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Abstract. As regulatory and ethical demands for data privacy and
the right to be forgotten increase, the ability to effectively unlearn
specific data points from machine learning models without retrain-
ing from scratch becomes paramount. Machine unlearning aims to
efficiently eliminate the influence of certain data points on a model.
We propose the UnGAN, a novel approach to machine unlearning
that leverages Generative Adversarial Networks (GANs) to address
the growing need for efficient and reliable data removal from trained
models. UnGAN proposes a unique unlearning strategy through
membership inference, where a discriminator network is trained to
identify whether a given input was part of the model’s training set.
The discriminator is a three-layer fully connected network employing
ReLU activation functions, receiving inputs from the output of the
model undergoing unlearning and the class label. This architecture
enables the discriminator to learn the membership status of data
points with high precision, thereby guiding the unlearning process.

1. Introduction

Recently, neural network-based algorithms have achieved remarkable
success in many areas of machine learning (ML), including natural lan-
guage processing [1], computer vision [2] and generative artificial intelli-
gence [3]. To achieve such success, neural networks have had to significantly
increase in size; the largest architectures now have billions of parameters
[4]. As a consequence, ML algorithms have become able to remember spe-
cific training samples, possibly threatening the privacy of personal infor-
mation, especially in cases related to finances and healthcare. Since it may
now be possible to find out whether a particular sample belongs to the
training set of a model [5, 6], it has become crucial to remove certain
data samples from ML models and systems on request [7] to avoid privacy
violations.
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Unfortunately, data removal from ML systems is a challenging task: it is
not enough to delete the data record from a training database because the
model itself is prone to memorizing the data. To satisfy the user’s right “to
be forgotten”, the process of unlearning has to be applied to the model.
Importantly, unlearning of a specific data record should satisfy several
crucial properties: (i) it should not affect the performance of the model
on the data that should not be removed, (ii) should be verifiable, i.e., an
end-user should have a mechanism to verify that their data is removed
from the ML system, and (iii) should not be costly, i.e., should not require
the full retraining of the model.

In this work, we propose UnGAN, an approach to machine unlearning
that interprets training item removal as an adversarial game: given the
training dataset D, the forget set Df , the retain set Dr = D \ Df and the
hold-out unseen dataset Du, the initial model Ĝ is fine-tuned to have sim-
ilar behavior on Du and Df while retaining its predictions on Dr. At the
same time, a separate small discriminative network D is trained to distin-
guish between D and Du. To assess the efficiency of the proposed approach,
we conduct the membership inference attack (MIA) on the modified model
Ĝ: intuitively, if the training item removal is successful, the membership
inference attack should indicate that the set Df ∪Du is not part of D, but
that the set Dr is part of D.

Our contributions can be summarized as follows:
• we propose an approach for machine unlearning that leverages an

auxiliary generative adversarial network;
• we compare the proposed method to the baselines and experimentally

show that it is effective both in terms of the success of the item removal
task and computation time;
• to assess the quality of the proposed method, we evaluate the effective-

ness of the membership inference attack on the unlearned model, showing
that the performance of the proposed approach is comparable to the gold
standard of machine unlearning – the full retraining of the model.

2. Related Work

2.1. Machine Unlearning. Machine unlearning was formulated as a
data-forgetting algorithm in statistical query learning [19]. Brophy and
Lowd [21] introduced a variant of random forests that supports data for-
getting with minimal retraining. Data deletion in k-means clustering was
studied in [10, 18]. The results in [11] give a certified information removal
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framework based on Newton’s update removal mechanism for convex learn-
ing problems. The data removal is certified using a variation of the differ-
ential. Another notable solution [13] presents a projective residual update
method to delete data points from linear models. A method to hide the
class information from the output logits is presented in [12]. This, how-
ever, does not remove the information present in the network weights.
Unlearning in a Bayesian setting using variational inference is explored
for regression and Gaussian processes in [15]. The authors of [14] study
the results of a gradient descent-based approach to unlearning in convex
models. All these methods are designed for convex problems, whereas we
aim to present an unlearning solution for deep learning models.

Efforts to facilitate unlearning have also considered the strategic seg-
mentation of training data, thereby allowing for easier data disassociation
and minimizing its impact on the learning process [17, 16]. Such strategies,
however, lead to considerable storage requirements due to the necessity to
maintain various model and gradient snapshots to achieve effective un-
learning. These techniques are designed to be agnostic to the learning al-
gorithm employed and rely on an efficient partitioning of training data. In
addition, they involve retraining certain model segments, contrary to our
goal of devising an unlearning method that incurs no additional memory
costs. Gupta et al. [23] have put forward a strategy for managing a series
of adaptive deletion requests, presenting a new direction in this field.

2.2. Generative Adversarial Networks. Generative adversarial neu-
ral networks (GANs) [8] are well known for their ability to reproduce com-
plex data distributions through optimization of min-max loss. It consists
of two parts: Generator and Discriminator. The goal of the discriminator is
to distinguish between real and generated samples. It is done by maximiz-
ing discriminator scores for input corresponding to real data distribution
and minimizing them for the generated one. In contrast, the generator
tries to fool the discriminator by maximizing its score for fake samples.
Finally, the generator output distribution becomes close to the real one.
Min-max objectives could be formulated in different ways, leading to a va-
riety of GAN types. Basic GAN minimizes the Jensen–Shannon divergence
between real and fake samples but may suffer from mode collapse, when
the same class outputs are generated by different inputs from the input
space [30]. This problem was solved in [31] by training GAN (CGAN) in a
class-conditional manner. Despite being a simple technique, it has proven
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to be sufficient prevent mode collapse. Another disadvantage of the ba-
sic Wasserstein generative adversarial networks is the problem of biased
sample gradients. This issue was fixed in [35] by integrating the Cramer
distance into the vanilla Wasserstein GAN.

2.3. Membership Inference Attacks. The goal of a membership in-
ference attack (MIA) is to determine whether a particular sample was used
to train the target model or not [24]. Machine learning models of different
architectures tend to be vulnerable to this attack. Hence, MIAs have be-
come one of the most widely studied classes of privacy attacks [25]. The
majority of works on membership inference attacks leverage the informa-
tion about the model’s loss [26], confidence [27], or entropy [28]. Since
membership inference attack is the detection problem, one of the most
important questions is how to evaluate different MIAs approaches. It was
recently claimed [6] that the correct way to evaluate the effectiveness of
the attack is to compute true positive rates on low false positive rates.
Another way to conduct membership inference attacks is to leverage like-
lihood ratio attack (LiRA) [6]. In a nutshell, given the test target model
Ĝ, its unknown training dataset D, a sample of interest (x, y) and test
statistic s(x, y), LiRA performs hypothesis test between two hypotheses:
H0 : (x, y) /∈ D, H1 : (x, y) ∈ D. It is known [29] that the optimal hy-
pothesis test is based on computing the likelihood ratio of the test statistic
under the null and alternative hypothesis. Since the exact likelihoods are
unknown, they are estimated based on the values of s(x, y) computed by
the collection of the shadow models [5, 6].

3. Method

Suppose that the entire dataset D is split into two non-intersecting
subsets: the forget set Df and the retain set Dr. Given a model Ĝ trained
on the whole set D, the goal of the machine unlearning task is to obtain a
model G that performs on the subset Df as the model Ĝ on the hold-out
dataset Du /∈ D, but at the same time performs as Ĝ on the dataset Dr.

To evaluate an unlearning approach, one can measure the distance be-
tween model output distributions obtained on unseen set and forget set,
ρGu = ρ(G(Du)) and ρGf = ρ(G(Df )), respectively. Notably, the smaller the
distance d(ρGu , ρGf ), the more similar the performance of model G on Df to
the performance of Ĝ on Du. There are several known options to measure
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the distance between two probability distributions, including the Kull-
back–Leibler (KL) divergence, Jensen-Shannon divergence (JSD), Wasser-
stein distance, and Cramer distance.

In our work, we use Wasserstein and Cramer distances, since the KL
divergence and JSD are not everywhere differentiable functions (for a lo-
cally Lipschitz function G, [9]). The practical definition of p-Wasserstein
distance Wp is the following:

Wp(P,Q) =

 1∫
0

∣∣∣F−1P (u)− F−1Q (u)
∣∣∣p du

1/p

, (1)

where FP is the cumulative distribution function of the distribution P .
In practice, the distribution P is represented by set of samples PM =
{X}Mm=1. Thus, to approximate the distribution P via parametric distri-
bution Qθ the expression from Eq. (1) is minimized with the inverse cumu-
lative distribution function of P replaced with its empirical counterpart.

To speed up the convergence of the parametric distribution Qθ to the
empirical counterpart PM of an unknown distribution P, we use Cramer
distance lp(P,Q) in the form

CramerDistance(P,Q) =

 +∞∫
−∞

|FP (x)− FQ(x)|p dx

1/p

. (2)

Gradients of the Cramer distance are unbiased [35], namely,

∇θCramerDistance(P,Qθ) = EX∇θCramerDistance(PM , Qθ). (3)

To perform the machine unlearning task removal, we minimize the dis-
tance defined in (2). We formulate this minimization in the context of
training a separate Generative Adversarial Network (GAN).

3.1. UnGAN – Unlearning via GAN. In general, GAN is trained to
reproduce some complex distribution ρx by finding optimal generator G∗
such that the distribution ρ(G(z)) is approximately equal to ρx:

G∗ = argmin
G

CramerDistance(ρG(z), ρx), (4)

where ρx represents the distribution of the real data, and z ∼ ρz, where
ρz represents the distribution of the generator’s input data.
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Figure 1. Illustration of the proposed method. Given the
original frozen model Ĝ trained on some dataset D, the
hold-out unseen dataset Du : Du ∩ D = ∅, the forget set
Df ⊂ D, the retain dataset Dr = D \ Df , our approach
is to train a separate (generator) model G to (i) retain
the behavior of Ĝ on dataset Dr while (ii) achieving the
same behavior on the dataset Df as on Du, while train-
ing a separate (discriminator) network D to distinguish
between the outputs of generator on sets Du and Df . In
the notation, “|” denotes concatenation.

An explicit calculation of the Cramer distance is infeasible. However,
using the surrogate energy functional [35] in the form

G∗ = argmin
G

d(ρG(z), ρx) = argmin
G

[Ex∼ρxf∗(x)− Ez∼ρzf∗(G(z))] (5)

yields an optimization problem with the same solution as (4). Here, f∗(x) =
Ez′∼ρz‖x−G(z′)‖2 − Ex′∼ρx‖x− x′‖2 is the critic function.

According to [35], when the raw data representations are transformed
into embeddings, it may prevent the overfitting to empirical data distribu-
tion. In practice, the training of the embedding function D by maximizing
the Cramer distance yields more diverse embeddings.

In the setting of UnGAN, the real data samples zu are the outputs of the
initial model Ĝ on unseen dataset Du. Similarly, the fake data samples zf
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are the outputs of the generator model G on the forget dataset Df . Hence,
the generator objective is to minimize the Cramer distance between the
outputs of the initial model on samples from D(zu) and the outputs of the
generator on samples from D(zf ):

G∗ = argmin
G
‖D(zu)−D(zf )‖2+‖D(zu)−D(z′f )‖2−‖D(zf )−D(z′f )‖. (6)

Here, zf = G(xf ) and z′f = G(x′f ), where xf ∼ Df and x′f ∼ Df . The ob-
jective of the critic function is to maximize the Cramer distance Lsurrogate

between samples from Du and samples from Df :

D∗ = argmin
D

[−Lsurrogate + λ(‖∇ẑD(ẑ)‖2 − 1)] . (7)

Here, λ > 0 is the regularization coefficient, ẑ = εzu + (1− ε)zf , for some
ε ∼ U(0, 1), and the surrogate loss has the form

Lsurrogate

= ‖D(zu)−D(z′f )‖2 + ‖D(zf )‖2 − ‖D(zf )−D(z′f )‖2 − ‖D(zu)‖2. (8)

Importantly, both densities ρGf and ρGu depend [32] on the generator
G. Thus, the problem of mode collapse arises as it produces the same
output for different inputs. To overcome this problem, we copy and freeze
the initial model (denoted as Ĝ) to use it to compute the density ρĜu . We
use the Conditional GAN (CGAN) training pipeline in our experimental
setup.

It is important to keep the performance of the unlearned model G on
the retain subset Dr. This is done by introducing the Cross-Entropy (CE)
term and Kullback-Leibler term (KL) into the generator objective:

G∗ = argmin
G

max
D

[
CramerDistance(D(ρGf ), D(ρĜu ))

+ αCE(G(xr), yr) + γKL(ρGr , ρ
Ĝ
r )
]
. (9)

Here α > 0 and γ > 0 are the parameters that control the trade-off between
model performance on the retain set and the forget set, xr ∼ Dr is the
sample from the retain set, and yr – is the true label corresponding to the
sample. An illustration of the pipeline is presented in Figure 1. The details
of the training algorithm are presented in Algorithm 1.
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Algorithm 1 The UnGAN Algorithm

Input: Initial model Ĝ trained on dataset D, forget set Df ⊂ D, retain
set Dr = D \ Df , and unseen dataset Du, where Du ∩ D = ∅.
Output: Model G∗ unlearned on forget set Df .
Initialize generator G aiming to approximate function Ĝ on Dr and alter
its behavior on Df .
Initialize discriminator D, aiming to distinguish between G’s outputs on
Df and Ĝ’s outputs on Du.
for n = 0...Ne do

for i = 0...Td do
D ← DISCRIMINATOR-STEP(D,G, Ĝ,Df ,Du)

end for
for i = 0...Tg do

G← GENERATOR-STEP(D,G,Df )
end for
for i = 0...Tf do

G← FINE-TUNING-STEP(D,G, Ĝ,Dr)
end for

end for

4. Experiments

To evaluate the proposed method, we conduct experiments on the CIFAR-
10 image classification dataset [20]. In our experiments, we use ResNet18
[22] that is trained on the whole training dataset D as the initial model Ĝ
and a 3-layer fully connected network as the discriminator model D.

4.1. Dataset Split. Complexity of the item removal machine unlearning
task depends on the ratio κ =

|Df |
|Dr| of sizes of the sets Df and Dr. Intu-

itively, the smaller the value of κ, the more reasonable it is to use machine
unlearning, while for larger values of κ it becomes more reasonable to re-
train the whole model. In our experimental setup, we fix κ = 5/95 i.e. the
forget set Df represents a random 5% of the initial training set D.

4.2. Membership Inference Attack as an Evaluation Tool. To eval-
uate the proposed method, we perform the online membership inference
attack (MIA) [6] on the unlearned model G to determine the membership
statuses of samples from Dr and Df .
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Algorithm 2 DISCRIMINATOR-STEP

Input: Discriminator D with weights ωD, generator G, initial model Ĝ,
forget set Df , unseen set Du, learning rate µ
Output: Updated discriminator D
Sample (xu, yu) ∈ Du − sample from unseen set
Sample (xf , yf ), (x′f , y

′
f ) ∈ Df − two independent samples

Sample ε ∼ Uniform(0, 1) a random number
zf ← (G(xf ) | yf )
z′f ← (G(x′f ) | y′f )
zu ← (Ĝ(xu) | yu)
ẑ ← εzu + (1− ε)zf
f(z) = ‖D(z)−D(z′f )‖2 − ‖D(z)‖2
Lsurrogate = f(zu)− f(zf )
LD = −Lsurrogate + λ(‖∇ẑD(ẑ)‖2 − 1)
ωD ← ωD − µ∇ωD

LD

Algorithm 3 GENERATOR-STEP

Input: Discriminator D, generator G with weights ωG, initial model Ĝ,
forget set Df , unseen set Du, learning rate µ
Output: Updated generator G
Sample (xu, yu) ∈ Du − sample from unseen set
Sample (xf , yf ), (x′f , y

′
f ) ∈ Df − two independent samples

zf ← (G(xf ) | yf )
z′f ← (G(x′f ) | y′f )
zu ← (Ĝ(xu) | yu)
LG = ‖D(zu)−D(zf )‖2 + ‖D(zu)−D(z′f )‖2 − ‖D(zf )−D(z′f )‖2
ωG ← ωG − µ∇ωG

LG

Namely, we create k shadow models g1, g2, . . . , gk of the same architec-
ture as G and train them on respective datasets Ds

i .
To compute the dataset Dsi , we prepare a hold-out dataset Ds that does

not overlap with D of size n and then sample n objects without repetitions
from the set D∪Ds. Following the evaluation protocol for the membership
inference attack [5, 6], we ensure that every sample from D∪Ds is included
in exactly k/2 sets {Ds1, . . . ,Dsk}.
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Algorithm 4 FINE-TUNING-STEP

Input: Generator G with weights ωG, initial model Ĝ, retain set Dr,
the weight α of CE term, the weight γ of KL term, learning rate µ
Output: Updated generator G
Sample (xr, yr) ∈ Dr − sample from retain set
LG = αCE(G(xr), yr) + γKL(G(xr), Ĝ(xr))
ωG ← ωG − µ∇ωG

LG

Thus, given a sample (x, y) we form two sets of shadow models: the in
shadow models gi1 , . . . , gik/2

were trained with the inclusion of (x, y) to
their training datasets; in contrast, the out shadow models gik/2+1

, . . . , gik
did not see (x, y) during training. In the next step, we compute the scores
for the sample (x, y) in the form

φ(p) = log

(
p

1− p

)
, (10)

where p = gi(x)y corresponds to the probability to assign the object x to
class y by model gi. After that, we fit two Gaussian distributions, namely
N (µin, σ

2
in) and N (µout, σ

2
out) to approximate the densities of φ(p|in) and

φ(p|out), respectively.
Finally, we compute the confidence of the membership inference algo-

rithm to assign the sample (x, y) to the training set of the unlearned model
G in the form

s(x, y) =
p(φ(p∗) | N (µin, σ

2
in))

p(φ(p∗) | N (µout, σ2
out))

, (11)

where, p∗ = G(x)y.

4.3. Experimental setup. In our experiments, the initial model Ĝ was
trained on the whole training dataset D for 40 epochs with the use of SGD
optimizer with the following parameters: learning rate of 0.1, momentum
of 0.9 and cosine annealing learning rate scheduler.

The UnGAN is applied to the initial model Ĝ with the following pa-
rameters:

• number of epochs: Ne = 8;
• number of discriminator steps for each epoch: Td = 4;
• number of generator steps for each epoch: Tg = 4;
• number of fine-tuning steps for each epoch: Tf = 88.
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Table 1. Quantitative results of the method. We report
the accuracy on the retain and test datasets to demon-
strate the model’s performance on the target task (image
classification). The accuracy on the forget set is reported
for the information - intuitively, as a result of unlearning
the accuracy on forget and test sets must be the same.
Also, we report the True Negative Rate at a fixed False
Negative Rate of 1% of LiRA and the execution time of
the methods in seconds, TU .

Retain Acc. ↑ Forget Acc. Test Acc. ↑ LiRA ↑ TU ↓
Original 89.05 89.16 75.21 1.07 0.00
Retrain 88.77 76.37 74.83 8.57 49.12
Fine-Tuning 89.46 88.97 75.27 1.26 12.00
Random Labels 87.27 75.83 73.56 3.70 15.00
Neg Grads 88.76 87.30 75.04 1.84 4.00
Adv. Neg Grads 86.70 74.02 72.72 6.40 4.02
UNSIR 85.35 82.12 73.82 1.98 13.78
SCRUB 94.80 74.81 73.21 9.63 15.12
CF 89.07 89.12 75.28 1.08 2.62
UnGAN (Ours) 93.52 77.62 74.25 10.32 13.06

The discriminator’s weights are updated by SGD optimizer with a learn-
ing rate of 10−3 and weight decay 0.5×10−3. The UnGAN has Adam opti-
mizer for generator and fine-tuning steps with learning rate 0.5×10−3 and
weight decay 0.5×10−4. The hyper-parameters α and γ used in fine-tuning
steps are 1/16 and 1/32, respectively. The batch size was set to be 256.

For the membership inference attack, we form the set of shadow models
of the same architecture as the initial model Ĝ and train them in the same
way as Ĝ is trained.

4.4. Evaluation of the Method. We evaluated our method by com-
puting the accuracy on the retain and test datasets and evaluating its sus-
ceptibility to membership inference attacks. Following the protocol from
[6], the susceptibility to the membership inference attack is evaluated by
computing the true negative rate of the MIA on the low values of the false
negative rate. The intuition behind using this metric is simple: all the ob-
jects from forget set Df should be recognized by MIA as non-members of
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the training set (although they are initially from the training set D); at
the same time, the False Negative Rate should be low, since the objects
from retain set Dr to be recognized as members.

To assess the effectiveness of the proposed approach, we evaluate it
against several baseline methods of unlearning.

• Original – the original model is assessed without the application
of any unlearning techniques.

• Retrain – the model is fitted from scratch without the forget set
Df . This is not applicable in practice but is reported here as a
reference.

• Fine-tuned – the original model is fine-tuned on the retain set only.
• Fine-tuned with random labels – the original model is fine-tuned

on the training dataset Df ∪Dr but with the random ground truth
labels assigned to the samples from the forget set Df .

• Negative Gradients – the original model is fine-tuned on the dataset
Df to maximize the target loss on this set.

• Advanced Negative Gradients – the original model is fine-tuned
on the dataset Df ∪ Dr but with the flipped sign of the gradients
computed for the samples from forget set Df .

• Catastrophic Forgetting-k (CF-k) – first k layers of the original
model are frozen and the remaining ones are fine-tuned on the
retain dataset Dr

• UNSIR [33] – trainable noise matrix is used to induce sharp un-
learning in the model on forget set Df and repair overall perfor-
mance on retain set Dr.

• SCRUB [34] – the original model is trained on the forget set Df to
maximize the KL distance from the original and unlearned model’s
outputs. And on the retain set Dr to minimize both the distance
between the original and unlearned model’s outputs and target
loss.

In Table 1, we report the quantitative results of our experiments. Accord-
ing to the LiRA metric that demonstrates the forgetting quality of the
unlearning algorithms, UnGAN outperforms all the considered baselines.
At the same time, the proposed approach does not suffer from catastrophic
unlearning [15] like Adv. Neg Grads which drop the test accuracy by more
then 2 %. It is noteworthy that our method retains high accuracy on Dr
and D datasets. Finally, UnGAN is notably faster than the plain retraining
of the model.
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5. Conclusion

In this work, we have proposed a novel approach for machine unlearn-
ing that features a membership inference routine. Forgetting subsets of
data with this approach can prevent leakage of information about spe-
cific observations through model queries and can thus resolve a variety of
task-specific problems including protection against backdoor attacks and
privacy leaks.
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