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Abstract. Prediction of HDD failures has garnered significant at-
tention in research, yet the persistence of covariate shifts in data
remains a practical challenge. In this work we introduce a novel ap-
proach to training covariate shift detection models without the need
for additional real data or artificial shift modeling. Moreover, we
propose a comprehensive methodology integrating shift detection,
administrator alerts, shift elimination, and HDD failure prediction.
Experimental results demonstrate the viability of our real-world im-
plementation.

§1. Introduction

Rapid growth of computational power and the vast amount of avail-
able information have transformed machine learning into an indispensable
tool for various applications across different fields [1]. In recent years, ma-
chine learning has been increasingly utilized for addressing various practi-
cal tasks, including modeling issues in manufacturing, anomaly detection,
equipment failure prediction, and more [3–6].

To address failure prediction tasks and anomaly detection in produc-
tion, one can utilize time series analysis or classification on data obtained
by averaging data over a specific time window, depending on the task’s
specifics [7–9].

However, despite achieving high quality in laboratory conditions, many
prediction models may show significantly worse results in practice. One
reason for this could be the presence of a covariate shift in the data due
to various external factors, both intentional and natural [10].

Covariate shift occurs when the distributions of feature values in the
training and test sets have different parameters (such as mean, variance,
and others) [2]. Covariance in this context refers to the feature values.

Key words and phrases: HDD failure prediction, detecting and eliminating covariate
shift.
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Therefore, it is important to have built-in mechanisms for detecting
shifts, notifying production operators, and attempting automatic calibra-
tion to mitigate the shift. In this work we examine the industrial appli-
cation of machine learning models for predicting hard drive failures, in-
vestigate the impact of covariate shifts on prediction models, and explore
trusted models capable of detecting and mitigating data shifts when pos-
sible.

When training a shift detection model, access to data with the shift
is necessary, but obtaining it in practice can be challenging. Considering
all real scenarios in modeling is difficult, and obtaining real data requires
significant time and resources.

Our main contributions are the following:

• we present an algorithm that encompasses three crucial stages:
detecting shifts, eliminating them, and effectively resolving pre-
diction problems;

• we propose a novel approach to train a shift detection model with-
out the need for additional shifted data;

• we conduct a comprehensive study on the impact of shifts and
eliminating data on the quality of prediction models.

In the rest of the paper, we first review existing literature concerning
the challenge of predicting HDD failures, as well as the detection and
rectification of covariate shifts in data (see Section 2). Section 3 considers
the dataset, models, and algorithms used in this work. Our experiments
are discussed in detail in Section 4. Finally, Section 5 concludes the paper.

§2. Related work

Many algorithms have been developed to detect anomalies and pre-
dict failures. Their applications range from bearing fault detection [11,12]
to financial crisis prediction [13–15]. Most of these applications focus on
short-term failure prediction. There is also another failure prediction group
that focuses on long-term prediction [16–19]. However, the accuracy of
long-term forecasting largely depends on the failure physics model (or the
so-called degradation model). In our application, hard drive failure can be
caused by many mechanisms, making it difficult to model the physics of
failure. On the other hand, the purpose of our HDD failure prediction is
to provide a short-term (i.e., 24–48 hours [20]) prediction that can provide
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users with sufficient margin to back up their data, so long-term predic-
tion is not necessary. Detailed reviews of prediction methods and anomaly
detection can be found in [21–24].

The problem of predicting HDD failure has a long history of explo-
ration. Initially, early approaches heavily relied on various statistical meth-
ods [25–27]. With the advent of machine learning’s popularity, it emerged
as a prominent solution for HDD failure prediction [28–31]. Presently, the
literature encompasses solutions using fundamental machine learning mod-
els, alongside with algorithms employing neural networks. Moreover, more
intricate models featuring multiple stages of operation have also been pro-
posed, which can combine some approaches [32,33].

However, as mentioned in the previous section, the practical perfor-
mance of models may decrease due to the presence of a covariate shift in
the data. Covariate shifts can have different origins and require various
mitigation methods. In the context of predicting HDD failure, common
approaches in the literature include various statistical methods, distance
estimation techniques, additional classifiers, as well as ensembles formed
by combining multiple methods [34–36].

§3. Dataset preparation, HDD failure prediction,
covariate shift modeling, detection, and eliminating

In this section, we present the findings of our research on predicting
HDD failures and the challenges related to covariate shifts specific to ar-
tificial intelligence technologies applied to HDD datasets.

3.1. Dataset. The dataset comprises information about hard drives, en-
compassing indicators such as the date, disk serial number, model, memory
size, and labels denoting correct operation. Additionally, it contains 254
SMART indicators, each with normalized values within ranges of 0–100,
0–200, or 0–253, contingent on the disk model. The data spans from Jan-
uary 1, 2020 to December 31, 2020, with the daily count of disks ranging
from 124,000 to 166,000, and 1,498 disk failures recorded throughout the
year.

In literature, researchers commonly used 5 to 20 key indicators or aux-
iliary models to select features. As this study primarily focuses on in-
vestigating the impact of covariate shift and integrating detection, shift
elimination, and HDD failure prediction, only 7 SMART indicators out
of 255 (5, 9, 187, 188, 194, 197, and 198) were utilized. These indicators
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include metrics such as the reallocated sector count, power-on hours, re-
ported uncorrectable errors, command timeouts, temperature (in Celsius),
current pending sector count, and uncorrectable sector count. Section 4
demonstrates that reducing the number of features did not significantly
affect the quality of prediction models compared to those described in the
literature.

The work considers only HDD with all indicator values in the range from
0 to 100. The focus primarily lay on the 0-100 range due to its larger rep-
resentation, ensuring statistical significance in the experiments. To enable
machine learning analysis, a balanced subsample was created by randomly
selecting five records of normally operating disks each day.

3.2. Quality metric. For the classification experiments, we utilized the
F1 metric implemented in the sklearn library. This metric was chosen be-
cause it considers both precision and recall simultaneously, providing a
more comprehensive evaluation of model quality, particularly in experi-
ments involving covariate shifts. Additionally, when addressing the HDD
failure prediction problem, we used the accuracy metric to compare results
with the baseline models described in the literature.

3.3. Generalized algorithm for predicting HDD failure. The gen-
eral algorithm for predicting HDD failure operates as follows (see Fig. 1):

(1) data preparation: fill in missing values in the data and sort;
(2) check the normalization range;
(3) if the range is normal, then the Random Forest (RF) algorithm

checks the data for covariate shift;
(4) if the range check fails, issue a strong warning to the server ad-

ministrator. If RF detects a shift, issue a weak warning;
(5) if the data was transmitted in a group, launch statistical methods

to eliminate the shift;
(6) after eliminating the shift or in its absence, launch the method for

predicting HDD failure;
(7) provide prediction, raw data, warnings, and adjusted data, if avail-

able.

3.4. Basic HDD failure prediction. We consider the problem of pre-
dicting HDD failure as a binary classification task, utilizing three popular
methods: linear regression [37], gradient boosting [38], and neural net-
works [39]. These methods were chosen due to their widespread use and
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Figure 1. Generalized algorithm for predicting HDD failure.

effectiveness. Given that the focus of this work on studying and addressing
covariate shift, we consider these well-established methods to be suitable
and sufficient. However, in a generalized algorithm in the future, simpler
methods can be replaced by more advanced ones to obtain better predic-
tion performance.

The problem can be framed as anomaly detection in a time series or
detecting shifts in trends. However, given that failed disks are promptly re-
placed with functional ones and are subsequently absent from the datasets,
and that key SMART indicators do not deviate significantly from the norm
(even on the day of disk failure), long-term prediction proves to be exceed-
ingly challenging. Therefore, treating the problem as a time series analysis
to pinpoint a change in trend is inappropriate. The significant degradation
of indicators shortly before failure suggests that it is more advantageous
to aggregate the time series indicators over a narrow time window (1–3
days) and then address the classification problem using these averaged
indicators.
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After selecting the hyperparameters on validation, the accuracy met-
ric values were calculated as follows: 81.29%±0.01%, 83.27%±0.01%, and
82.11%±6.2% for the three models respectively. These accuracy rates are
comparable to those in the literature.

More details about the configuration of hyperparameters of prediction
algorithms are given in the next section (Section 4).

3.5. Covariate shift modeling. Covariate shifts can be divided into
six groups: a change in the statistical properties of individual features,
a shift in the feature space, a change in the domain, non-stationarity of
features as a result of changes in the statistical properties of features over
time, a systematic error in sample selection, and the batch effect as a
result of introducing a systematic error at the stages of data collection or
preliminary processing. In this work, we focused on modeling changes in
the statistical properties of individual features and shifts in the feature
space.

To evaluate the impact of the shift, perturbations were applied to the
test sample of the model. Specifically, values equal to 5%, 10%, and 30% of
the average characteristic value were added or subtracted from all points
in the test sample. The number of features that shifted were 1, 3, and 7,
respectively. When one or three features are being shifted, it corresponds
to alterations in individual features, while all seven features being shifted
corresponds to a change in the entire feature space.

3.6. Covariate shift detection. To detect a covariate shift, various
methods have been employed in literature, including statistical tests, data
visualization, training an additional model to evaluate the presence of a
shift, or combinations of these approaches. However, visualization cannot
be suitable for our study since the process must be automated. Addition-
ally, since it is important to predict HDD failures for individual samples
or small data groups, traditional statistical methods may not be adequate.
Although limiting group sizes could be considered, it may restrict the al-
gorithm’s applicability.

Therefore, in this study we adopt an approach that involves training
an additional model. Given that all disks have strictly fixed normalization
boundaries, we also constrain the feature space within a compact range
corresponding to the normalization range, specifically from 0 to 100 for all
7 features.
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Figure 2. Principle of data generation for training a co-
variate shift detection model.

Typically, a detection model is trained to identify shifts. In practice,
if such a model can effectively distinguish between new data and original
data, it indicates a shift in the data; otherwise, the algorithm concludes
that no shift has occurred. However, obtaining data with shift presents
challenges. The original dataset is not shifted by default, so it is necessary
to model the shifts. Yet, this approach may not accurately reflect real-world
changes. Alternatively, real data already subjected to alterations can be
used. However, gathering such additional data demands extra resources
and extends the deployment time for the model.

We propose using an additional regular grid for training. From the
dataset, we determine the minimum and maximum boundaries. The com-
pact where the data is located remains unchanged, with no additional
points generated within it. Next, for each feature, the boundary is ex-
panded by 25% relative to the range between the maximum and minimum
values of the feature, and a regular grid is generated within this expanded
area. The step between points is chosen so that the number of generated
points matches that inside the compact for each feature. If the minimum
and maximum values result in fewer than 4 steps between grid points, the
boundary is expanded to ensure at least one point relative to the mini-
mum and maximum boundaries for each feature. In Fig. 2, real SMART
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indicators from the dataset are represented in blue, while the boundary of
the real data compact is shown in red. The generated regular grid outside
the compact is highlighted in green. The margin from the boundary of
the compact is set at 25% of the difference between the boundaries of the
compact for each coordinate, respectively. Although only two features are
displayed in the figure for simplicity, a similar approach is applied to all
seven features.

Consequently, a new dataset is generated alongside a regular grid out-
side the original data compact. Subsequently, a classification model, specif-
ically the random forest model, is trained on this dataset.

In summary, the data is first checked to ensure that the normalization
range is correct; if it does not fall within the specified range, it indicates a
shift. Moreover, this implies that the prediction model received data from
disks with a different normalization range, and the current HDD failure
prediction model was trained on other data, rendering its prediction incor-
rect. If the output data has a similar normalization, it is fed to the random
forest model, which is also responsible for detecting covariate shifts. If the
model output indicates no shift, then the data is forwarded to the HDD
failure prediction model.

3.7. Eliminating covariate shift. Standard approaches to addressing
covariate bias include statistical methods, data weighting, domain adap-
tation, and dynamic model updating. However, weighing is not suitable
for the task at hand, as individual predictions for each disk are crucial.
Similarly, domain adaptation does not align with the shifts under consid-
eration.

This article will explore the statistical method by considering all data
in an amount equal to the average between the data used to train the pre-
diction models and the biased test data. Removing a shift for individual
data points is extremely challenging. In such cases, it becomes imperative
to focus more on shift detection and promptly notify the server adminis-
trator.

§4. Experiments

This section presents the results of experiments with models for pre-
dicting HDD failure, the influence of shift, the detection of shift, and its
elimination.
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We have made the code available on GitLab1. It can be used to conduct
experiments with other data that use CSV format.

4.1. Selection of optimal hyperparameters for an HDD perfor-
mance prediction model. In the experiments aimed at studying models
for classifying disks into normal and faulty categories, each group of disk
records was divided into training, validation, and testing sets in the ratio
of 80%, 5%, and 15%, respectively. When conducting experiments involv-
ing parameter variations, each experiment was repeated 25 times. In cases
where determining the optimal hyperparameters was not straightforward,
the experiment was performed 50 times. If ambiguity persisted after these
repetitions, the hyperparameter value resulting in the best metric per-
formance was selected, without considering the variance of the resulting
model.

4.1.1. Selection of optimal hyperparameters for logistic regression. The op-
timal configuration, determined by sequentially selecting hyperparameters
and greedily choosing the parameters that yielded the best metric val-
ues, was as follows: Solver: newton-cholesky; Tolerance: 1e-5; Maximum
iterations: 250; With this configuration, the model achieved a accuracy of
81.29%±0.01% and quality on F1 metric of 72.69%±0.04%.

4.1.2. Selection of optimal hyperparameters for gradient boosting. The op-
timal configuration, determined by sequentially selecting hyperparameters
and greedily choosing the parameters that yielded the best metric values,
was as follows: Loss function: exponential; Learning rate: 1e-1; Number
of estimators: 50; Criterion: friedman_mse; Maximum depth: 2; Minimum
samples per leaf: 3. With this configuration, the model achieved a accuracy
of 83.27%±0.01% and quality on F1 metric of 76.28%±0.42%.

4.1.3. Selection of optimal hyperparameters for a neural network. The op-
timal configuration, determined by sequentially selecting hyperparameters
and greedily choosing the parameters that yielded the best metric values,
was as follows: Number of hidden layers: 1; Hidden layer size: 7; Activa-
tion: ReLU Number of epochs: 600; Criterion: CrossEntropyLoss; Opti-
mizer: Rprop. With this configuration, the model achieved a accuracy of
82.11%±6.2% and quality on F1 metric of 68.77%±4.12%. However, the
quality of the neural network varied greatly over time, and stable perfor-
mance during training was not consistently achieved.

1https://gitlab.com/LukianovKirill/trustai_72.git
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Table 1. Detection model accuracy on shifted data. Fea-
tures to be shifted were selected for different prediction
models in order to maximally decrease their quality.

Algorithm 1 3 5 7

Shift = 5
Logistic Regression 0 ± 0 8 ± 1 97±2 100±0

XGB 0 ± 0 63 ± 4 95±1 100±0
NN 0 ± 0 57 ± 12 97±1 100±0

Shift = 15
Logistic Regression 0 ± 0 38 ± 1 100±0 100±0

XGB 0 ± 0 43 ± 7 97±1 100±0
NN 0 ± 0 71 ± 6 99±0 100±0

Shift = 30
Logistic Regression 0 ± 0 64 ± 1 100±0 100±0

XGB 0 ± 0 83 ± 5 100±0 100±0
NN 0 ± 0 69 ± 10 100±0 100±0

4.2. Experiments with shifts. For the detection of covariate shift,
70,000 records of real disk data were used. Additionally, about 80,000
records were obtained when creating a grid around the real data.

For each experiment, the results were averaged over 25 runs. Each run
included the following steps: model training, testing, selecting feature com-
binations with fixed shifts where the model quality decreased the most,
conducting shift detection before and after feature shifts, and then remov-
ing the shift using a statistical method.

Results for the shift detection experiment are shown in Table 1. From
the experiments, it can be inferred that the detection quality naturally in-
creases with the number of features subjected to shifts and the magnitude
of the shift. It was also noted that changing only one feature always re-
sulted in extremely low detection quality. This can be explained by the fact
that the feature that most often had the greatest influence on the models
covered a wide range of values (from 20 to 100) without significant gaps.
When the data were shifted based on this feature, many points changed
class but did not leave the training point distribution.
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Table 2. F1 quality of different models prediction on clean
data, shifted data, and calibrated data after using a sta-
tistical method

Algorithm Clean data Shifted
data

Data after
calibration

Shift = 1 feature
Logistic Regression 72.3 60.4 72

XGB 76 67.8 72.1
NN 66 44.7 66

Shift = 3 feature
Logistic Regression 72.6 60.6 72.2

XGB 76.2 62.3 69.8
NN 67.8 44.8 67.7

Shift = 5 feature
Logistic Regression 71.9 60.4 71.6

XGB 75.8 61.8 70.3
NN 67.8 45.1 66.1

The detection quality on unchanged data was consistently around 97–
100%, so a separate graph for shift detection without any shift is not
provided.

Table 2 shows the prediction results on clean data, after shifting, and
after removing the shift using a statistical method. Since the overall trend
remained consistent for different shift magnitudes, the results are presented
only for a 15-unit shift. It can be observed that the quality decreases after
shifting but rises after using the statistical method to remove the shift.

§5. Conclusion

In this work, we proposed a novel approach to training covariate shift
detection models that does not rely on additional real data or artificial
modeling of shifts. Moreover, we introduced a methodology for integrating
shift detection, administrator warning, shift elimination and subsequent
HDD failure prediction. Our proposed methods have demonstrated high
efficacy of shift detection and elimination across various experiments, in-
dicating their potential for real-world implementation.
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Future research could explore automated techniques for removing co-
variate shifts, with a particular focus on methods such as additional model
training, along with exploring the possibility of combining the proposed
detection method with other techniques to enhance efficiency when shifting
a small number of features.
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