important for an open source project.

4.2. Custom clustering algorithms and measures. Non-standard
dataset representations (due to multimodality) and proposed intermodal
distance metric do not satisfy the MLLib API out of the box. To handle
multimodal datasets, custom clustering algoritms and measures implemen-
tations were introduced. Preliminary experiments show that execution of
custom implementations based on PySpark API leads to excessive perfor-
mance overheads and memory consumption.

To accelerate both clustering algorithms and evaluations of measures,
they were reimplemented based on the Scala Spark API, because Apache
Spark is natively written on Scala. Moreover, Apache Spark bootstraps
JVM and holds Py4J connection between Python API and the Java pro-
cess. Such PySpark architecture allows to (seamlessly from the user’s per-
spective) inject custom Scala implementations by utilising the same JVM
instance and Py4J bridge.

4.3. Computing embeddings. To convert texts or images to vector rep-
resentations, the user can access pretrained deep learning models presented
in the HuggingFace repository (although Sparkling currently allows only a
set of predefined models). However, computing embeddings is perhaps the
narrowest bottleneck in Sparkling for several reasons:



186 S. MURAVYOV ET AL.

(1) the chosen model should be distributed to each node of a clus-
ter, which causes stress load on the cluster network, especially for
models with a huge number of parameters;

(2) pretrained models require Python runtime and thus cannot be eval-
uated on Scala; this leads to huge overheads for PySpark UDF
(user-defined function) execution;

(3) images are stored in the cluser’s filesystem and not directly in
the dataframe (the user should only specify path to an image for
each object); this requires heavy I/O operations and extra load on
the cluster network; although Sparkling attempts to optimise the
transformation stage by loading a batch of images into a node’s
memory on demand, it only reduces memory consumption but not
the number of I/O operations;

(4) Apache Spark cluster with a GPU on every node is quite an ex-
pensive hardware setup, while computing embeddings on CPU dra-
matically slows down dataset preprocessing.

If one intends to provide multiple runs on the same multimodal datafra-
me, it is strongly recommended to serialize the preprocessed dataframe into
Parquet format. Once it is stored, the user can launch Sparkling optimiser
an arbitrary number of times while skipping the preprocessing bottleneck.

§5. Experimental results

The library supports running Apache Spark in local mode and on a
YARN cluster. Experimental results are presented for the cluster from
Yandex Cloud 5 machines, each with 4 vCPUs and 16 GB RAM, running
Ubuntu 18.04.

5.1. Testing clustering algorithms and quality measures. Since
data preprocessing is not part of the module’s tasks, 9 tabular unimodal
real datasets were selected for unit testing, along with several multimodal
datasets generated with varying numbers of objects (ranging from 100
thousand to 2.5 million). For testing clustering algorithms, a grid of hy-
perparameters was defined for each algorithm, and each configuration was
evaluated on the datasets described above.

Below is the grid defined for each algorithm:
• K-means:

– k ∈ {2, 3, 5, 7, 11}
• Birch:



AUTOML MULTIMODAL CLUSTERING ON APACHE SPARK 187

– maxBranches ∈ {5, 12, 25}
– threshold ∈ {0.1, 0.3, 0.7}
– k ∈ {2, 5, 14}

• Bisecting K-means:
– k ∈ {2, 3, 5, 7, 11}
– minClusterSize ∈ {0.2, 0.5, 1.0}

• DBSCAN:
– eps ∈ {0.02, 0.06, 0.11, 0.17}
– borderNoise ∈ {True, False}

• Mean Shift:
– Radius ∈ {0.03, 0.07, 0.12, 0.18, 0.25}

• Spectral Algorithm with Similarity Matrix:
– eigens ∈ {7, 13, 19}
– γ ∈ {0.1, 0.4, 1.0}
– k ∈ {2, 5, 9}

• Spectral Algorithm with Adjacency Matrix:
– eigens ∈ {7, 13, 19}
– neighbours ∈ {5, 11, 20}
– k ∈ {2, 5, 9}

The quality measures were tested on the same datasets, with the clus-
tering results in various hyperparameter configurations serving as labels.
It is important to note that it is impossible to compare the computed re-
sults with existing implementations of quality measures. This is due to the
new multimodal distance metric and the absence of alternatives to some
of the developed distributed implementations of quality measures within
the project scope.

5.2. Testing the data preprocessing pipeline. For each dataset, it is
necessary to configure the preprocessing pipeline. One of the most time-
consuming and influential parameters affecting the quality of the result is
the deep learning model for computing vector representations of images
and text data. Table 1 shows the time spent on data preprocessing by
various models for different data modalities.

As part of the project, we aimed to choose the most optimal solution
based on the following characteristics: the model structure is designed for
execution on central processing units (CPUs), 12 GB of RAM will be
sufficient for computing embeddings and running algorithms, embedding
vector size ranges from 512 to 1024, and inference speed and accuracy are
acceptable within the specified tasks.



188 S. MURAVYOV ET AL.

Table 1. The amount of time spent on modal data trans-
lation to vector representation and the technologies used.

Dataset Model for
graphical data

Model for
text data

Time
spent,
min

100BirdsSpecies Swin Transformer — 47
Flick dataset Swin Transformer BERT 45
DiffusionDB Swin Transformer ALBERT 65
Wikipedia dataset Swin Transformer ALBERT 10
Houses dataset Swin Transformer,

EfficientNet,
ConvNeXT

— 6.50,
5.00,
8.50

Amazon — ALBERT 280

Table 2. Recommended quality measures for synthetic datasets.

Dataset Recommended measure Time spent, sec

target GD41_APPROX 18
tetra CALINSKI_HARABASZ 9
threenorm SCORE 24
triangle1 CALINSKI_HARABASZ 24
triangle2 SCORE 25
twenty CALINSKI_HARABASZ 24
twodiamonds SCORE 19
wingnut SCORE 25
xclara SCORE 37
xor GD41_APPROX 24

5.3. Testing the recommendation of a quality measure based on
meta-learning. This stage becomes optional if the user explicitly defines
the target quality metric. Otherwise, most of the time will be allocated to
computing meta-features of the dataframe, effectively equal to the overall
recommendation time. Tables 2 and 3 shows the results of experiments,
where the recommender system predicts the best suitable measure for var-
ious datasets.



AUTOML MULTIMODAL CLUSTERING ON APACHE SPARK 189

Table 3. Recommended quality measures for real datasets.

Dataset Recommended measure Time spent, sec

arrhythmia GD41_APPROX 26
balance-scale CALINSKI_HARABASZ 21
cpu GD41_APPROX 7
dermatology CALINSKI_HARABASZ 17
ecoli SCORE 10
german GD41_APPROX 33
glass SCORE 7
haberman SCORE 8
heart-statlog CALINSKI_HARABASZ 7
iono SCORE 10

5.4. Testing the process of optimizing a quality measure. After
preprocessing the data, Sparkling initiates the search for the best cluster-
ing algorithm and its optimal configuration. To determine the best algo-
rithm and address the multi-armed bandit problem, Softmax and UCB
(Upper-Confidence Bound) algorithms can be employed. For hyperparam-
eter tuning, Optuna is recommended.

Table 4 presents information on the results obtained on the multimodal
datasets: the runtime, which internal quality measure (CVI) the framework
optimized, and which algorithm proved to be optimal.

In addition to real multimodal datasets, experiments were conducted
on two sets of labeled tabular data (OpenML artificial and OpenML real-
world). Each file from the dataset was executed with the optimization
of metrics such as the silhouette index, the Calinski-Harabasz measure,
the generalized Dunn index, and the Score-Function. Table 5 provides a
summary of the results obtained by running Sparkling on these datasets.

The initial task in the data analysis process was to identify algorithms
integrated into the default optimizer that could function effectively without
the need for adjusting configuration parameters or the range of optimized
hyperparameters. To accomplish this objective, a series of experiments
were conducted, one of which is depicted in the Figure 2.

Figure 3 illustrates the obtained values of the internal Calinski–Harabasz
measure for the standard dataset “blobs”.



190 S. MURAVYOV ET AL.

Table 4. Recommended quality measures for multimodal datasets.

Dataset Recommended measure Time
spent,
sec

Optimal
Algorithm

100BirdsSpecies Davies-Bouldin Score 32 KMeans
100BirdsSpecies Calinski-Harabasz Score 31 BisectingKMeans
100BirdsSpecies Dunn Approximation 30 MeanShift
100BirdsSpecies Silhouette Index Approx 150 KMeans
100BirdsSpecies Score Function 77 BisectingKMeans
Flick dataset Davies-Bouldin Score 33 Birch
Flick dataset Calinski-Harabasz Score 35 Birch
Flick dataset Dunn Approximation 66 MeanShift
Flick dataset Silhouette Index Approx 34 Birch
Flick dataset Score Function 36 BisectingKMeans
DiffusionDB Davies-Bouldin Score 100 MeanShift
DiffusionDB Calinski-Harabasz Score 46 Birch
DiffusionDB Dunn Approximation 100 Birch
DiffusionDB Silhouette Index Approx 46 KMeans
DiffusionDB Score Function 30 BisectingKMeans
Houses dataset Davies-Bouldin Score 40 MeanShift
Houses dataset Calinski-Harabasz Score 32 BisectingKMeans
Houses dataset Dunn Approximation 32 BisectingKMeans
Houses dataset Silhouette Index Approx 27 MeanShift
Houses dataset Score Function 32 BisectingKMeans
Hand Gestures Davies-Bouldin Score 41 MeanShift
Hand Gestures Calinski-Harabasz Score 53 MeanShift
Hand Gestures Dunn Approximation 38 Birch
Hand Gestures Silhouette Index Approx 38 KMeans
Hand Gestures Score Function 41 Birch
Wikipedia dataset Davies-Bouldin Score 28 MeanShift
Wikipedia dataset Calinski-Harabasz Score 28 BisectingKMeans
Wikipedia dataset Dunn Approximation 32 MeanShift
Wikipedia dataset Silhouette Index Approx 29 MeanShift
Wikipedia dataset Score Function 8 BisectingKMeans

The graph indicates an improvement in clustering quality over time.
The resulting values of the primary external measures are provided in



AUTOML MULTIMODAL CLUSTERING ON APACHE SPARK 191

Table 5. Summary of achieved external quality measures
on labeled data.

Metric Artificially Generated Data Real Data

Rand Index, Mean 0.8 0.7
Rand Index, Median 0.8 0.7
Jaccard Index, Mean 0.7 0.7
Jaccard Index, Median 0.7 0.7
F-measure, Mean 0.7 0.8
F-measure, Median 0.7 0.8

Figure 2. Algorithm performance on a dataset describ-
ing white wine; cumulative minimum of the Calinski-
Harabasz measure; time resource 20 minutes; Optuna op-
timizer; Softmax algorithm selection strategy.

the graph’s title. The presented results were obtained using the Optuna
hyperparameter optimizer and the UCB bandit arm selection strategy.

Testing outcomes validate the efficiency of the developed library on
small-scale datasets and underscore the importance of selecting an appro-
priate internal measure for optimization to attain satisfactory results.



192 S. MURAVYOV ET AL.

Figure 3. Quality measure values over time, shown with
a moving average of 30 ticks for enhanced visual represen-
tation.

§6. Conclusion

In this work, we have developed a library for automatic multimodal
clustering for distributed computing systems. An analysis of existing so-
lutions has been conducted and various clustering algorithms supporting
the use of multimodal data have been implemented.

We developed distributed versions of internal and external clustering
quality metrics, conducted experiments with various hyperparameter opti-
mization algorithms and we implemented additional clustering algorithms.
Experiments have been conducted, the results of which show the applicabil-
ity of the developed multimodal data clustering algorithms and the entire
library as a whole.

The developed library is ready to use and available as an open-source
project on GitHub and GitLab. Users can make improovements by them-
selves: add algorythms, embedders, clustering measures, e.t.c. Documen-
tation and guidelines can be found on GitHub or GitLab.

As a result of the project, a library for automatic selection of clustering
algorithms and their hyperparameters optimization has been developed.
The library supports large amounts of data and various data formats,
including multimodal data. It also includes a recommendation system for



AUTOML MULTIMODAL CLUSTERING ON APACHE SPARK 193

internal cluster validity indexes. The library allows for the selection of
hyperparameters for configurable algorithms and setting the time available
for optimization. Experiments have shown its effectiveness in various usage
scenarios, both in terms of achieved internal quality metrics and external
ones.

References
1. V. Shalamov, V. Efimova, S. Muravyov, and A. Filchenkov, Reinforcement-based

method for simultaneous clustering algorithm selection and its hyperparameters
optimization. — Procedia Comput. Sci., 136 (2018), pp. 144–153.

2. V. Kazakovtsev and S. Muravyov, Application of the automatic selection and con-
figuration of clustering algorithms method for the Apache Spark framework. — ACM
Int. Conf. Proc. Ser. (2021).

3. O. Taratukhin and S. Muravyov, Meta-Learning Based Feature Selection for Clus-
tering. — Lecture Notes in Comput. Sci., vol. 13113. Springer (2021), pp. 548–559.

4. N. Kulin and S. Muravyov, A meta-feature selection method based on the auto-
sklearn framework. — Sci. Tech. J. Inf. Technol. Mech. Opt., 21(5) (2021), pp. 702–
702.

5. A. Filchenkov, S. Muravyov, and V. Parfenov, Towards cluster validity index eval-
uation and selection. — Proc. 2016 IEEE Artif. Intell. Nat. Lang. Conf. (AINL).
IEEE (2016), pp. 1–8.

6. M.M. Al Rahhal, Y. Bazi, T. Abdullah, M.L. Mekhalfi, and M. Zuair, Deep unsu-
pervised embedding for remote sensing image retrieval using textual cues. — Appl.
Sci., 10(24) (2020), p. 8931.

7. T. Baltrušaitis, C. Ahuja, and L.-P. Morency, Multimodal machine learning: A
survey and taxonomy. — IEEE Trans. Pattern Anal. Mach. Intell., 41(2) (2018),
pp. 423–443.

8. C. Chen, D. Han, and J. Wang, Multimodal encoder-decoder attention networks for
visual question answering. — IEEE Access, 8 (2020), pp. 35662–35671.

9. M. Suzuki and Y. Matsuo, A survey of multimodal deep generative models, arXiv
preprint arXiv:2207.02127 (2022).

10. W. Wang, B.C. Ooi, X. Yang, D. Zhang, and Y. Zhuang, Effective multi-modal
retrieval based on stacked auto-encoders. — Proc. VLDB Endow., 7(8) (2014),
pp. 649–660.

11. J. Vanschoren, J.N. van Rijn, B. Bischl, and L. Torgo, OpenML: Networked science
in machine learning, arXiv preprint arXiv:1407.7722 (2014).

12. T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, Optuna: A next-generation
hyperparameter optimization framework. — Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min. (2019).

Поступило 15 ноября 2024 г.ITMO University,
St. Petersburg, Russia

E-mail : smuravyov@gmail.com



194 S. MURAVYOV ET AL.

Siberian Federal University, Krasnoyarsk, Russia
E-mail : vokzvokz@gmail.com

ITMO University, St. Petersburg, Russia
E-mail : ivan.usov.2000@mail.ru

ITMO University, St. Petersburg, Russia
E-mail : polina.shpineva@gmail.com

ITMO University, St. Petersburg, Russia
E-mail : ilyasovaolya@gmail.com

ITMO University, St. Petersburg, Russia
E-mail : shalyto@mail.ifmo.ru


