
Записки научных
семинаров ПОМИ

Том 540, 2024 г.

A. Lobanov, A. Gasnikov

IMPROVED MAXIMUM NOISE LEVEL ESTIMATION
IN BLACK-BOX OPTIMIZATION PROBLEMS

Abstract. In black-box optimization, accurately estimating the
maximum noise level is crucial for robust performance. In this work,
we propose a novel approach for improving maximum noise level es-
timation, focusing on scenarios where only function values (possibly
with bounded adversarial noise) are available. Leveraging gradient-
free optimization algorithms, we introduce a new noise constraint
based on the Lipschitz assumption, enhancing the noise level esti-
mate (or improving error floor) for non-smooth and convex func-
tions. Theoretical analysis and numerical experiments demonstrate
the effectiveness of our approach, even for smooth and convex func-
tions. This advancement contributes to enhancing the robustness
and efficiency of black-box optimization algorithms in diverse do-
mains such as machine learning and engineering design, where ad-
versarial noise presents a significant challenge.

§1. Introduction

Adversarial noise poses a significant challenge in various computational
tasks, particularly in the context of optimization problems where accurate
estimation is crucial for achieving robust solutions. Adversarial noise usu-
ally refers to the perturbations or disturbances introduced to input data
intentionally to mislead or deceive computational models. In the realm of
black-box optimization, where the underlying objective function is either
unknown or expensive to evaluate directly, adversarial noise can severely
impact the performance and reliability of optimization algorithms. Un-
derstanding and effectively mitigating adversarial noise are paramount for
ensuring the success of optimization techniques across diverse domains,
including machine learning, engineering design, finance, and beyond. The
presence of adversarial noise can lead to misdirection of search algorithms,
and ultimately suboptimal or unreliable solutions.
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noise.
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In this work, we focus on the following general optimization problem:

min
x∈Q⊆Rd

{f(x) := Eξ∼Df(x, ξ)} , (1)

where f : Q → R is a non-smooth, convex, and possibly stochastic func-
tion. This problem formulation is widely used and has many applications in
machine learning. However, we consider a subclass of this problem, assum-
ing that the oracle has access only to the value of the objective function
(possibly with some limited adversarial noise), i.e., we have access only
to the zero-order oracle [13]. This problem setting is actively studied in
the literature, where the authors often assign it to the class of black-box
optimization problems [14]. Indeed, this class can be formally understood
as a black-box optimization problem, where a zero-order oracle acts as
the black box. Although we consider a narrower class of problems than
(1), the black-box optimization problem is studied in applications such as
machine learning [15], deep learning [16], reinforcement learning [17], fed-
erated learning [18], online optimization [19], multi-armed bandits [20, 21],
hyperparameter tuning [22], “perfect” product creation [23], and more.

Gradient-free optimization algorithms are often used to solve such prob-
lems. Several concepts stand out in the literature for creating algorithms
that use only function values (zero-order oracle) and do not have access
to more complex information about the function, such as the n-th order
of the derivative. One such concept, the one most amenable to theoreti-
cal analysis, uses the “power” of higher-order algorithms to create already
gradient-free algorithms by using a gradient approximation instead of the
true gradient. There is a classification of gradient approximations depend-
ing on the problem statement [24]. For example, in optimization prob-
lems where the function has increased smoothness, authors of the works
[25, 26, 8, 27] use kernel approximation, where it is the kernel function
that takes advantage of the increased smoothness. In the other direction,
namely when the function is simply smooth, the works [29, 30, 28] use l1
or l2 randomization gradient approximation. Finally, when the function is
non-smooth, the works [1, 31] use a smoothing scheme to apply l1 or l2
randomization instead of the true gradient. In this work, we focus on the
non-smooth case, so we also use a smoothing scheme with l2 randomiza-
tion, but we add a discussion of the results in the smooth case too.

Recently, the performance of gradient-free algorithms has been evalu-
ated using three optimality criteria. The first two criteria are also widely
used in higher-order optimization, namely the number of iterations N to
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achieve the desired accuracy (iteration complexity) and the number of
oracle calls T (oracle complexity). But the third optimality criterion is
specific to gradient-free algorithms and represents an estimate of the max-
imum noise level ∆ at which the desired accuracy can still be achieved. In
other words, the third optimality criterion represents a certain threshold
up to which the algorithm behaves as if there were no noise at all, demon-
strating adaptability to adversarial noise. But exceeding this threshold,
the algorithm worsens convergence (and may not converge at all).

There are many works investigating the maximum level of determin-
istic noise. In the non-smooth formulation of the black-box optimization
problem (1), it is shown (see [1, 30, 2]) that the optimal estimate of the
maximum noise level is ∆ . ε2/

√
d. Other works [24, 5] have shown that

this estimator can be improved by imposing additional assumptions on
the function. For example, if the function is non-smooth and µ-strongly
convex [32], the estimate can be improved to ∆ . µ1/2ε3/2/

√
d. In case

when the function is already smooth and convex [24], the estimate would
change as follows ∆ . ε3/2/

√
d. Finally, if the function is smooth and µ-

strongly convex [5], then the estimate of the maximum deterministic noise
level can be represented as µ1/2ε/

√
d. In this work, we consider another

way to improve the original maximum noise estimate when the function is
non-smooth and convex. Instead of using the assumption that the noise is
bounded in absolute value, we assume that the Lipschitz constraint is satis-
fied (see Assumption 4), obtaining the following estimate for the maximum
noise level ∆ . ε/

√
d. Moreover, we show theoretically and numerically

that this improvement holds even if the objective function is smooth and
convex.

§2. Notation and Assumptions

In this section, we present the final formulation of the problem con-
sidered in this work, imposing constraints on the objective function and
adversarial deterministic noise. But before going into the assumptions we
present the notations that are used throughout the paper.

Notation. We use 〈x, y〉 :=
∑d
i=1 xiyi to denote the standard inner product

of x, y ∈ Rd, where xi and yi are the i-th components of x and y respec-

tively. We denote lp-norms (for p > 1) in Rd as ‖x‖p :=
(∑d

i=1 |xi|p
)1/p

.

In particular, for the l2-norm in Rd it follows that ‖x‖2 :=
√
〈x, x〉.
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We denote the lp-ball as Bdp(r) :=
{
x ∈ Rd : ‖x‖p 6 r

}
and lp-sphere as

Sdp(r) :=
{
x ∈ Rd : ‖x‖p = r

}
. Operator E[·] denotes the expectation. To

denote the distance between the initial point x0 and the solution of the ini-
tial problem x∗ we introduce R := Õ

(
‖x0 − x∗‖p

)
, where we use notation

Õ(·) to hide logarithmic factors.
We can now present the main assumptions used in this work.

Assumptions on the objective function. Throughout the paper, we assume
that the objective function f is M -Lipschitz continuous.

Assumption 1. The function f(x, ξ) is an M -Lipschitz continuous func-
tion in the lp-norm, i.e for all x, y ∈ Q we have

|f(y, ξ)− f(x, ξ)| 6M(ξ)‖y − x‖p.

Moreover, there exists a positive constant M such that E
[
M2(ξ)

]
6 M2.

In particular, for p = 2 we use the notation M2 for the Lipschitz constant.

We use the following assumption when we specify our results into the
class of convex smooth functions.

Assumption 2 (Smoothness of function). The function f is smooth, that
is, differentiable on Q and such that for all x, y ∈ Q with L > 0 we have

‖∇f(y)−∇f(x)‖q 6 L‖y − x‖p.

Assumption 3 (Convexity on the set Qγ). Let γ > 0 be a small number
to be defined later and let Qγ := Q+Bdp(γ); then the function f is convex
on the set Qγ .

The assumptions presented in this subsection are not unique, they are
actively used in the optimization community. For example, Assumption 1
is a standard assumption for works that obtain theoretical estimates when
smoothness is not available. Assumption 2 is probably one of the most
common assumptions in the field of numerical optimization methods and
beyond. Finally, Assumption 3, introduced to obtain theoretical estimates,
is common in works that use smoothing schemes to develop gradient-free
optimization algorithms.

Assumptions on the deterministic noise. Before proceeding to the assump-
tions we introduce definitions for the zero-order oracle and gradient ap-
proximation.
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Definition 1 (Zero-order oracle). The oracle returns a function value
f(x, ξ) at the requested point x with some adversarial deterministic noise,
i.e., for all x ∈ Q

fδ(x, ξ) := f(x, ξ) + δ(x).

Now, using the definition of a zero-order oracle, we present the key
assumption of this paper.

Assumption 4 (Lipschitz bounded noise). The noise function δ(x) is a
∆-Lipschitz continuous function, i.e., ∀x, y ∈ Q we have

|δ(y)− δ(x)| 6 ∆‖y − x‖2.

Definition 1 is a common definition in the literature describing the pos-
sibility of obtaining inexact information from a (black box) oracle fδ(x).
However, the noise δ(x) that is presented in Definition 1 must be bounded
to guarantee the convergence of the algorithms. The noise constraint itself
(Assumption 4) is narrower than other works when the noise was con-
strained in absolute value, |δ(x)| 6 ∆.

§3. Idea of the smoothing scheme

In this section, we give a brief explanation of how to create gradient-
free algorithms for the original optimization problem (1) in various settings
using a smoothing scheme via l2 randomization, assuming that there is no
adversarial noise ∆ = 0.

The main idea of the smoothing scheme is to replace the original prob-
lem (1) by a smooth problem. For this purpose we introduce a smooth
approximation of the non-smooth function f :

fγ(x) := Eẽ [f(x+ γẽ)] , (2)

where γ > 0 is a smoothing parameter and ẽ is a random vector uni-
formly distributed on Bd2 (1). Hereinafter, for simplicity, we denote f(x) :=
E [f(x, ξ)]. Now we write down the properties of the smoothed function fγ
that will help us understand how the two problems are related: the original
non-smooth problem and the already smoothed problem.

Lemma 1. Suppose that Assumptions 1, 3 hold; then for all x ∈ Q we
have

f(x) 6 fγ(x) 6 f(x) + γM2.
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Proof. For the first inequality we use the convexity of the function f(x)

fγ(x) = Eẽ [f(x+ γẽ)] > Eẽ [f(x) + 〈∇f(x), γẽ〉)] = Eẽ [f(x)] = f(x).

For the second inequality we have

|fγ(x)− f(x)| = |Eẽ [f(x+ γẽ)]− f(x)| 6 Eẽ [|f(x+ γẽ)− f(x)|]
6 γM2Eẽ [‖ẽ‖2] 6 γM2,

using the fact that f is an M2-Lipschitz function. �

Remark 1. Indeed, knowing the relationship between the functions f and
fγ we can tell how the two problems are related: to achieve an ε-accuracy
solution in a non-smooth problem, we need to address the corresponding
smooth problem with (ε/2)-accuracy. Here, ε-suboptimality denotes the
accuracy of the solution in terms of expectation:

f(xN+1)− f(x∗) 6 f(xN+1)− f(x∗(γ))
¬
6 fγ(xN+1)− f(x∗(γ))

­
6 fγ(xN+1)− fγ(x∗(γ)) + γM2 6

ε

2
+
ε

2
= ε,

where ¬ means the first inequality of Lemma 1 and ­ means the second
inequality of Lemma 1.

We now write down the remaining properties of the smoothed function
fγ , namely that the function is also M -Lipschitz continuous in lp norm,
and also that the function now has a Lipschitz gradient constant.

Lemma 2. Suppose that Assumptions 1, 3 hold; then for fγ(x) from (2)
we have

|fγ(y)− fγ(x)| 6M‖y − x‖p, ∀x, y ∈ Q.

Proof. Using M -Lipschitz continuity of function f we obtain

|fγ(y)− fγ(x)| 6 Eẽ [|f(y + γẽ)− f(x+ γẽ)|] 6M‖y − x‖p. �

Lemma 3 ([1, Theorem 1]). Suppose that Assumptions 1, 3 hold; then
fγ(x) has a Lfγ =

√
dM
γ -Lipschitz gradient,

‖∇fγ(y)−∇fγ(x)‖q 6 Lfγ‖y − x‖p, ∀x, y ∈ Q.
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§4. Main Results

In this section, we present the main result of this paper, namely an im-
proved estimate on the maximum level of adversarial deterministic noise.
But before moving on to the result, we conclude the explanation we started
in the previous section about creating gradient-free algorithms to solve
the original optimization problem in different settings. Now that we un-
derstand how the two problems are related, we only need to choose the
optimal optimization algorithm (often accelerated and batched) and use
it to solve the smooth optimization problem with ε/2 accuracy, in order
to obtain the optimal algorithm to solve the original problem (1) with ε
accuracy.

Remark 2. However, the true gradient is still not available to us, so the
gradient fγ(x, ξ) can be estimated by the following approximation (also
known as l2 randomization):

∇fγ(x, ξ, e) =
d

2γ
(fδ(x+ γe, ξ)− fδ(x− γe, ξ)) e, (3)

where fδ(x, ξ) is the gradient-free oracle from Definition 1 and e is a ran-
dom vector uniformly distributed on Sd2 (γ).

It is not hard to see that the gradient approximation (3) uses a zero-
order oracle that produces a noisy value of the objective function (see
Definition 1). In order to guarantee “good” convergence for a gradient-
free optimization algorithm, we need to find the maximum noise level.
Typically, adversarial noise accumulates in two places: in the variance and
in the bias. So we will look at each estimator to find the maximum noise
level. And we start with the second moment (variance) of the gradient
approximation.

Lemma 4 (Second moment). Suppose that Assumptions 1 and 4 hold; then
for all x ∈ Q the gradient approximation ∇fγ(x, ξ, e) via l2 randomization
(3) has the following variance (second moment):

Eξ,e
[
‖∇fγ(x, ξ, e)‖2q

]
6 κ(p, d)

(
M2

2 + ∆2
)
,

where 1/p+ 1/q = 1 and κ(p, d) =
√

2 min {q, ln d} d2−
2
p .
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Proof. By definition we have

Eξ,e
[
‖∇fγ(x, ξ, e)‖2q

]
= Eξ,e

[∥∥∥∥ d2γ (fδ(x+ γe, ξ)− fδ(x− γe, ξ))e
∥∥∥∥2
q

]

=
d2

4γ2
Eξ,e[‖e‖2q(f(x+ γe, ξ) + δ(x+ γe)

− f(x− γe, ξ) + δ(x− γe))2]

6
d2

2γ2
Eξ,e

[
‖e‖2q (f(x+ γe, ξ)− f(x− γe, ξ))2

]
+

d2

2γ2
Ee
[
‖e‖2q (δ(x+ γe)− δ(x− γe))2

]
, (4)

where we used the fact that for all a, b, (a+ b)2 6 2a2 + 2b2. For the first
term in (4), the following holds with an arbitrary parameter α given the
symmetric distribution e:

d2

2γ2
Eξ,e

[
‖e‖2q (f(x+ γe, ξ)− f(x− γe, ξ))2

]
=

d2

2γ2
Eξ,e

[
‖e‖2q ((f(x+ γe, ξ)− α)− (f(x− γe, ξ)− α))

2
]

6
d2

γ2
Eξ,e

[
‖e‖2q (f(x+ γe, ξ)− α)

2
+ (f(x− γe, ξ)− α)

2
]

=
d2

γ2

(
Eξ,e

[
‖e‖2q (f(x+ γe, ξ)− α)

2
]

+ Eξ,e
[
(f(x− γe, ξ)− α)

2
])

=
2d2

γ2
Eξ,e

[
‖e‖2q (f(x+ γe, ξ)− α)

2
]

¬
6

2d2

γ2
Eξ

[√
E
[
‖e‖4q

]√
Ee
[
(f(x+ γe, ξ)− α)

4
]]

­
6

2d2κ′(p, d)

γ2
Eξ

[√
Ee
[
(f(x+ γe, ξ)− α)

4
]]
, (5)

where in ¬ and ­ we used the Cauchy-Schwarz inequality and the fact
that

√
E
[
‖e‖4q

]
6 κ′(p, d), where κ′(p, d) = min {q, ln d} d2/q−1. Now we
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perform similar operations for the second term in (4):

d2

2γ2
Ee
[
‖e‖2q (δ(x+ γe)− δ(x− γe))2

]
=

d2

2γ2
Ee
[
‖e‖2q ((δ(x+ γe)− β)− (δ(x− γe)− β))

2
]

6
d2

γ2
Ee
[
‖e‖2q (δ(x+ γe)− β)

2
+ (δ(x− γe)− β)

2
]

=
d2

γ2

(
Ee
[
‖e‖2q (δ(x+ γe)− β)

2
]

+ Ee
[
(δ(x− γe)− β)

2
])

=
2d2

γ2
Ee
[
‖e‖2q (δ(x+ γe)− β)

2
]

6
2d2

γ2

√
E
[
‖e‖4q

]√
Ee
[
(δ(x+ γe)− β)

4
]

6
2d2κ′(p, d)

γ2

√
Ee
[
(δ(x+ γe)− β)

4
]
. (6)

Now applying Lemma 4 of [2] to the γM2(ξ)-Lipschitz function f(x+γe, ξ)
with respect to e in terms of the l2 norm from (5) and to the γ∆-Lipschitz
function δ(x+γe) from (6) we obtain the original statement of the Lemma:

Eξ,e
[
‖∇fγ(x, ξ, e)‖2q

]
6

2d2κ′(p, d)

γ2
Eξ

[√
Ee
[
(f(x+ γe, ξ)− α)

4
]]

+
2d2κ′(p, d)

γ2

√
Ee
[
(δ(x+ γe)− β)

4
]

6
2d2κ′(p, d)

γ2

(
γ2Eξ

[
M2

2 (ξ)
]

√
2d

+
γ2∆2

√
2d

)
= κ(p, d)

(
M2

2 + ∆2
)
,

where κ(p, d) =
√

2dκ′(p, d) =
√

2 min{q, ln d}d2−
2
p . �

Now in order to provide an estimate on the bias of the gradient approx-
imation (3), we first cite several known facts in the form of lemmas.
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Lemma 5 ([3]). The function fγ(x) is differentiable with the following
gradient with l2-randomization:

∇fγ(x) = Ee
[
d

γ
f(x+ γe)e

]
.

Lemma 6 ([4]). Let vector e be a random unit vector from the Euclidean
unit sphere {e : ‖e‖2 = 1}. Then for all r ∈ Rd it follows that

E[|〈e, r〉|] 6 ‖r‖2√
d
.

We can now present an estimate on the bias of the gradient approxima-
tion via l2 randomization (3).

Lemma 7 (Bias). Suppose that Assumption (4) holds; then the gradient
approximation ∇fγ has the following bias:

〈Eξ,e [∇fγ(x, ξ, e)]−∇fγ(x), r〉 .
√
d∆‖r‖2, ∀r ∈ Rd.

Proof. By definition of gradient approximation we have:

∇fγ(x, ξ, e) =
d

2γ
(fδ(x+ γe, ξ)− fδ(x− γe, ξ))e

=
d

2γ
(f(x+ γe, ξ) + δ(x+ γe)− f(x− γe, ξ)− δ(x− γe))e

=
d

2γ
((f(x+ γe, ξ)− f(x− γe, ξ))e+ (δ(x+ γe)− δ(x− γe))e).

It follows from this equality that

Eξ,e [〈∇fγ(x, ξ, e), r〉] =
d

2γ
Eξ,e[〈(f(x+ γe, ξ)− f(x− γe, ξ))e, r〉]

+
d

2γ
Ee[〈(δ(x+ γe)− δ(x− γe))e, r〉]. (7)

Applying Lemma 5 to the first term in (7), we get
d

2γ
Eξ,e[〈(f(x+ γe, ξ)− f(x− γe, ξ))e, r〉]

=
d

2γ
Eξ,e[〈f(x+ γe, ξ)e, r〉] +

d

2γ
Eξ,e[〈f(x− γe, ξ)e, r〉]

=
d

γ
Ee [〈Eξ [f(x+ γe, ξ)] e, r〉] =

d

γ
Ee[〈f(x+ γe)e, r〉]

= 〈∇fγ(x), r〉 . (8)
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For the second term in (7), with Assumption 4 satisfied, we obtain
d

γ
Ee[〈(δ(x+ γe)− δ(x− γe))e, r〉] > −d

γ
∆‖γe‖2Ee[|〈e, r〉|]

=− d∆Ee[|〈e, r〉|]. (9)

Substituting (8) and (9) into expression (7), we get that

Eξ,e [〈∇fγ(x, ξ, e), r〉] > 〈∇fγ(x), r〉 − d∆Ee[|〈e, r〉|]. (10)

Applying the statement of Lemma (6) to expression (10), we obtain the
original statement of the Lemma. �

We are now ready to present the main result of this work.

Theorem 1. Suppose that Assumptions 1, 3, 4 are satisfied. Then algo-
rithm A(L, σ2) obtained by applying smoothing schemes via l2 randomiza-
tion (see Section 3) based on the first order method has the following noise
level:

∆ .
ε√
d
,

where ε is the accuracy of the solution to problem (1), E[f(xN )]− f∗ 6 ε.

Proof. Since adversarial noise only accumulates in the variance and bias
of the gradient approximation via l2 randomization, the following condi-
tions must be satisfied in order to guarantee “good” convergence of the
algorithm A(L, σ2) (while maintaining optimal estimates of iterative and
oracle complexity):

• for the second moment ; it follows from the statement of Lemma 4
that

∆2 6M2
2 . (11)

• for the bias; it follows from the statement of Lemma 7, given that
R = ‖x0 − x∗‖2 = ‖r‖2, that:

√
d∆R 6 ε ⇒ ∆ 6

ε√
dR

. (12)

Since the estimate on the maximum noise level (12) is more influential
than the estimate obtained from the variance (11), we obtain the original
statement of the theorem. �

By the results of Theorem 1, we see that it is indeed possible to im-
prove existing estimates (see [2]) of the maximum level of adversarial de-
terministic noise in the non-smooth convex problem. Moreover, estimation



IMPROVED MAXIMUM NOISE LEVEL ESTIMATION 143

presented in Theorem 1 shows that applying the noise constraint achieves
a better estimate in the non-smooth case than the existing one, namely
this estimate outperforms existing estimates in the following settings: non-
smooth strongly convex function ∼ µ1/2ε3/2/

√
d, smooth convex function

∼ ε3/2/
√
d and finally smooth strongly convex function ∼ µ1/2ε/

√
d (see

Section 4 [5]). In addition, we point out that the technique presented in
this work achieves the same estimate as the maximum level of adversarial
stochastic noise in the non-smooth convex case ∼ ε/

√
d (see [6]). Finally,

this estimate is fully consistent with the maximum deterministic noise esti-
mate in the same Assumption 4, but in the setting of a non-smooth saddle
optimization problem [30]. In the following, we present a development of
these results in the form of remarks for the case of a smooth setting of the
initial optimization problem (1), as well as the variation of the estimate
depending on the chosen randomization.

Remark 3 (Smooth setting). If Assumption 2 is satisfied, Lemma 1 takes
the following form: f(x) 6 fγ(x) 6 f(x) + γ2L2. The modified Lemma 1
in turn affects the smoothing parameter, i.e., instead of γ = ε

2M2
(see Sec-

tion 3), the smoothing parameter becomes
√
ε/L. However, all conclusions

of Lemmas 4 and 7 are independent of the smoothing parameter because
of the fulfillment of the Lipschitz noise Assumption 4. Thus, the result of
Theorem 1 holds even in the smooth formulation of the original problem.

Remark 4 (l1 randomization). Considering a smoothing scheme with
l1 randomization and performing the same operations as in this work,
Lemma 4 will not change conceptually (i.e., the noise level term will not
change), but Lemma 7 (which can be obtained using Assumption 4 in
Lemma 8 of [2]) will deteriorate compared to l2 randomization, giving the
following estimate for the maximum noise level: ∆ 6 ε/d.

§5. Experiments

In this section, we focus on the verification of the theoretical results
obtained in Section 4. To demonstrate the effectiveness of the proposed
method for improving the maximum noise level, we consider a smooth
formulation of the original problem (1), namely the solution of a system
of p nonlinear equations [7, 8]:

min
x∈Rd

f(x) := ‖g(x)‖22,



144 A. LOBANOV, A. GASNIKOV

Figure 1. Effect of the adversarial noise concept on the
error floor. Here we optimize f(x) with parameters: d =
128 (dimensional), p = 16 (equations number), γ = 0.01
(smoothing parameter), η = 0.01 (fixed step size), B =
10 (batch size), ∆ = 10−4 (maximum noise level).

where g(x) = 0 is a system of p nonlinear equations such that p 6 d,

g(x) = C sin(x) +D cos(x)− b,

x ∈ Rd, C,D ∈ Rp×d and b ∈ Rp.
This formulation of the problem also satisfies a wider class of functions,

namely functions satisfying the Polyak–Lojasiewicz condition [10, 9]. This
class also includes the convex functions considered in this work. We have
chosen stochastic gradient descent as the optimization algorithm. Despite
the fact that this algorithm is not accelerated, it is shown (see [11]) that
unaccelerated algorithms are already optimal in a smooth class of problems
satisfying the Polyak–Lojasiewicz condition.

Figure 1 shows the effect of adversarial deterministic noise (noise level
∆) on the error floor. We compare the performance of mini-batch stochastic
gradient descent in three settings on deterministic adversarial noise:

• the deterministic adversarial noise δ = ∆‖x‖2 proposed in this
paper, which satisfies Assumption 4;

• the deterministic adversarial noise δ = ∆ cos(x), which satisfies
modulus constraint, namely |δ(x)| 6 ∆;

• case where the adversarial noise δ = 0 is a finite mantissa.
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It is easy to observe that indeed stochastic gradient descent with adver-
sarial deterministic noise that satisfies Assumption 4 significantly outper-
forms the same algorithm that is subject to deterministic adversarial noise
(with bounded absolute value), thus confirming our theoretical results. It
is also worth noting that despite the fact that we did not artificially add
noise (the case where δ = 0), the algorithm still converges to the error
floor, as if the algorithm was also subject to noise. This phenomenon can
be explained by the presence of computational error (finite mantissa). Fi-
nally, it is easy to see that in all cases of noise, the algorithm has the same
convergence rate, thus showing that adversarial noise is directly related to
the error floor.

§6. Conclusion

This work is devoted to the study of improving the estimation of the
maximum noise level for a non-smooth convex stochastic black-box opti-
mization problem. We have introduced the technique of creating gradient-
free algorithms using a smoothing scheme via l2 randomization. By as-
suming that the noise is bounded by Lipschitz continuity, we were able to
improve the estimation of the noise level compared to the standard ab-
solute value constraint. We have shown in theory and practice that this
advantage carries over to the smooth formulation of the black-box opti-
mization problem.
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