
Записки научных
семинаров ПОМИ

Том 540, 2024 г.

I. L. Iov, N. O. Nikitin

FEATURE ENGINEERING PIPELINE OPTIMISATION
IN AUTOML WORKFLOW USING LARGE LANGUAGE
MODELS

Abstract. One important way to achieve more efficient automated
machine learning is to involve meta-optimisation for all stages of the
pipeline design. In this work, we aim to use large language models for
feature engineering steps as both optimisers and domain-knowledge
experts. We encode the feature engineering pipeline in natural lan-
guage as a sequence of atomic operations. Black-box optimisation is
implemented by requesting a feature engineering pipeline from the
LLM using a prompt consisting of predefined instructions, dataset
description, and previously evaluated pipelines. To increase the time
efficiency and stability of optimisation, we implement a population-
based algorithm to produce a set of pipelines with each LLM re-
sponse instead of a single one. Multi-step optimisation is attempted
to provide the LLM with additional domain knowledge. To analyse
the performance of the proposed approach, we conduct a set of ex-
periments on the open datasets. Random search has been chosen as
a baseline for the optimisation task. We find that while straightfor-
ward results obtained with the gpt-3.5-turbo model are close to the
baseline with the same time cost, population-based pipeline gener-
ation outperforms the baseline and other approaches. Our results
confirm that the proposed approach can increase the overall per-
formance of machine learning models with the same time cost for
optimisation and fewer tokens needed to obtain the result.

§1. Introduction

Automated machine learning (AutoML) is a rapidly advancing field [1],
as it allows one to apply machine learning techniques with no expertise,
which is required for classical ML pipeline implementation. Selecting the
correct features and models presents a considerable challenge, often de-
manding numerous iterations to reach the optimal solution. Conventional

Key words and phrases: AutoML, large language models, feature engineering, black-
box optimisation.

This research was carried out within the state assignment of the Ministry of Science
and Higher Education of the Russian Federation, project no. FSER-2024-0004.

82



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 83

AutoML approaches rely on domain knowledge and meta-features of the
data to achieve the goal. Meta-learning attempts to replace expert knowl-
edge with higher-level meta-models, designed to choose the models and pa-
rameters in automated machine learning (AutoML) more efficiently. Foun-
dational language models encapsulate vast domain knowledge and can be
used as experts for meta-learning.

In this work, large language models are used for feature engineering,
which is not only the most time-consuming part of an ML system’s de-
sign [9], but also requires a specialist to have domain knowledge and skills
in machine learning methods. Feature engineering workflows are encoded
as operation sequences, which may both be optimised using conventional
methods and LLMs as optimisers. The random search optimisation method
is applied as a simple baseline for a set of open datasets. First, a general
optimisation strategy is applied by iteratively requesting the LLM to gen-
erate the feature engineering operations sequence based on the dataset in-
formation and the previous iterations logs. A population-based approach
is proposed to generate a population of pipelines from each prompt to im-
prove the exploitation capability and reduce the time and token cost of
the optimisation. Finally, multi-step optimisation is implemented for both
strategies to provide the LLM with more domain knowledge and presum-
ably get a more effective solution.

§2. Related works

2.1. AutoML and MetaLearning. The AutoML field has been exten-
sively studied in recent years, as it is able to apply machine learning
methods to various domains even if the specialist does not have expert
knowledge of ML methods. In other cases, it can also fully automate ML
problem-solving when it is challenging to involve a human expert, which
is common for industrial applications. Another important application of
AutoML is the baseline generation to be further improved by an expert,
thus reducing the time of searching for the final solution.

An AutoML pipeline can be roughly divided into four steps [62]:
• the data preparation step includes collecting data and forming a

dataset,
• the feature engineering step includes creating new features from

existing ones, reducing dimensionality, and otherwise extracting
the most informative data representation with the least number of
features,



84 I. L. IOV, N. O. NIKITIN

• the model generation step may be implemented in many ways, yet
it always results in a trained model as a candidate for the new best
solution;

• finally, in the model evaluation step model scores are evaluated and
either a new learning cycle starts or the final model is determined
based on the evaluation result and the model selection method.

2.1.1. Data Preparation. Many methods have been developed for each
step; no existing solution covers all of them. Data preparation can include
results from the web [2], dataset balancing [3], and GANs used for syn-
thetic data generation. Knowledge-based systems such as [12] can be used
to clean data, while others view data cleaning as a boosting [4] or hyperpa-
rameter tuning problem [5]. Data augmentation is widely used, especially
in computer vision with methods like contrast, shift, image blending and
mixup, and specific packages are designed to help with such operations,
including torchvision [6], ImageAug [7] and Albumentations [8].

2.1.2. Feature Engineering. Feature engineering is the most important step
of the ML system design pipeline, as this step sets up the highest qual-
ity achievable for the entire system by defining feature predictability. It is
also the most time-consuming step in the traditional pipeline [9] on aver-
age. Feature extraction methods aim to reduce the feature dimensionality,
feature construction expands the dataset with new features and feature
selection drops the least important features.

Feature selection may be performed by any optimisation method from
random search to complete search, while simulated annealing and genetic
algorithm are the most popular. For these methods, either some data can
be used as a scoring criterion (like the variance or correlation coefficient),
or some model evaluation result is used. Feature construction is the most
demanding of human expertise, as new features have to be more represen-
tative than initial ones, which usually requires them to be based on some
domain knowledge. Common data transformations include standardiza-
tion, normalization and statistical operations for numeric features, yet the
possibility of exploring the whole operator space is doubtful. Feature ex-
traction reduces dimensionality using well-known methods like PCA [10] or
LDA [11] or with more advanced ones including ICA [17] or unsupervised
autoencoder-tree-based feature extraction.

2.1.3. AutoML. Various AutoML methods and frameworks are being de-
veloped, and no existing solution can fully replace humans at each step of



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 85

the ML workflow. A group of frameworks can be distinguished, which only
support fixed pipelines, choosing the best solution from the set of can-
didates [13–15] or simply using the predefined single pipeline [16]. These
fixed pipelines focus mostly on model generation, while only a few im-
plement feature engineering techniques. Other solutions [18, 19] feature
composite pipelines allowing for more variability, which is even more im-
portant in feature engineering tasks. Various methods are being used for
pipeline generation. The simplest one is the Grid Search, which applies to
fixed pipelines. Among others are evolutionary algorithm [20], sequential
model-based optimisation for pipeline configuration [13] etc.

AutoML solutions also differ in the data types they can process, as many
[13, 19, 22] are only able to process tabular datasets. Other frameworks
[15, 23] use textual information to generate pipelines, and others [14, 24]
can process images as features. Some solutions are designed for specific
data types, such as time series [25]. Using LLMs, both tabular and textual
information can be encoded naturally, so further work is focused on such
data.

2.1.4. Feature Engineering in AutoML. Automated feature engineering is
implemented as a part many general AutoML solutions [20, 50, 51] while
others are specifically designed for automated feature engineering [21,33–
36].

One of the main complexities of feature engineering is that many pos-
sible ways exist to process the data to obtain new features. While many
features can be acquired from a predefined set of operators implemented
by different frameworks, many possibly useful features are specific to the
domain and require meta-knowledge to be extracted. Even if the desired
feature exists among many predefined ones, it may take a long time for an
optimisation algorithm to converge and capture that feature. At the same
time, it can be easily acquired with domain knowledge being incorporated
into the system.

Most general AutoFE solutions follow the same strategy of sequential
application of three feature engineering steps: Feature Extraction, Feature
Synthesis, and Feature Selection, thus expanding the initial dataset with
new features and then pruning the least meaningful ones.

Some solutions only address feature extraction, among which are the
usual PCA [10], ICA [37], LDA [11], LLE [38]. A more advanced approach
implies using a set of predefined analytical functions to process the data.
Among the ways to choose the best set of features are solutions operating



86 I. L. IOV, N. O. NIKITIN

with meta-features of any kind. METABU [39] extracts new useful features
as linear combinations of a large number of predefined meta-features. Au-
thors of [41] use a dynamic dataset clustering algorithm based on the
Markov process for a set of benchmark models to perform meta-feature
extraction.

Feature Synthesis employs transformation operations, feature aggrega-
tion, and mixing to produce new meaningful features based usually on
the statistical properties of the data. Different solutions for tabular data
include [42,44,53]. The method presented in [46,53] uses all operations si-
multaneously to produce a large set of new features and then uses classifi-
cation models to choose the most impactful features. This method requires
more memory and may produce too many features to process [28].

On the contrary, other approaches [44, 45] increase the search space
by an incremental feature addition from smaller search subspaces. Such
approaches increase the computational complexity of feature engineering,
which may also be inappropriate for certain tasks, including NAS. In addi-
tion to existing methods, it is possible to estimate the operator effectiveness
using a neural network before applying any. It is implemented in various
ways in [45–47].

Feature selection minimises the dataset size to achieve the following
goals: learning stability, as meaningless features may harm overall per-
formance, model size and efficiency due to fewer parameters, and data
explanation, as feature importance may provide additional insight for the
data. Defining a set of features to drop is a combinatorial problem that
can be addressed in various ways. Some solutions evaluate a score for each
feature that is directly associated with the importance of the feature, and
then drop the least meaningful features [45, 48]. Other methods, such as
AutoLoss [49] and AutoDropout [52], implement feature dropout strategies
to get the most relevant feature set, and thus optimum dropout patterns
and hyperparameters are learned.

2.2. Large language models. Large language models (LLMs) are text
foundation models, trained to complete the next text token on large amounts
of unlabelled text data, and tuned further for specific tasks such as answer-
ing questions, code generation, or instruction following.

2.2.1. LLMs for Black-Box optimisation. LLMs can be used for black-box
optimisation tasks. A large amount of meta-knowledge allows for better



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 87

convergence at the first steps; however, convergence slows down when sub-
optimal solutions are reached, which is common for most optimisation
methods. Exploration/exploitation balance can be controlled by the tem-
perature settings of an LLM with high temperature leading to more ran-
dom and explorative steps and vice versa. Pattern recognition ability and
extensive domain knowledge make LLMs advantageous for data wrangling
tasks such as blank filling and error search. Recently, Neural Architecture
Search (NAS), another important branch of AutoML, has received more
attention, as LLMs [26, 27] have proven to be able to further push the
main challenge of this field, reducing time complexity. However, it is no-
tably unclear whether the promising results in NAS are coming from the
LLMs’ abilities or data leaks, as many high-quality solutions for bench-
mark datasets are available on the Web and thus could be used for LLM
training (this issue can be partially solved by using new datasets with pub-
lishing date succeeding the date of LLM dataset gathering date, which is
usually known for the most popular LLMs).

It has been shown that large language models are capable of solving
various pattern recognition tasks. The authors of [55] use LLMs as general
sequence modellers to solve spatial pattern tasks, complete sequences, and
improve return-conditioned policies such as CartPole stability optimisation
by discovering the oscillations behaviour. Zero-shot capabilities make it
possible to use LLMs as general black-box optimisers with natural language
optimisation tasks being the main application as it allows one to directly
optimise the text as a feature without encoding it into numeric features
and vice versa. Both traditional numeric optimisation and natural language
optimisation are shown in [30]. The authors also propose using optimisation
by PROmpting (OPRO) to optimise LLM prompts maximizing LLM’s
performance.

2.2.2. LLMs for Feature Engineering. Feature generation with LLM has
been addressed by the authors of the CAAFEE framework [28], who at-
tempted to automatically generate and execute the code for the new fea-
tures using LLM. The results show that it is possible to achieve the goal,
but only when the best available model (GPT-4 [29]) is used.

However, the authors did not perform iterative feature generation and
used LLMs as zero-shot predictors. It can be assumed that the results
can be improved by also incorporating LLM optimisation abilities [30]
into the pipeline, which makes it possible to achieve the same result with



88 I. L. IOV, N. O. NIKITIN

less powerful LLMs such as GPT-3.5 or open source LLAMA 2 [31] or
Mixtral [32], both of which are approaching the quality of GPT-3.5.

§3. Proposed approach

Large language models can be utilized at the feature engineering step
both as optimisers and as domain knowledge experts. The latter was im-
plemented in [28] as a code generation for feature generation. This method
allows one to possibly obtain the most suitable and domain-specific fea-
tures. Applying an iterative optimisation process to such an approach is
complicated by many code errors emerging on one side and nonchanging
proposals on the other side. Prompt optimisation was implemented in [30]
by making a prompt containing both the task description and some of the
best results achieved during optimisation so far. Using whole prompts as
individuals is costly concerning token number and computation time. One
way to get fewer errors, use fewer tokens in prompts, and decrease com-
putation efficiency is to encode the feature generation pipeline in a short
natural language description.

The following optimisation approach is proposed, with each element
described in more detail in the following sections. Feature optimisation
instance consists of a dataset, an LLM interface, and an LLM template.
LLM template contains the information on the dataset, instructions, and
possible options for the feature generation pipeline. If the initial advise
option is enabled, the first LLM query updates the template with the
data insight to improve future proposals. On the initial iteration, a default
feature generation pipeline is used to train the ML model, which type is
defined in the configuration, and evaluate metrics to add to the template.
The next iterations start from an LLM request for a pipeline, pipeline
evaluation and a template update. The high-level scheme of the proposed
approach is shown in Fig.1.

3.1. Feature Generation Pipeline Evaluation. Feature engineering
pipeline can be presented as a sequence of atomic data operations such
as scaling, imputation, etc. Having a set of such atomic operations, one
can define a pipeline by assigning input feature names for each opera-
tion. This format allows one to insert the pipelines into LLM prompts
for further optimisation and also parse and apply the LLM response.
The typical operation sequence looks as follows: FillNaMean(Feature1)
→ Std(Feature2,Feature3) → PCA()



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 89

Figure 1. General scheme for the proposed approach. The
initialization step, the first optimisation iteration without
LLM proposal, and the main optimisation cycle are shown
in blocks.



90 I. L. IOV, N. O. NIKITIN

Figure 2. Data operations pipeline example (features
taken from the Titanic dataset).

The presented pipeline, if parsed and applied, imputes absent features
for Feature1 by mean values, performs standard scaling to both Feature2
and Feature3 and then applies PCA transformation to all columns. Other
operation splitters may be used instead of “→” and it was noticed that they
may affect performance, e.g. line breaks result in more errors, especially
because of previous operations in sequence. The attention mechanism is
likely to lose the connection between the subsequent operations, which
is also confirmed by the fact that pipelines split by line breaks tend to
be repeated without change on each optimisation iteration. All proposed
pipelines are stored both as text and as a graph during the optimisation
process. The graph example is shown in Fig. 2.

The following set of atomic data operations has been chosen for pipeline
generation. For any operation, it is possible to use the result of previous
operations as an input.

3.2. Feature Generation Pipeline Optimisation. The LLM prompt
structure is crucial to get the feature generation pipeline appropriate to
the domain and meta-features of the dataset. Along with the optimisation
instructions, it can also contain the dataset description with some domain
knowledge, meta-features and possibly some clues on the operations which
might be a good solution. OpenML Dataset Sharing Platform [56] provides
a wide variety of datasets with descriptions and meta-features. Python API
was used to download the data and form the LLM prompt from the dataset
description.

To make evaluating different prompts more efficient, an LLM template
was formed from named paragraphs, each taken from the config, directly
from the dataset description, or from the previous model training cycle.
The following paragraph order was chosen for further prompt optimisation:

(1) Task description (from config)
(2) Pipeline format description (from config)
(3) List of available operations (from config)



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 91

Table 1. Atomic data operations used for the feature
search algorithm.

Operation Description

Add Add any number of input columns to form a new column
Sub Subtract two input columns to form a new column
Mul Multiply any number of input columns to form a new column
Div Divide two column values to form a new column
Pca Create columns pca_0, pca_1 ... from PCA on input columns

FillnaMean Fill missing values with mean inplace
FillnaMedian Fill missing values with median inplace

Std Inplace Standard scaling of input columns
Minmax Inplace MinMax scaling of input columns

Drop Drop input columns in place
Binning Binning of numerical features. In-place operation
Label Label encoding of categorical features. In-place operation

OneHot One hot encoding of categorical features

(4) Dataset description (from dataset source)
(5) Previous evaluations (from model training)
(6) Instruction (from config)

Other structure versions and their performance will be discussed in
Section 4. This prompt setup allows for paragraph swapping, insertion and
removal using the prompt structure on each iteration. Furthermore, it can
be used for automatic prompt generation using OPRO [30] for a specific
paragraph, as the prompt cannot be optimised as a whole. A sample LLM
prompt is shown in Appendix A.

All completions are being created with the gpt-3.5-turbo model, which,
according to [28], may improve the overall result of an AutoML solution
by providing new features to the dataset. Each LLM response is parsed
into atomic data operations from the initial list. As it may contain errors,
the data operation pipeline is validated on the copy of the dataset. If
any operation results in an error or takes too much time or memory to
perform (e.g. one-hot encoding on a numeric feature), it is dropped from
the pipeline.

For the first iteration, the default pipeline is built by filling all the absent
values in numerical features by the mean value of the column, encoding
categorical features with less than 10 unique values by label, and dropping



92 I. L. IOV, N. O. NIKITIN

the rest. Train and test data splits are created for each dataset, and each
pipeline is first applied to the train data, so scaling, PCA and other opera-
tions do not result in data leaks between train and test datasets. Then the
model can be trained, the type of which is defined in the problem configura-
tion. CatBoost [59], SVM Classifier [61], and Random Forest Classifier [60]
classification models are available for use; All the experiments shown use
Random Forest Classifier. Accuracy metrics and pipeline graphs are stored
in the evaluation log and written to the LLM prompt. The new prompt
is then used to obtain the pipeline proposal from the LLM, which is then
parsed and used to initialise the new data operations pipeline. Another
model training results are added to the log and prompt after evaluation,
thus forming an optimisation cycle. The optimisation scheme is shown in
Figure 1.

3.3. Prompt optimisation. Initial prompt structure may not be opti-
mal for the task, and a manual prompt search has been performed. Dif-
ferent prompt structures can provide an estimate of the impact of dataset
description and meta-features on the proposal quality. As the LLM serves
as both a domain-knowledge expert and a black-box optimiser, these roles
may be unbalanced. While the optimisation capability was already demon-
strated in [30], the importance of domain knowledge is uncertain. It is sig-
nificant for the LLM model used, as the authors of [28] have shown that
only the GPT-4 model can use the information from the dataset to provide
meaningful features. In contrast, other models do not always perform with
the same success.

The following prompt versions were tested:
(1) Default structure
(2) Prompt without dataset description
(3) Prompt with direct instructions on the data operations
(4) Prompt with advice on the data qualities
(5) Prompt with added meta-features

For the final prompt, all the individual paragraphs which are predefined,
were optimised manually. The Titanic dataset1 was used for prompt op-
timisation as it contains numeric, categorical and natural language data,
requires data imputation and scaling. There are also many examples of
feature engineering for this dataset, which makes it possible to compare
LLM proposals with a variety of human-made ones. Titanic is a binary

1Available at https://api.openml.org/d/40704



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 93

Table 2. Manual prompt search results. The random for-
est model scores for the Titanic dataset are shown. A total
of 5 pipelines were obtained for each prompt design, ex-
cept for fixed pipelines.

Prompt/pipeline Avg score Max score

Default pipeline – 0.72
Manual pipeline – 0.82

Manual pipeline with data leak – 0.97
Default prompt 0.77 0.79

Prompt without dataset description 0.77 0.8
Prompt with direct instructions 0.97 0.98

Prompt with advises 0.8 0.8
Prompt with meta-features 0.81 0.81

Prompt without initial default evaluation 0.76 0.78

classification dataset, it is also notable for containing the “boat” feature,
which is present usually for the samples with the same target value and
is absent for the rest. This allows us to get a higher score compared to
the default pipeline. All proposals from LLM have been compared with
the manually built pipeline with an acceptable score as a baseline. Each
prompt has been used for pipeline construction 5 times, and the results
are presented in Table 2.

The data leak capture results suggest that a full dataset description may
indeed be used for the chosen optimisation method to improve pipeline
quality. It can also be confirmed by the poor result of the dataset without
any dataset description. Meta-features, on the other hand, do not make
any significant difference, while taking a lot of token space in the prompt,
making it more costly time- and resource-wise. No results are shown for
prompts with other paragraphs deleted. If any of the task description,
operation set, or instruction paragraphs are absent, the LLM output is
usually poorly formatted and cannot be parsed, as it includes some addi-
tional advice, code for feature generation, etc. For that reason, the default
prompt structure with a modified individual paragraph is used for optimi-
sation. To obtain better results, the prompt optimisation OPRO [30] has
been proposed, and it has been shown that it outperforms the human-mad
prompts in most tasks. To improve the efficiency of optimisation, one of



94 I. L. IOV, N. O. NIKITIN

the possible next steps might be to prioritise the optimisation of the fixed
prompt paragraphs. Then, the usual grid search method may be used [57].

3.4. Random search baseline. Table 2 shows that even a single request
to LLM results in a pipeline close to the one built manually. However, it
is necessary to confirm that further optimisation is efficient enough. The
baseline proposed is the random search method. On each iteration, the
LLM response is mocked with a random pipeline string; The following
pipeline parameters are chosen at random: total number of nodes, type
of each operation, number of columns affected by each operation and col-
umn names. While such a method results in many processing errors, an
acceptable length of pipeline can be achieved nonetheless by changing the
search hyperparameters. A timeout of 2 min has been added to the data
transformation and model training steps to avoid large datasets which may
occur if the one-hot encoding is being applied to noncategorical features.
Despite the error rate, random search is still much more time-efficient than
any other method relying on the LLM requests. For that reason, any pro-
posed method should be at least as effective as a random pipeline search
concerning time cost.

3.5. Population-based optimisation. The initial approach implies pass-
ing the prompt to the LLM on each iteration, getting the pipeline proposal,
and adding it to the next prompt. The prompts share most of the infor-
mation, being only different in the previous evaluations section. Such an
approach has several issues.

• Computational inefficiency; LLM has to process the data anew on
each iteration.

• Data transformation and model training take less than a minute
usually, thus making token quota exhaust rapidly, due to the large
number of requests.

• API limit on the number of requests in a minute is easily broken.
The optimisation process has to be paused after each iteration to
not exceed the limit. This further decreases the time efficiency.

• Self-loops appear sometimes when the pipeline is proposed twice
on the subsequent iterations. It is then repeated on all the next
iterations with no respect to the score. Even the specific prompt
instructions on the self-repetition do not help to change the trend.

• On the other hand, some pipelines naturally contain errors and ei-
ther do not improve the result, or even do not allow one to evaluate



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 95

the score. Preventing such cases would likely lead to the previous
problem being more frequent.

We propose the following solution to handle the above issues: the prompt
template is changed, so the LLM proposes a population of 10 various
pipeline samples instead of a single one. All pipelines are being processed;
the model training result is evaluated. The pipeline with the best score is
then added to the prompt as a result of a whole iteration, and the next
population is generated. This approach requires more time to transform
the data and train the models and less time to get the response from the
LLM. With each population containing 10 samples, the balance between
LLM and algorithm time cost is maintained, thus reducing overall com-
putation time. It was also observed that the no-repetition instruction is
more strictly followed in response, producing unique results at the cost of
a larger portion of unsuitable ones.

3.6. Multi-step LLM prompting. It has been shown in [58] that many
tasks can be handled more efficiently by LLM if taken step by step. Feature
generation usually involves getting information on the data distribution
(e.g. mean, skewness, number of samples), share of missing values, etc.
Building a data transformation pipeline can be challenging without this
knowledge, even when handled by a human. A possible way for the LLM to
improve the quality of the proposed pipelines is to have some data insight
inside the prompt. It is known that direct instructions inside a prompt
may drastically improve the results. However, these results were previously
obtained manually. We propose a multi-step approach that operates as
follows: before the optimisation process, a single request to the LLM is
made, only once for each dataset. The prompt is structured as follows:

(1) experiment description;
(2) dataset description;
(3) dataset meta-features;
(4) instruction.

Prompt optimisation has been performed using the same method as pipeline
generation. A sample prompt for the Titanic dataset is given in Appen-
dix B. LLM response is expected to provide the data insights and possible
advice on the data transforms. However, the whole set of operations was
not included to reduce the prompt token number, making it less likely to
get such proposals. The general optimisation process is performed after
the dataset advice has been generated and added to the prompt.



96 I. L. IOV, N. O. NIKITIN

Table 3. OpenML datasets used for performance analysis,
characteristics and reasoning for pick.

Dataset Description

Titanic Multiple data types, many open examples on fea-
ture engineering

credit-g Simple numeric and nominal features, financial
domain

blood-transfusion- Small number of numeric features,
service-center healthcare domain

steel-plates-fault Large number of numeric features, high default
score of 0.98, engineering domain

monks-problems-2 Small set of nominal features, test dataset forML
algorithms

tic-tac-toe Dataset with simple analytical solution, nominal
features only

§4. Results

A total of 6 OpenML datasets were used to evaluate each method
proposed. Descriptions and specific characteristics are shown in Table 3.
Datasets listed are also used for feature generation in [28]. Classification
tasks were chosen for evaluation, but the method applies to other prob-
lems too. For each dataset, accuracy is evaluated. Different metrics can be
selected for optimisation.

The baseline result is gained from the random search optimisation.
Other optimisation strategies are also available. such as tabu search, simu-
lated annealing, genetic algorithms etc. However, the search space is small
enough for a random search to provide meaningful results. While other
methods are expected to overperform the random search in both the con-
vergence rate and final score, random search is considered an acceptable
baseline for the proof of concept. For each dataset, 25 iterations were
run, with 5 forming an irrelevant pipeline on average. For the rest of the
pipelines, the model training score is recorded together with the best result
achieved. For each optimisation step, the initial iteration score is used if
the current pipeline cannot be evaluated, as it can be replaced with the
default pipeline afterwards.



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 97

Figure 3. Optimisation results for the Random Search
data transformation pipeline optimisation. For each
dataset, the current result for the iteration is shown in
blue and the top result among the previous iterations is
shown in red. Best – the best score during optimisation,
σ – score standard deviation.

The results are shown in Fig. 3. For all datasets, we find some im-
provement during the optimisation process. While some datasets, such as
tic-tac-toe, do not benefit much from random search, the score may sub-
stantially increase for others, such as Titanic. The rise from 0.8 to 0.97
score means that the mentioned ’boat’ feature transformation has been
proposed. This transformation is reached at the 10th iteration on average,
meaning that other methods featuring LLM pipelines have to achieve at
least the same result during the smaller number of iterations. It is worth
mentioning that the standard deviation of the score is relatively high for
random search due to the random origin of the pipeline, and also there are
no gradual emerges as can be expected.

4.1. Single-proposal approach. The default optimisation scenario is
the single proposal method with the standard prompt defined in Section
3.3. To match the time spent on the optimisation, a total of 10 optimisation
iterations is used. The optimisation results are shown in Fig. 4.



98 I. L. IOV, N. O. NIKITIN

Figure 4. Optimisation results for the single-proposal
data transformation pipeline optimisation using an LLM
response. For each dataset, the current result for the it-
eration is shown in blue and the top result among the
previous iterations is shown in red. Best – the best score
during optimisation, σ – score standard deviation.

The standard method does not provide any notable increase in per-
formance: for all datasets it does not outperform the baseline. The stan-
dard deviation has decreased, and the score does not change over itera-
tions, meaning that the proposed pipelines change insignificantly. Sample
pipelines for the Titanic dataset can be found in Appendix C. Although
the initial structure varies and no errors occur during data processing,
several operations are omitted as they are irrelevant to the dataset. Most
meaningful operations are dropped for all datasets, leaving only the default
pipeline for model training and not improving the score. Some experiments
also end up with the same operations proposed on each iteration.

4.2. Population-based approach. The population approach allows the
optimiser not only to evaluate more pipelines using the same time but also
the LLM response is more diverse if multiple pipelines are generated at
the same time. As the most time-consuming operation is the LLM call,
mostly due to API limitations, the same number of iterations are used
during optimisation. The results are presented in Fig. 5.



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 99

Figure 5. Optimisation results for the population-
proposal data transformation pipeline optimisation using
an LLM response. For each dataset, the current result for
the iteration is shown in blue and the top result among
the previous iterations is shown in red. Best – the best
score during optimisation, σ – score standard deviation.

The highest performing result is usually achieved on the first iterations.
Almost no deviation is present in the scores, as only the best-performing
pipeline is recorded. It is worth mentioning also that the best and cur-
rent result graphs are almost the same for each dataset, meaning that the
previous top evaluation is also present at least once in the population. At
the same time, even on the last optimisation iterations, the populations
provided are diverse enough to support further exploration.

4.3. Multi-step optimisation. The data operations advice is generated
for each dataset as described in Section 3.6 to further improve the optimi-
sation efficiency. The results for single-proposal optimisation are shown in
Fig. 6 and Table 4.

There is no substantial improvement in single-proposal cases compared
to previous methods. To further analyze the method performance, for all
methods the top and average scores have been evaluated. The results are
shown in Table 5.



100 I. L. IOV, N. O. NIKITIN

Figure 6. Optimisation results for the multi-step single-
proposal data transformation pipeline optimisation using
an LLM response. For each dataset, the current result for
the iteration is shown in blue and the top result among
the previous iterations is shown in red. Best – the best
score during optimisation, σ – score standard deviation.

Table 4. Results for single-proposal evaluation.

Dataset Random Search Single Population
Avg Max Avg Max Avg Max

Titanic 0.798 0.973 0.8 0.805 0.912 0.973
credit-g 0.779 0.8 0.779 0.795 0.813 0.82
blood-transfusion-

service-center 0.723 0.753 0.723 0.746 0.755 0.773

steel-plates-fault 0.987 0.994 0.986 0.994 0.998 1.0
monks-problems-2 0.724 0.9 0.825 0.9 0.95 0.966
tic-tac-toe 0.902 0.958 0.942 0.947 0.937 0.937

The population-based approach demonstrates the top performance among
all others for all datasets except the tic-tac-toe. A notable increase in the
average and maximum score is obtained for the Titanic, steel-plates-fault
and monks-problems-2 datasets.



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 101

Table 5. Optimisation results for different methods for
each dataset.

Single multi-step Population multi-step
Avg Max Avg Max

Titanic 0.797 0.805 0.805 0.805
credit-g 0.78 0.79 0.789 0.795
blood-transfusion-

service-center 0.734 0.753 0.746 0.76

steel-plates-fault 0.97 0.992 0.995 1.0
monks-problems-2 0.794 0.909 0.895 0.9
tic-tac-toe 0.954 0.994 0.949 0.958

The population-based method does not provide any notable impact,
as the initial dataset advice does not change and limits the explorative
capabilities of the model. For single proposal cases, the effect of multi-step
optimisation may result in better initial pipelines, as the total number of
pipelines evaluated is fewer than the number evaluated in the population
method. If being compared, the multi-step approach for single-proposal
mode has at least the same performance in most cases and outperforms
the default method in 3 cases. As the prompt may be optimised further to
provide better data insight, multi-step optimisation may be more effective
for single-proposal cases.

§5. Conclusions and Discussions

The impact of different prompt parts has been estimated by manual
pipeline evaluation for each completion. The results lead to the conclusion
that black-box optimisation is the main source of improvement, while the
data description and even the direct instructions are less effective or may
even hinder the optimisation process.

The single-proposal optimisation does not notably outperform the ran-
dom search baseline due to poor pipeline variance and many errors in the
pipelines proposed. Simultaneously, the population of pipelines produced
at the same time results in more diverse pipelines proposed, assuring ex-
ploration and only the best pipeline is recorded and passed to the next
iteration, making the next pipelines less diverse, achieving exploitation on
later steps.



102 I. L. IOV, N. O. NIKITIN

Multi-step optimisation uses the same dataset insight and pipeline ad-
vice on each iteration, allowing the single-proposal method to find more
optimal solutions. Population-based method, at the same time, struggles
with exploration as the initial advice limits the pipeline diversity. We con-
clude that in the current stage, it is more efficient to use the multi-step
optimisation if the pipeline evaluation is time-consuming, and a good ini-
tial assumption is required. Otherwise, population generation is generally
more promising. It may also be assumed that some other dataset advice
format may result in acceptable results for the population-based method.
Using OPRO for both parts of the optimisation is, for now, viewed as the
most simple way to increase the feature engineering impact on the final
score.

Code and Data Availability. The code and data for all implemented al-
gorithms and experiments are available at the repository https://github.
com/AngrySigma/LAAFE

Appendix A. Default prompt example

You should perform a feature engineering for the provided dataset to
improve the performance of the model.
The output is an operation pipeline written as in PIPELINE EXAMPLE:
operation1(df_column)->operation2(df_column_1,
df_column_2)->operationN()
Empty brackets mean that operation is applied to all columns of the
dataset. Please, don’t use spaces between operations and inputs.
Name operations exactly as they are listed in initial message. Do
not add any other information to the output.
Add: Add two input columns together to a new column "add_{number of
previous add operations + 1}"
Mul: Multiply two input columns together to a new column
"mul_{number of previous mul operations + 1}"
FillnaMean: Fill missing values with mean inplace
Drop: Drop input columns inplace
LabelEncoding: Label encoding of categorical features. Inplace
operation
Dataset description will be provided further.
START DATASET DESCRIPTION
Dataset name: Titanic
The original Titanic dataset, describing the survival status of
individual passengers on the Titanic. The titanic data does not



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 103

contain information from the crew, but it does contain actual ages
of half of the passengers. The principal source for data about
Titanic passengers is the Encyclopedia Titanica. The datasets used
here were begun by a variety of researchers.
One of the original sources is Eaton and Haas (1994) Titanic:
Triumph and Tragedy, Patrick Stephens Ltd, which includes a
passenger list created by many researchers and edited by Michael
A. Findlay.
The variables on our extracted dataset are pclass, survived,

name, age, embarked, home.dest, room, ticket, boat, and sex.
pclass refers to passenger class (1st, 2nd, 3rd), and is a proxy
for socio-economic class. Age is in years, and some infants had
fractional values. The titanic2 data frame has no missing data and
includes records for the crew, but age is dichotomized at adult
vs. child. These data were obtained from Robert Dawson, Saint
Mary’s University, E-mail. The variables are pclass, age, sex,
survived. These data frames are useful for demonstrating many of
the functions in Hmisc as well as demonstrating binary logistic
regression analysis using the Design library. For more details and
references, see Simonoff, Jeffrey S (1997): The "unusual episode"
and a second statistics course. J Statistics Education, Vol. 5 No.
1.
Data columns: {0: [0 - pclass (numeric)], 1: [1 - survived
(nominal)], 2: [2 - name (string)], 3: [3 - sex (nominal)], 4: [4 -
age (numeric)], 5: [5 - sibsp (numeric)], 6: [6 - parch (numeric)],
7: [7 - ticket (string)], 8: [8 - fare (numeric)], 9: [9 - cabin
(string)], 10: [10 - embarked (nominal)], 11: [11 - boat (string)],
12: [12 - body (numeric)], 13: [13 - home.dest (string)]}
Data example:
pclass ... home.dest
0 1 ... St Louis, MO
1 1 ... Montreal, PQ / Chesterville, ON
2 1 ... Montreal, PQ / Chesterville, ON
3 1 ... Montreal, PQ / Chesterville, ON
4 1 ... Montreal, PQ / Chesterville, ON

[5 rows x 13 columns]
Target:
0 1
1 1
2 0
3 0



104 I. L. IOV, N. O. NIKITIN

4 0
Name: survived, dtype: category
Categories (2, object): [’0’ < ’1’]
END DATASET DESCRIPTION
Previous pipeline evaluations and corresponding metrics:
Initial evaluation: ’accuracy’: 0.8053435114503816,
Pipeline: FillnaMean(pclass)->Drop(name)->LabelEncoding(sex)
->FillnaMean(age)->FillnaMean(sibsp)->FillnaMean(parch)
->Drop(ticket)
Iteration 1: 0.8053435114503816, Pipeline:
Add(parent.child,fare)->Mul(sibsp,parch)
Based on the information provided, please choose the operations you
want to use in your pipeline and write them in the output format.
Operation inputs have to match the columns of the dataset. Please,
do not propose the pipelines already met in history.

Appendix B. Dataset advise prompt

You have a dataset with the following description. The task is
feature engineering for tabular datasets to improve the performance
of the machine learning model.
START DATASET DESCRIPTION
Dataset name: Titanic
The original Titanic dataset, describing the survival status of
individual passengers on the Titanic. The titanic data does not
contain information from the crew, but it does contain actual ages
of half of the passengers. The principal source for data about
Titanic passengers is the Encyclopedia Titanica. The datasets used
here were begun by a variety of researchers.
One of the original sources is Eaton & Haas (1994) Titanic: Triumph
and Tragedy, Patrick Stephens Ltd, which includes a passenger list
created by many researchers and edited by Michael A. Findlay.

The variables on our extracted dataset are pclass, survived,
name, age, embarked, home.dest, room, ticket, boat, and sex.
pclass refers to passenger class (1st, 2nd, 3rd), and is a proxy
for socio-economic class. Age is in years, and some infants had
fractional values. The titanic2 data frame has no missing data and
includes records for the crew, but age is dichotomized at adult
vs. child. These data were obtained from Robert Dawson, Saint
Mary’s University, E-mail. The variables are pclass, age, sex,
survived. These data frames are useful for demonstrating many of



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 105

the functions in Hmisc as well as demonstrating binary logistic
regression analysis using the Design library.
For more details and references, see Simonoff, Jeffrey S (1997):
The "unusual episode" and a second statistics course. J Statistics
Education, Vol. 5 No. 1.
Data columns: 0: [0 - pclass (numeric)], 1: [1 - survived
(nominal)], 2: [2 - name (string)], 3: [3 - sex (nominal)], 4: [4 -
age (numeric)], 5: [5 - sibsp (numeric)], 6: [6 - parch (numeric)],
7: [7 - ticket (string)], 8: [8 - fare (numeric)], 9: [9 - cabin
(string)], 10: [10 - embarked (nominal)], 11: [11 - boat (string)],
12: [12 - body (numeric)], 13: [13 - home.dest (string)]
Data example:
pclass ... home.dest
0 1 ... St Louis, MO
1 1 ... Montreal, PQ / Chesterville, ON
2 1 ... Montreal, PQ / Chesterville, ON
3 1 ... Montreal, PQ / Chesterville, ON
4 1 ... Montreal, PQ / Chesterville, ON

[5 rows x 13 columns]
Target:
0 1
1 1
2 0
3 0
4 0
Name: survived, dtype: category
Categories (2, object): [’0’ < ’1’]
END DATASET DESCRIPTION
Dataset qualities:
’AutoCorrelation’: 0.6062691131498471,
’ClassEntropy’: 0.959422170862815,
’Dimensionality’: 0.0106951871657754,
’EquivalentNumberOfAtts’: 8.338046296490324,
’MajorityClassPercentage’: 61.80290297937356,
’MajorityClassSize’: 809.0,
’MaxAttributeEntropy’: 1.1534325740767195,
’MaxKurtosisOfNumericAtts’: 27.027986349441676,
’MaxMeansOfNumericAtts’: 160.8099173553719,
’MaxMutualInformation’: 0.20550487272008,
’MaxNominalAttDistinctValues’: 3.0,
’MaxSkewnessOfNumericAtts’: 4.367709134122926,



106 I. L. IOV, N. O. NIKITIN

’MaxStdDevOfNumericAtts’: 97.6969219960031,
’MeanAttributeEntropy’: 1.0463713372687837,
’MeanKurtosisOfNumericAtts’: 11.031689239559626,
’MeanMeansOfNumericAtts’: 37.86088226053372,
’MeanMutualInformation’: 0.11506558452028,
’MeanNoiseToSignalRatio’: 8.093695057746512,
’MeanNominalAttDistinctValues’: 2.3333333333333335,
’MeanSkewnessOfNumericAtts’: 1.9636285454084217,
’MeanStdDevOfNumericAtts’: 27.769024103336104,
’MinAttributeEntropy’: 0.9393101004608482,
’MinKurtosisOfNumericAtts’: -1.3150788243435427,
’MinMeansOfNumericAtts’: 0.38502673796791437,
’MinMutualInformation’: 0.02462629632048,
’MinNominalAttDistinctValues’: 2.0,
’MinSkewnessOfNumericAtts’: -0.5986471102803975,
’MinStdDevOfNumericAtts’: 0.837836018970125,
’MinorityClassPercentage’: 38.19709702062643,
’MinorityClassSize’: 500.0,
’NumberOfBinaryFeatures’: 2.0,
’NumberOfClasses’: 2.0,
’NumberOfFeatures’: 14.0,
’NumberOfInstances’: 1309.0,
’NumberOfInstancesWithMissingValues’: 1309.0,
’NumberOfMissingValues’: 3855.0,
’NumberOfNumericFeatures’: 6.0,
’NumberOfSymbolicFeatures’: 3.0,
’PercentageOfBinaryFeatures’: 14.285714285714285,
’PercentageOfInstancesWithMissingValues’: 100.0,
’PercentageOfMissingValues’: 21.035687002073555,
’PercentageOfNumericFeatures’: 42.857142857142854,
’PercentageOfSymbolicFeatures’: 21.428571428571427,
’Quartile1AttributeEntropy’: 0.9393101004608482,
’Quartile1KurtosisOfNumericAtts’: -1.269309018679956,
’Quartile1MeansOfNumericAtts’: 0.47039724980901376,
’Quartile1MutualInformation’: 0.02462629632048,
’Quartile1SkewnessOfNumericAtts’: -0.0808576659180329,
’Quartile1StdDevOfNumericAtts’: 0.8586292112546657,
’Quartile2AttributeEntropy’: 1.0463713372687837,
’Quartile2KurtosisOfNumericAtts’: 10.095100729172625,
’Quartile2MeansOfNumericAtts’: 16.08800805071377,
’Quartile2MutualInformation’: 0.11506558452028,
’Quartile2SkewnessOfNumericAtts’: 2.0383750450744884,



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 107

’Quartile2StdDevOfNumericAtts’: 7.727579045259853,
’Quartile3AttributeEntropy’: 1.1534325740767195,
’Quartile3KurtosisOfNumericAtts’: 22.91280574039027,
’Quartile3MeansOfNumericAtts’: 65.17408879985216,
’Quartile3MutualInformation’: 0.20550487272008,
’Quartile3SkewnessOfNumericAtts’: 3.9750925407229336,
’Quartile3StdDevOfNumericAtts’: 63.24323167838142,
’StdvNominalAttDistinctValues’: 0.5773502691896258
Now you should perform the first step. Please, provide the data
insightsand possible meta-features to get a better data processing
pipeline. You can also directly advise on the operations. Please,
only give brief textual advice, avoid using code or anything else.
You should fit in the limit of 500 characters.

Appendix C. Sample data transformation proposals for
Titanic dataset

1) Add(age,sibsp)->Add(parch,fare)->Drop(room)
->LabelEncoding (embarked)->LabelEncoding(sex)
2) Add(parch,fare)->Drop(room)->LabelEncoding(embarked)
->LabelEncoding(sex)->FillnaMean(body)
3) LabelEncoding(sex)->LabelEncoding(embarked)->Add(age,sibsp)
->Add(parch,fare)
4) LabelEncoding(embarked)->OneHotEncoding(sex)
5) Add(parch,fare)->LabelEncoding(embarked)->LabelEncoding(sex)
->FillnaMean(body)
6) Add(sibsp,parch)->Add(parch,fare)->LabelEncoding(embarked)
->LabelEncoding(sex)->FillnaMean(body)
7) Add(age,sibsp)->Add(parch,fare)->LabelEncoding(embarked)
->LabelEncoding(sex)->FillnaMean(body)->Minmax()
8) OneHotEncoding(sex)->FillnaMean(body)->Minmax()
9) Pca(pclass,age,sibsp)->Pca(pclass,age,parch,fare)
10) Drop(body)->Pca(pclass,age,sibsp)

Pipelines after omitting the irrelevant operations from:
1) Add(age,sibsp)->Add(parch,fare)->LabelEncoding(embarked)

->LabelEncoding(sex)
2) Add(parch,fare)->LabelEncoding(embarked)->LabelEncoding(sex)
->FillnaMean(body)
3) LabelEncoding(sex)->LabelEncoding(embarked)->Add(age,sibsp)
->Add(parch,fare)
4) LabelEncoding(embarked)->OneHotEncoding(sex)



108 I. L. IOV, N. O. NIKITIN

5) Add(parch,fare)->LabelEncoding(embarked)->LabelEncoding(sex)
->FillnaMean(body)
6) Add(sibsp,parch)->Add(parch,fare)->LabelEncoding(embarked)
->LabelEncoding(sex)->FillnaMean(body)
7) Add(age,sibsp)->Add(parch,fare)->LabelEncoding(embarked)
->LabelEncoding(sex)->FillnaMean(body)
8) OneHotEncoding(sex)->FillnaMean(body)
9) –
10) Drop(body)

References
1. A. Doke and M. Gaikwad, Survey on Automated Machine Learning (AutoML)

and Meta Learning, in: 2021 12th International Conference on Computing Com-
munication and Networking Technologies (ICCCNT) (2021), pp. 1–5.

2. B. Collins, J. Deng, K. Li, and L. Fei-Fei, Towards Scalable Dataset Construction:
An Active Learning Approach, in: Proc. Computer Vision–ECCV 2008, 10th Eu-
ropean Conference on Computer Vision, Marseille, France, October 12-18, 2008,
Part I (2008), pp. 86–98.

3. N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, SMOTE: Synthetic Minority
Over-Sampling Technique. — J. Artif. Intell. Res. 16 (2002), 321–357.

4. S. Krishnan, M. Franklin, K. Goldberg, and E. Wu, BoostClean: Automated Error
Detection and Repair for Machine Learning, ArXiv preprint arXiv:1711.01299
(2017).

5. S. Krishnan and E. Wu, AlphaClean: Automatic Generation of Data Cleaning
Pipelines, ArXiv preprint arXiv:1904.11827 (2019).

6. S. Marcel and Y. Rodriguez, Torchvision: The Machine-Vision Package of Torch,
in: Proceedings of the 18th ACM International Conference on Multimedia (2010),
pp. 1485–1488.

7. A. Jung, ImgAug Documentation, readthedocs.io, Jun. 25, 2019 (2019).
8. A. Buslaev, V. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A.

Kalinin, Albumentations: Fast and Flexible Image Augmentations. — Inf. 11, 125
(2020).

9. M. Munson, A Study on the Importance of and Time Spent on Different Modeling
Steps. — ACM SIGKDD Explor. Newsl. 13 (2012), 65–71.

10. A. Maćkiewicz andW. Ratajczak, Principal Components Analysis (PCA). — Com-
put. Geosci. 19 (1993), 303–342.

11. P. Xanthopoulos, P. Pardalos, and T. Trafalis, Linear Discriminant Analysis, in:
Robust Data Mining (2013), pp. 27–33.

12. X. Chu, J. Morcos, I. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye, KATARA:
A Data Cleaning System Powered by Knowledge Bases and Crowdsourcing, in:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (2015), pp. 1247–1261.



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 109

13. M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, Auto-sklearn
2.0: Hands-Free AutoML via Meta-Learning. — J. Mach. Learn. Res. 23 (2022),
11936–11996.

14. N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola,
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data, ArXiv
preprint arXiv:2003.06505 (2020).

15. A. Vakhrushev, A. Ryzhkov, M. Savchenko, D. Simakov, R. Damdinov, and A.
Tuzhilin, LightAutoML: AutoML Solution for a Large Financial Services Ecosys-
tem, ArXiv preprint arXiv:2109.01528 (2021).

16. R. Hyndman and Y. Khandakar, Automatic Time Series Forecasting: The Forecast
Package for R. — J. Stat. Softw. 27 (2008), 1–22.

17. H. Li, S. Yu, and J. Pr̀incipe, Deep Deterministic Independent Component Analy-
sis for Hyperspectral Unmixing, in: ICASSP 2022—IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) (2022), pp. 3878–3882.

18. I. Polonskaia, N. Nikitin, I. Revin, P. Vychuzhanin, and A. Kalyuzhnaya, Multi-
Objective Evolutionary Design of Composite Data-Driven Models, in: 2021 IEEE
Congress on Evolutionary Computation (CEC) (2021), pp. 926–933.

19. R. Olson and J. Moore, TPOT: A Tree-Based Pipeline Optimization Tool for
Automating Machine Learning, in: Workshop on Automatic Machine Learning
(2016), pp. 66–74.

20. N. Nikitin, P. Vychuzhanin, M. Sarafanov, I. Polonskaia, I. Revin, I. Barabanova,
G. Maximov, A. Kalyuzhnaya, and A. Boukhanovsky, Automated Evolutionary
Approach for the Design of Composite Machine Learning Pipelines. — Future
Gener. Comput. Syst. (2021).

21. H. Song, AutoFE: Efficient and Robust Automated Feature Engineering, Mas-
sachusetts Institute of Technology, 2018.

22. T. Swearingen, W. Drevo, B. Cyphers, A. Cuesta-Infante, A. Ross, and K. Veera-
machaneni, ATM: A Distributed, Collaborative, Scalable System for Automated
Machine Learning, in: 2017 IEEE International Conference on Big Data, Boston,
MA, USA (2017), pp. 151–162.

23. E. LeDell and S. Poirier, H2O AutoML: Scalable Automatic Machine Learning,
in: 7th ICML Workshop on Automated Machine Learning (AutoML) (2020).

24. Microsoft, Neural Network Intelligence, 2021. Available at: https://github.com/
microsoft/nni.

25. C. Wang, X. Chen, C. Wu, and H. Wang, AutoTS: Automatic Time Se-
ries Forecasting Model Design Based on Two-Stage Pruning, ArXiv preprint
arXiv:2203.14169 (2022).

26. M. Nasir, S. Earle, J. Togelius, S. James, and C. Cleghorn, LLMatic: Neural Ar-
chitecture Search via Large Language Models and Quality-Diversity Optimization,
ArXiv preprint arXiv:2306.01102 (2023).

27. H. Dong, Y. Gao, H. Wang, H. Yang, and P. Zhang, Heterogeneous Graph Neural
Architecture Search with GPT-4, ArXiv preprint arXiv:2312.08680 (2023).

28. N. Hollmann, S. Müller, and F. Hutter, CAAFE: Combining Large Language Mod-
els with Tabular Predictors for Semi-Automated Data Science, in: 1st Workshop
on the Synergy of Scientific and Machine Learning Modeling @ ICML 2023 (2023).



110 I. L. IOV, N. O. NIKITIN

29. Achiam, J. et al., GPT-4 Technical Report, ArXiv preprint arXiv:2303.08774
(2023).

30. C. Yang, X. Wang, Y. Lu, H. Liu, Q. Le, D. Zhou, and X. Chen, Large Language
Models as Optimizers, ArXiv preprint arXiv:2309.03409 (2023).

31. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale, and Others, Llama 2: Open Foundation and
Fine-Tuned Chat Models, ArXiv preprint arXiv:2307.09288 (2023).

32. A. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. Chaplot,
D. Casas, E. Hanna, F. Bressand, and Others, Mixtral of Experts, ArXiv preprint
arXiv:2401.04088 (2024).

33. G. Zhu, S. Jiang, X. Guo, C. Yuan, and Y. Huang, Evolutionary Automated Feature
Engineering, in: Pacific Rim International Conference on Artificial Intelligence
(2022), pp. 574–586.

34. B. Hilprecht, C. Hammacher, E. Reis, M. Abdelaal, and C. Binnig, DiffML: End-
to-End Differentiable ML Pipelines, in: Proceedings of the Seventh Workshop on
Data Management for End-to-End Machine Learning (2023), pp. 1–7.

35. R. Bonidia, A. Santos, B. Almeida, P. Stadler, U. Rocha, D. Sanches, and A. Car-
valho, BioAutoML: Automated Feature Engineering and Meta-Learning to Predict
Noncoding RNAs in Bacteria. — Brief. Bioinform. 23, bbac218 (2022).

36. G. Zhu, Z. Xu, C. Yuan, and Y. Huang, DIFER: Differentiable Automated Feature
Engineering, in: International Conference on Automated Machine Learning (2022),
pp. 1–17.

37. J. Stone, Independent Component Analysis: A Tutorial Introduction, MIT Press,
2004.

38. L. Saul and S. Roweis, An Introduction to Locally Linear Embedding, Unpublished.
Available at: http://www.cs.toronto.edu/~roweis/lle/publications.html.

39. H. Rakotoarison, L. Milijaona, A. Rasoanaivo, M. Sebag, and M. Schoenauer,
Learning Meta-Features for AutoML, in: ICLR 2022—International Conference on
Learning Representations (Spotlight) (2022).

40. V. Lopes, A. Gaspar, L. Alexandre, and J. Cordeiro, An AutoML-Based Approach
to Multimodal Image Sentiment Analysis, in: 2021 International Joint Conference
on Neural Networks (IJCNN) (2021), pp. 1–9.

41. C. Xue, J. Yan, R. Yan, S. Chu, Y. Hu, and Y. Lin, Transferable AutoML by Model
Sharing over Grouped Datasets, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2019), pp. 9002–9011.

42. S. Chang, C. Wang, and C. Wang, Automated Feature Engineering for Fraud
Prediction in Online Credit Loan Services, in: 2022 13th Asian Control Conference
(ASCC) (2022), pp. 738–743.

43. A. Fatima, F. Khan, A. Raza, and A. Kamran, Automated Feature Synthesis from
Relational Database for Data Science Related Problems, in: 2018 International
Conference on Frontiers of Information Technology (FIT) (2018), pp. 71–75.

44. U. Khurana, D. Turaga, H. Samulowitz, and S. Parthasrathy, Cognito: Automated
Feature Engineering for Supervised Learning, in: 2016 IEEE 16th International
Conference on Data Mining Workshops (ICDMW) (2016), pp. 1304–1307.



USING LLMS FOR FEATURE ENGINEERING IN AUTOML 111

45. G. Katz, E. Shin, and D. Song, ExploreKit: Automatic Feature Generation and
Selection, in: 2016 IEEE 16th International Conference on Data Mining (ICDM)
(2016), pp. 979–984.

46. U. Khurana, H. Samulowitz, and D. Turaga, Feature Engineering for Predictive
Modeling Using Reinforcement Learning, in: Proceedings of the AAAI Conference
on Artificial Intelligence 32 (2018).

47. F. Nargesian, H. Samulowitz, U. Khurana, E. Khalil, and D. Turaga, Learning
Feature Engineering for Classification, in: IJCAI (2017), pp. 2529–2535.

48. G. Borboudakis and I. Tsamardinos, Extending Greedy Feature Selection Algo-
rithms to Multiple Solutions. — Data Min. Knowl. Discov. 35 (2021), 1393–1434.

49. H. Li, T. Fu, J. Dai, H. Li, G. Huang, and X. Zhu, AutoLoss-Zero: Searching Loss
Functions from Scratch for Generic Tasks, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2022), pp. 1009–1018.

50. C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown, Auto-WEKA: Combined
Selection and Hyperparameter Optimization of Classification Algorithms, in: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2013), pp. 847–855.

51. H. Jin, Q. Song, and X. Hu, Auto-Keras: An Efficient Neural Architecture Search
System, in: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2019), pp. 1946–1956.

52. V. Dodballapur, R. Calisa, Y. Song, andW. Cai, Automatic Dropout for Deep Neu-
ral Networks, in: Neural Information Processing: 27th International Conference,
ICONIP 2020, Bangkok, Thailand, November 23–27, 2020, Proceedings, Part III
(2020), pp. 185–196.

53. F. Horn, R. Pack, and M. Rieger, The AutoFeat Python Library for Automated
Feature Engineering and Selection, in: Machine Learning and Knowledge Discov-
ery in Databases: International Workshops of ECML PKDD 2019, Würzburg, Ger-
many, September 16–20, 2019, Proceedings, Part I (2020), pp. 111–120.

54. L. Dhamo, F. Carulli, P. Nickl, K. Wegner, V. Hodoroaba, C. Würth, S. Brovelli,
and U. Resch-Genger, Efficient Luminescent Solar Concentrators Based on En-
vironmentally Friendly Cd-Free Ternary AIS/ZnS Quantum Dots. — Adv. Opt.
Mater. 9 (2021), 2100587.

55. S. Mirchandani, F. Xia, P. Florence, B. Ichter, D. Driess, M. Arenas, K. Rao,
D. Sadigh, and A. Zeng, Large Language Models as General Pattern Machines
(2023).

56. M. Feurer, J. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Mueller,
J. Vanschoren, and F. Hutter, OpenML-Python: An Extensible Python API for
OpenML, ArXiv preprint arXiv:1911.02490 (2020).

57. S. LaValle, M. Branicky, and S. Lindemann, On the Relationship Between Classical
Grid Search and Probabilistic Roadmaps. — Int. J. Robot. Res. 23 (2004), 673–692.

58. J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le,
and D. Zhou, Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models (2023).

59. L. Prokhorenkova, G. Gusev, A. Vorobev, A. Dorogush, and A. Gulin, CatBoost:
Unbiased Boosting with Categorical Features (2019).



112 I. L. IOV, N. O. NIKITIN

60. T. Ho, Random Decision Forests, in: Proceedings of the 3rd International Confer-
ence on Document Analysis and Recognition (1995), pp. 278–282.

61. C. Cortes and V. Vapnik, Support-Vector Networks. — Mach. Learn. 20 (1995),
273–297.

62. X. He, K. Zhao, and X. Chu, AutoML: A Survey of the State-of-the-Art. — Knowl.
Based Syst. 212 (2021), 106622.

Поступило 15 ноября 2024 г.ITMO University, St. Petersburg, Russia
E-mail : illariov1809@gmail.com

ITMO University, St. Petersburg, Russia
E-mail : nicl.nno@gmail.com


