
Записки научных
семинаров ПОМИ

Том 540, 2024 г.

K. Galliamov, L. Khaertdinova, K. Denisova

REFINING JOINT TEXT AND SOURCE CODE
EMBEDDINGS FOR RETRIEVAL TASK WITH
PARAMETER-EFFICIENT FINE-TUNING

Abstract. Latest developments in natural language processing de-
monstrate remarkable progress in the code-text retrieval problem.
As Transformer-based models used for this task continue to in-
crease in size, the computational costs and time required for end-
to-end fine-tuning become substantial. This poses a significant chal-
lenge for adapting and utilizing these models when computational
resources are limited. Motivated by these concerns, we propose a
fine-tuning framework that leverages parameter-efficient fine-tuning
(PEFT) techniques. Moreover, we adopt contrastive learning ob-
jectives to improve the quality of bimodal representations learned
by Transformer-based models. Additionally, for PEFT methods we
provide extensive benchmarking, the lack of which has been high-
lighted as a crucial problem in the literature. Based on extensive
experiments with the CodeT5+ model conducted on two datasets,
we demonstrate that the proposed fine-tuning framework has the
potential to improve code-text retrieval performance by tuning only
0.4% parameters at the most.

§1. Introduction

The advent of Large Language Models (LLMs) based on the Trans-
former architecture [3] has revolutionized the field of NLP, offering un-
precedented capabilities for understanding and generating human-like text.
In the domain of software engineering, these advancements have paved the
way for the development of tools that can interpret natural language (NL)
queries to retrieve the corresponding source code. These tasks hold a sig-
nificant promise for the development of various programming languages
(PLs) for both novice and experienced engineers.

Key words and phrases: Code retrieval, PEFT, CodeT5+, contrastive learning,
NLP.

We thank the Innopolis University for providing part of resources and facilities that
were essential for conducting the experiments in this work. We extend our sincere grat-
itude to Professor V. Ivanov from Innopolis University for his invaluable guidance and
support throughout our research.

27

28 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

Effective retrieval of source code from NL descriptions, also known as the
code search problem, remains challenging, particularly due to the bimodal
nature of the task. This problem requires an LLM that can understand
and bridge the semantic gap between NL descriptions and PL code. In our
work, we emphasize applications of bimodal models [4] and highlight the
notable achievements of pre-trained LLMs applied for code retrieval and
generation tasks. End-to-end fine-tuning is a commonly used approach to
adapt pre-trained models for a specific task. However, in certain scenar-
ios, especially when applied to smaller datasets, this process can become
resource-intensive and overparameterized, leading to minimal or negligible
improvements in performance [2]. In addition, overfitting becomes a con-
cern, necessitating the implementation of additional strategies to mitigate
this issue. The primary goal of this study is to improve the quality of bi-
modal representations learned by small transformer models in low-resource
settings. In particular, we exploit contemporary Parameter-Efficient Fine-
Tuning (PEFT) techniques and contrastive learning to reach performance
levels achieved by larger models. This can be reformulated as finding a
tradeoff between computational load, caused by an extensive number of
trainable parameters, and high resulting performance for code retrieval
downstream task.

Our approach builds upon the capabilities of the CodeT5+ model [2]
with open weights and incorporates a contrastive learning objective to re-
fine the embeddings. Contrastive learning aims to align representations be-
tween corresponding text-code instances by maximizing their similarity in
the latent space. We evaluate four contemporary PEFT techniques on two
datasets with nine PLs during contrastive fine-tuning in low-resource set-
tings. Moreover, we address limitations identified in previous research [1],
namely the lack of comprehensive benchmarking for PEFT methods, by
providing checkpoints and experiments for our fine-tuned models.

The main contributions of this study include the following.
• We incorporate a contrastive learning objective to refine the em-

beddings on CodeT5+. This allows us to form relevant NL and PL
pairs, along with random negatives, improving the baseline model
performance.

• We introduce an open-source framework1 for fine-tuning Trans-
former encoders, applying PEFT methods for bimodal retrieval

1All final checkpoints can be found in the project repository: https://github.com/
leiluk1/CodeSearcherhttps://github.com/leiluk1/CodeSearcher.

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 29

tasks. By utilizing PEFT methods, such as LoRA [31], AdaLoRA
[32], Prompt-Tuning [34], and (IA)3 [33], we overcome resource
limitations and effectively fine-tune the models for each PL. Be-
sides, we address the limitations identified in [1] by providing com-
prehensive benchmarking for PEFT methods. This includes the
provision of checkpoints and benchmarks for fine-tuned models.

• We evaluate a self-assembled dataset as a Proof of Concept (PoC)
and the widely used CodeSearchNet (CSN) benchmark [14] to
demonstrate the effectiveness of our approach. This provides a
comprehensive assessment of our solution’s performance across
various PLs, including Python, C++, C#, SQL, Javascript, Java,
Ruby, Go, and PHP.

• We integrate our fine-tuned checkpoints into the Retrieval-Aug-
mented Generation (RAG) [5] pipeline as codebase documents and
query encoder. This results in a 0.5% improvement of the ROUGE
score for code generation.

§2. Related Work

2.1. Code-text Retrieval. Efficient source code retrieval has been a
major area of research, and multiple methods have been explored to bridge
the gap between NL queries and PL code [38]. A crucial aspect of this field
is the use of embeddings to represent code in a manner that enables rapid
and accurate retrieval based on semantic similarities [15].

In past years, particularly before the advent of Transformer-like archi-
tectures, code retrieval approaches relied on a combination of probabilistic
models and classical information retrieval approaches [16,17,36,37]. How-
ever, in more recent works, significant breakthroughs have occurred lead-
ing to advancements in research in this domain. Notably, the introduction
of Transformer-based neural architectures, such as CodeBERT [13], has
revolutionized the field. CodeBERT, an adaptation of the BERT model
specifically for programming languages, has set a benchmark for subse-
quent models in terms of understanding, generating, and retrieving PL
codes. To enhance this approach, GraphCodeBERT [39] introduces data
flow during pre-training, which effectively captures a semantic-level struc-
ture of code. A comparison of CodeBERT with graph-based embeddings
for source code representation was presented in [25].

Another noteworthy approach is the use of Abstract Syntax Trees (ASTs),
which provide a structured representation of the code that captures its

30 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

syntactic features, facilitating more discerning retrieval and search capa-
bilities [43, 44]. UniSBT, for instance, utilizes syntax-aware embeddings
derived from ASTs to enhance the relevance of the retrieved code snip-
pets [42].

CodeT5+ extends the T5 model to handle code intricacies, offering im-
provements in both code understanding, retrieval, and generation tasks [2].
Finally, OpenAI introduced large cpt-code models (from 0.3 to 175 bil-
lion parameters) that are pre-trained from scratch using contrastive learn-
ing [40]. While these models have shown groundbreaking performance on
code retrieval tasks, it is important to acknowledge that fully pre-training
such models with the use of large batch sizes necessitates enormous com-
putational resources and time.

Despite these advancements, the field continues to evolve, with ongoing
research seeking to refine these models further and address the challenges
posed by the diversity of programming languages and the complexity of
code semantics. The work presented in this paper builds upon these foun-
dational efforts, aiming to refine metalanguage embeddings for the retrieval
task in low-resource settings through PEFTmethods and contrastive learn-
ing.

2.2. Parameter Efficient Fine-Tuning. In recent years, the number
of parameters in Transformer-based models used in NLP has been grow-
ing from millions to trillions. Thus, fine-tuning the parameters of such
large models requires substantial computational resources and an enor-
mous amount of time. To overcome these challenges, specific techniques
referred to as PEFT have been introduced. In general, these methods allow
training a relatively small number of additional parameters in the model,
thereby striking a balance between fine-tuning under limited resource sce-
narios and enabling effective learning of task-specific parameters [1, 29].
For instance, in the context of automated code generation, the work [30]
investigates the application of PEFT methods.

Prompt tuning is one such approach that introduces additional learnable
prompt tokens into the model input. During fine-tuning, only the prompt
parameters are updated, whereas the pre-trained parameters remain fixed
[34]. Additionally, Wang et al. [35] have applied prompt tuning to code-
related tasks and demonstrated its superiority over fine-tuning models like
CodeT5 [41] and CodeBERT [13] in various tasks including code summa-
rization and code translation. Another notable technique, Infused Adapter
((IA)3) [33] utilizes learned vectors to scale activations, introducing a small

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 31

number of extra parameters. Additionally, the work [31] presents Low-
Rank Adaptation (LoRA) that introduces two trainable low-rank matrices
for weight update. Adaptive Low-Rank Adaptation (AdaLoRA) [32] ex-
tends the technique by dynamically adjusting the rank of the matrices to
control the allocation budget.

In this work, we explore the usage of all PEFT techniques described
above in combination with contrastive learning to address the source code
retrieval task.

2.3. Contrastive Learning. Over the last decade, numerous self-super-
vised learning (SSL) methods have been proposed to learn deep represen-
tations without using annotated data [18]. One of the techniques that has
shown state-of-the-art performance in various research fields is contrastive
learning. Contrastive learning has been extensively utilized to align rep-
resentations between different modalities and views in the related litera-
ture [19, 20, 22, 28]. The main idea behind this family of approaches is to
maximize the alignment between semantically similar instances by con-
trasting them against dissimilar ones [21]. Specifically, a common way to
formulate a contrastive learning objective is to group instances into pairs,
positive and negative, and maximize similarities between positive ones. In
these settings, a positive pair is formed by different views or modalities
corresponding to the same instance.

Initially, contrastive learning has been suggested as an SSL pre-training
strategy for deep neural networks. Nevertheless, recent literature presents
frameworks that incorporate contrastive losses to fine-tune large models
on certain tasks, including information retrieval. For instance, Pour and
Farinneya et al. [23] exploited contrastive learning to fine-tune BERT em-
beddings for retrieving relevant items based on their reviews. In [24], a sim-
ilar idea, based on CLIP architecture [22], has been proposed for video-text
retrieval tasks. Building upon these findings, our study explores fine-tuning
the CodeT5+ model [2] using contrastive learning for source code retrieval
given textual descriptions.

§3. Methodology

3.1. Fine-tuning Approach. The proposed fine-tuning framework, de-
picted in Fig. 1, utilizes the contrastive learning objective and Parameter-
Efficient Fine-tuning techniques. Specifically, we propose to align repre-
sentations of matching code-text pairs in a joint feature space by utilizing

32 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

Figure 1. The proposed fine-tuning framework. Con-
trastive loss aims to maximize similarities between cor-
responding code-text pairs and minimize the similarities
of non-matching pairs. For visual clarity, that is schemati-
cally demonstrated for one positive pair in a batch, namely
"hello world" text and Java code pair. During fine-tuning,
CodeT5+ is tuned using PEFT techniques.

contrastive loss, which is further elaborated on in Section 3.2. Further-
more, our contrastive learning approach fine-tunes the CodeT5+ embed-
ding model (110 million parameters) using PEFT methods, that involve
training a small proportion of parameters through back-propagation (Sec-
tion 3.3). An important detail of our fine-tuning is that it is performed for
each programming language separately, thus introducing PEFT parame-
ters that adapt the general-purpose CodeT5+ representations for the code
retrieval task on a certain programming language.

3.2. Contrastive Learning to Align Code-text Pairs. In the pur-
suit of refining source code retrieval from NL descriptions, our methodol-
ogy emphasizes the alignment of code-text pairs as a critical aspect. This
alignment process is instrumental in bridging the semantic gap between
NL queries and PL codes, which is essential for effective retrieval sys-
tems. In order to achieve this, we have employed PEFT methods on the
CodeT5+ model, leveraging its bimodal capabilities to understand and
generate code. The training of embeddings differs from generating a PL
conditioned on NL input. More specifically, the objective would not be
next-token likelihood optimization, but rather bimodal contrastive loss.
Contrastive learning is an approach that aims to bring closer the embed-
dings of relevant NL and PL pairs while pushing apart those of irrelevant

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 33

pairs. This is achieved by using a text-code contrastive loss function during
training. Consequently, the model acquires the ability to generate more dis-
criminative embeddings, thereby facilitating improved alignment between
NL queries and their corresponding code.

In our study, contrastive loss will pull together embeddings for positive
(relevant) samples and pull apart irrelevant pairs [2]. Formally, given a
mini-batch of N code-text pairs {hci ,h

t
i}Ni=1 as normalized lower-dimensional

representations, relevant pairs of code vector hci and text vector hti are con-
sidered positive as they correspond to the same i-th instance in a batch.
The loss lt→c

i treating textual representation hti from i-th example as an
anchor can be computed as follows:

lc→t
i = − log

δ(hci ,h
t
i)∑N

k=1 δ(h
c
i ,h

t
k)
, (1)

where δ(hcih
t
i) = exp

(
hcT

i ht
i

τ

)
. Therefore, the total loss aggregated for the

whole batch of views c and t can be averaged as

Lc,t =
1

2N

N∑
i=1

(lc→t
i + lt→c

i) (2)

3.3. Trainable Parameters. We utilize PEFT methods that involve
training a small proportion of newly added parameters through back-
propagation. In our setup, during training, all model weights are frozen
except for the ones added by PEFT methods. These methods are defined
as follows:

• LoRA [31]: introducing low-rank addends to Q,V tensors of At-
tention.

• AdaLoRA [32]: LoRA-based approach with addends ranks chang-
ing during training.

• (IA)3 [33]: learnable scaling vectors for Q, K, and linear tensors.
• Prompt-Tuning [34]: learnable vectors prepended to hidden input

representation.

§4. Experimental setup

For this experimental study, we have designed a comprehensive exper-
imental setup to evaluate the efficacy of PEFT methods applied to the
CodeT5+ model for the task of source code retrieval for small models.

34 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

Table 1. Size of the CodeSearchNet dataset split into pro-
gramming languages and train/validation/test subsets.

Ruby JS Go Java PHP

train 48K 123K 317K 454K 523K
valid 2.2K 8.2K 14K 15K 26K
test 2.2K 6.4K 14K 26K 28K

Our experiments were conducted with a focus on optimizing the alignment
of NL and PL embeddings, which is crucial for the successful retrieval of
source code corresponding to NL descriptions.

4.1. Data Selection. For our fine-tuning framework, we utilized two dis-
tinct datasets: the well-established CodeSearchNet benchmark and a cus-
tom dataset assembled specifically for this study.

4.1.1. CodeSearchNet. The CodeSearchNet (CSN) [14] benchmark is a
large-scale dataset that has been widely used in the field for evaluat-
ing code retrieval models. This dataset encompasses a diverse range of
programming languages, including Java, JavaScript, Go, PHP, and Ruby.
This dataset provides a comprehensive set of NL documentation and PL
code pairs. Table 1 demonstrates dataset split sises for each PL. The CSN
dataset has been used as a benchmark for demonstrating the robustness
and effectiveness of our approach across a wide range of programming lan-
guages, allowing us to assess the performance of our fine-tuned models
comprehensively.

4.1.2. Custom Dataset. To prove our concept and demonstrate the po-
tential of PEFT methods in enhancing the CodeT5+ model’s ability to
map NL descriptions to source code we collected a relatively small dataset
compared to the CodeSearchNet. The custom dataset includes a collec-
tion of NL text and PL code pairs, with a particular emphasis on smaller
and less represented programming languages, which are neglected in larger
benchmarks.

In our experimental setup, we investigated various PL datasets, in-
cluding Python [7, 9, 10], C# [7], C++ [7], SQL [8], Solidity [11], and
Assembly [12]. However, we determined that the Solidity and Assem-
bly datasets were not suitable, as it was impossible to match PL and
NL pairs: Assembly dataset did not contain documentation, and Solidity

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 35

Table 2. Size of the custom dataset per programming lan-
guage and split.

Python C# C++ SQL

train 10M 58K 63K 62.9K
valid 120K 3K 3K 6.9K
test 123K 5.4K 5.6K 7.7K

dataset was not publicly available anymore. We therefore excluded these
datasets. During the data exploration, a thorough analysis of the selected
datasets was conducted to gain insight into their characteristics and iden-
tify any potential biases or data quality issues. Several datasets, partic-
ularly Search4Code [8], were removed, as they do not provide any code
snippets and NL query required for the task of code search. Moreover,
pairs with non-English natural language queries were removed. Addition-
ally, we deleted NL and PL pairs, where each sample in the pair was too
short, specifically less than three tokens, or too long, the boundary was
defined as a hyperparameter. The absence of appropriate code snippets
and related code descriptions restricts our ability to include them in the
final dataset.

Following the exploration of these datasets, we merged them according
to their respective programming languages. Then, tokenization and com-
mon preprocessing steps were performed for both the NL description and
PL code. For further model fine-tuning, we establish the token lengths of
NL text and PL code. Figure 2 demonstrates detailed information on the
distribution of both the PL and NL token lengths in the dataset.

As a result, we obtained the dataset with sample split sizes demon-
strated in Table 2. By incorporating these datasets into our experiments,
we aimed to showcase the versatility of our fine-tuning framework and its
applicability to a wide array of programming languages.

4.2. Fine-tuning Details. For the base pre-trained model we have taken
a CodeT5+ encoder2 with a lower dimension projection and normalization
head on top. The above-mentioned encoder comes from the CodeT5 model,

2https://huggingface.co/Salesforce/codet5p-110m-embedding

36 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

0 50 100 150 200 250 300
Tokens Length

0

2500

5000

7500

10000

12500

15000

17500

20000
Fr

eq
ue

nc
y

C++
Code Tokens
Docstring Tokens

0 200 400 600 800 1000 1200 1400
Tokens Length

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

SQL
Code Tokens
Docstring Tokens

0 50 100 150 200 250 300
Tokens Length

0

2500

5000

7500

10000

12500

15000

17500

Fr
eq

ue
nc

y

C#
Code Tokens
Docstring Tokens

0 200 400 600 800 1000 1200 1400
Tokens Length

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Python
Code Tokens
Docstring Tokens

Figure 2. The distribution of token length for NL code
docstring and PL code snippets, respectively, for PLs in-
cluded in our dataset.

Table 3. Tunable parameters for PEFT methods.
Prompt-tuning was done with 10 tokens by default.

AdaLoRA LoRA (IA)3 Prompt

tunable % 0.402 0.268 0.025 0.007
tunable # 442,656 294,912 27,648 7680

pre-trained on large-scale datasets on tasks of code generation, span de-
noising, contrastive objectives, and others. For more details on how the
base model was pre-trained, one can refer to [41].

For fine-tuning, we chose to train on pairs with at most 256 NL and
256 PL maximum-length tokens. For the embedding loss, the initial tem-
perature τ was set to 0.08. The learning rates were set to 0.001, batch size
was set to 128 and the gradient accumulation steps were set to 4 in all the
experiments. Furthermore, a Cosine Annealing Scheduler was used.

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 37

When tuning the embeddings, we used Prompt-tuning instead of Prompt
Encoder from the PEFT library. This decision was made because the latter
failed to overfit a single batch, and Prefix-Tuning was not supported for
the embedding extraction task.

All final checkpoints may be found in our project repository3.

4.3. Evaluation Methods. We use Mean Reciprocal Rank (MRR) as
the evaluation metric. For the evaluation part of the validation and test
sets, we have utilized two approaches to calculate MRR. The first approach,
adopted from [13], involves computing similarities for all possible NL, and
PL pairs in the test dataset. The MRR is then calculated only on the ranks
that are not greater than 1000. The second approach, proposed in [14],
splits the test dataset into chucks of 1000 pairs each (if the last chunk is
smaller, then it is discarded). Regular mean reciprocal ranks are computed
for each of these chucks, and these MRRs are then averaged. In each table
with the evaluation part presented in our work, the chosen method for
calculating the MRR is given in the corresponding description.

4.4. Further Usage with RAG. One of the points of application of our
models could be Retrieval-Augmented Generation (RAG) [5]. We incorpo-
rate our model as an embedding model for both text and code chunks.
The retrieval database is built on code samples, and corresponding doc-
strings are used as queries. For reader LLM, we have chosen "deepseek-
coder-6.7b-instruct" from [26]. To provide a visual representation of our
approach in the context of RAG, please refer to Figure 3. This resulted in
a minor but stable improvement of the ROUGE metric compared to the
non-tuned baseline model. We provide more details on evaluation results
in Section 5.3.

§5. Results

5.1. Custom Dataset. First, the proposed fine-tuning strategy was ap-
plied to the custom dataset described in Section 4.1. In particular, we
evaluated the suggested contrastive learning objective along with PEFT
techniques on each programming language presented in the dataset. Ta-
ble reftable:mrr summarizes the MRR scores obtained on test sets of the
dataset. In this table, we also show the baseline results that correspond
to the pre-trained CodeT5+ without any further fine-tuning. According to

3https://github.com/leiluk1/CodeSearcher/tree/main/checkpoints

38 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

#include <iostream>
using namespace std;

int main(){
 cout << "Size of char: " << sizeof(char) <<
"byte" << endl;
}

Embeddings model

Vectorstore

Input query

print Hello, World!

Code snippets

Ours: CodeT5+ LoRA

Retrieval results

Context query prompt

Output

#include <iostream>
int main() {
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

deepseek-
coder-

6.7b-instruct

LLM Reader

print Hello, World!

#include <iostream>
....

Figure 3. Integration of the best checkpoints of our fine-
tuned models into the RAG pipeline for different PLs used
in the study. The figure provides an example of the code
generation for C++.

the obtained results, all the utilized PEFT techniques lead to an increase
in performance. Among these methods, AdaLoRA demonstrates the high-
est scores in all four programming languages. Specifically, it boosts the
performance by about 17% on C++ and C#, more than 6% on SQL, and
approximately 9% on Python compared to the baseline scores.

Furthermore, Fig. 4 illustrates the validation losses during fine-tuning.
Based on the obtained curves a few observations can be made. First,
reparametrization-based methods such as LoRA and AdaLoRA seem to
have the fastest convergence. (IA)3 converges a little bit slower, while
Prompt Tuning is the longest to converge. What is more, for SQL, the loss
converges to higher values. This can be explained by the fact that SQL was
not used during the pre-training of CodeT5+ [2], meaning that the model
performs in zero-shot settings. Nevertheless, our fine-tuning improves the
performance of this language as well, as highlighted above.

Finally, we note that due to limited computational resources and the
large size of Python data, we conducted fine-tuning for only 3 epochs.

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 39

Table 4. Evaluation of embedding models: MRR on test
datasets (for Python, the number of test pairs was limited
to 32k) computed in the same way as in CodeBERT [13].

Python C# C++ SQL

Baseline 75.89 22.15 21.69 06.15
LoRA 83.22 38.75 39.23 12.57
AdaLoRA 83.95 39.19 39.31 12.80
(IA)3 78.48 32.99 32.61 08.97
Prompt 81.33 28.85 23.84 7.91

1 2 3
Epoch

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Va
lid

at
io

n
Lo

ss

Python
adalora
ia3
lora
prompt

3 6 9 12 15 18
Epoch

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Va
lid

at
io

n
Lo

ss

SQL
adalora
ia3
lora
prompt

3 6 9 12 15 18
Epoch

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Va
lid

at
io

n
Lo

ss

C#
adalora
ia3
lora
prompt

3 6 9 12 15 18
Epoch

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Va
lid

at
io

n
Lo

ss

C++
adalora
ia3
lora
prompt

Figure 4. Validation losses plots for the embeddings
model on PoC datasets.

However, as mentioned earlier, we still observe a substantial enhancement
in performance after our fine-tuning. We leave the exploration of more
thorough fine-tuning using Python data for future work.

40 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

Table 5. Embeddings model evaluation results on CSN
benchmark. For MRR calculation, an approach from [14]
was used.

Ruby JS Go Java PHP

Baseline 76.11 74.42 77.69 75.66 77.39
LoRA 77.74 76.99 79.10 77.82 80.43
AdaLoRA 77.88 76.76 78.99 77.53 80.24
(IA)3 76.98 76.14 78.95 77.37 79.70
Prompt 74.53 74.93 78.49 76.73 79.00

5.2. Benchmarking on CSN. We evaluated our approach on the CSN
benchmark described in Section 4.1. The results, provided in Table 5,
demonstrate the MRR scores achieved on the test sets of respective PLs
within the CSN dataset. Similarly, Table 6 provides a comparison of MRR
scores obtained in our approach with those of SOTA models, while also
considering the number of trainable parameters.

Based on results from Table 5, we observed the greatest improvement
over baseline performance when using LoRA and AdaLoRA methods. How-
ever, compared to the results on the custom dataset, LoRA slightly out-
performs AdaLoRA almost for all programming languages, except Ruby.
Selected PEFT methods outperformed the baseline across all programming
languages presented in CSN. LoRA achieved the highest MRR JavaScript
(+2.5%), Go (+1.3%), Java (+2.1%), and PHP (+3%) followed closely by
AdaLoRA, which performed the best results on Ruby (+1.7%). IA3 also
showed improvements over the baseline but was less effective than LoRA
and AdaLoRA.

The findings presented in Table 6 highlight the performance of our
approach in comparison to SOTA models. Our approach stands out as
achieving the second-best results, following the performance of cpt-code
models. It is important to note that the cpt-code S and M models, which
outperform our approach, are significantly larger with 0.3 and 1.2 billion
parameters, respectively. Moreover, all these parameters were tuned dur-
ing pre-training using contrastive learning in an end-to-end fashion. In
addition, we achieve an increase of 6.7% in average MRR compared to
BERT-based embedders. A notable aspect of our approach is the fine-
tuning of CodeT5+ using LoRA, which not only contributes to its high

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 41

Table 6. Comparison of our approach against state-of-the-
art models. We underline the second-best results after cpt-
code models. We take the text-to-code retrieval results for
other models, except ours and CodeT5+ baseline, from [2]
and [40]. For the Go benchmark, we obtained substantially
lower results compared to the original CodeT5+ paper [2]
when using the open-source checkpoint for CodeT5+.

CodeSearchNet TrainableModel Ruby JS Go Java PHP parameters

GraphCodeBERT [39] 70.3 64.4 89.7 69.1 64.9 125M
CodeBERT [13] 67.9 62.0 88.2 67.6 62.8 125M

Ours: CodeT5+ baseline 76.1 74.4 77.7 75.7 77.4 220M
Ours: CodeT5+ AdaLoRA 77.9 76.8 79.0 77.5 80.2 443k
Ours: CodeT5+ LoRA 77.7 77.0 79.1 77.8 80.4 295k

cpt-code S [40] 86.3 86.0 97.7 94.0 96.7 300M
cpt-code M [40] 85.5 86.5 97.5 94.4 97.2 1.2B

performance but also makes it the most advantageous option in terms of
computational expenses. This technique finds an optimal balance between
the number of trainable parameters and MRR scores, further bridging a
gap between CodeT5+ and cpt-code.

5.3. RAG Case Study. Exact settings for our RAG setup can be found
in Section 4.4. Computing the ROUGE metric [27] over 1000 docstring
queries from CSN test split has given an 0.5% increase in ROUGE-L,
0.6% increase in ROUGE-2 and 0.45% increase in ROUGE-1. It is definite
that further experimentation with various reader models and prompts is
needed, which lies outside of the scope of our work.

§6. Conclusion

In this paper, we adopted a contrastive learning objective to enhance
source code embeddings for retrieval tasks along with fine-tuning CodeT5+
with PEFT methods in low-resource settings. To address the existing lim-
itation of comprehensive benchmarks for PEFT techniques, we developed

42 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

an open-source framework for fine-tuning CodeT5+ using PEFT tech-
niques. We evaluated our fine-tuned model on diverse programming lan-
guage datasets, including our custom dataset and the CodeSearchNet.

Our findings provide a foundation for future studies and highlight the
potential of PEFT techniques. However, it is crucial to acknowledge the
limitations of our work. In particular, this is related to limited resource
power, the small batch size used in fine-tuning using contrastive learning,
and the small number of epochs used for large datasets.

In future work, we propose exploring additional PEFT methods, ex-
panding the evaluation on different code datasets, and investigating tech-
niques to handle larger codebases. Another direction of research could be
aligning embedder models for specific reader models in the RAG pipeline.

References
1. V. Lialin, V. Deshpande, and A. Rumshisky, Scaling down to scale up: A guide to

parameter-efficient fine-tuning, arXiv preprint arXiv:2303.15647 (2023).
2. Y. Wang, H. Le, A. Gotmare, N. Bui, J. Li, and S. Hoi, CodeT5+: Open Code

Large Language Models for Code Understanding and Generation. — Proc. 2023
Conf. Empir. Methods Nat. Lang. Process. (2023), pp. 1069–1088.

3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,
and I. Polosukhin, Attention is all you need. — Adv. Neural Inf. Process. Syst. 30
(2017).

4. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C.
Liu, and D. Krishnan, Supervised contrastive learning. — Adv. Neural Inf. Process.
Syst. 33 (2020), pp. 18661–18673.

5. P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler,
M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks, arXiv preprint arXiv:2005.11401
(2021).

6. M. Hasan, T. Muttaqueen, A.A. Ishtiaq, K.S. Mehrab, M.M.A. Haque, T. Hasan,
W.U. Ahmad, A. Iqbal, and R. Shahriyar, CoDesc: A Large Code–Description
Parallel Dataset. — Findings Assoc. Comput. Linguist.: EMNLP (2021).

7. M. Zhu, A. Jain, K. Suresh, R. Ravindran, S. Tipirneni, and C.K. Reddy, Xl-
cost: A benchmark dataset for cross-lingual code intelligence, arXiv preprint
arXiv:2206.08474 (2022).

8. N. Rao, C. Bansal, and J. Guan, Search4Code: Code search intent classification
using weak supervision. — Proc. 2021 IEEE/ACM 18th Int. Conf. Min. Softw.
Repositories (2021), pp. 575–579.

9. H. Yao et al., StaQC: A Systematically Mined Question-Code Dataset from Stack
Overflow. — Proc. World Wide Web Conf. (2018), pp. 135–144.

10. M. Bahrami, N.C. Shrikanth, S. Ruangwan, L. Liu, Y. Mizobuchi, M. Fukuyori,
W.-P. Chen, K. Munakata, and T. Menzies, Pytorrent: A python library corpus for
large-scale language models, arXiv preprint arXiv:2110.01710 (2021).

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 43

11. C. Shi, Y. Xiang, J. Yu, and L. Gao, Semantic code search for smart contracts,
arXiv preprint arXiv:2111.14139 (2021).

12. S. Kairajärvi, A. Costin, and T. Hämäläinen, ISAdetect: Usable Automated Detec-
tion of CPU Architecture and Endianness for Executable Binary Files and Object
Code. — Proc. Tenth ACM Conf. Data Appl. Secur. Priv. (2020).

13. Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, et al., CodeBERT: A pre-trained model for programming and natural
languages, arXiv preprint arXiv:2002.08155 (2020).

14. H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, Code-
SearchNet challenge: Evaluating the state of semantic code search, arXiv preprint
arXiv:1909.09436 (2019).

15. Y. Xie, J. Lin, H. Dong, L. Zhang, and Z. Wu, Survey of code search based on deep
learning. — ACM Trans. Softw. Eng. Methodol. 33(2) (2023), pp. 1–42.

16. S. Chatterjee, S. Juvekar, and K. Sen, Sniff: A search engine for Java using free-
form queries. — Fundam. Approaches Softw. Eng. Int. Conf. (2009), pp. 385–400.

17. E. Hill, M. Roldan-Vega, J.A. Fails, and G. Mallet, NL-based query refinement
and contextualized code search results: A user study, Proc. 2014 Software Evolu-
tion Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE) (2014), 34–43.

18. X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, Self-supervised
learning: Generative or contrastive. — IEEE Trans. Knowl. Data Eng. 35(1) (2021),
pp. 857–876.

19. R. Brinzea, B. Khaertdinov, and S. Asteriadis, Contrastive learning with cross-
modal knowledge mining for multimodal human activity recognition, Proc. 2022
International Joint Conference on Neural Networks (IJCNN) (2022), pp. 1–8.

20. Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, Graph contrastive learning
with augmentations. — Advances in Neural Information Processing Systems 33
(2020), pp. 5812–5823.

21. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, A simple framework for con-
trastive learning of visual representations, Proc. Int. Conf. Mach. Learn. (2020),
pp. 1597–1607.

22. A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A.
Askell, P. Mishkin, J. Clark, et al., Learning transferable visual models from natural
language supervision, Proc. International Conference on Machine Learning (2021),
8748–8763.

23. M.M. Abdollah Pour, P. Farinneya, A. Toroghi, A. Korikov, A. Pesaranghader, T.
Sajed, M. Bharadwaj, B. Mavrin, and S. Sanner, Self-supervised Contrastive BERT
Fine-tuning for Fusion-Based Reviewed-Item Retrieval, Proc. European Conference
on Information Retrieval (2023), 3–17.

24. H. Luo, L. Ji, M. Zhong, Y. Chen, W. Lei, N. Duan, and T. Li, Clip4clip: An
empirical study of clip for end-to-end video clip retrieval and captioning. — Neu-
rocomputing 508 (2022), 293–304.

25. V.A. Romanov and V.V. Ivanov, Comparison of graph embeddings for source code
with text models based on CNN and CodeBERT architectures. — Proceedings of
the Institute for System Programming of the RAS (Proceedings of ISP RAS) 35(1)
(2023), 237–264.

44 K. GALLIAMOV, L. KHAERTDINOVA, K. DENISOVA

26. D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu,
Y.K. Li, et al., DeepSeek-Coder: When the Large Language Model Meets Program-
ming—The Rise of Code Intelligence, ArXiv preprint arXiv:2401.14196 (2024).

27. K. Ganesan, Rouge 2.0: Updated and improved measures for evaluation of summa-
rization tasks, ArXiv preprint arXiv:1803.01937 (2018).

28. Y. Tian, D. Krishnan, and P. Isola, Contrastive multiview coding. — Computer
Vision—ECCV 2020: 16th European Conference, Glasgow, UK (2020), Part XI,
776–794.

29. L. Xu, H. Xie, S.-Z.J. Qin, X. Tao, and F.L. Wang, Parameter-efficient fine-tuning
methods for pretrained language models: A critical review and assessment, ArXiv
preprint arXiv:2312.12148 (2023).

30. M. Weyssow, X. Zhou, K. Kim, D. Lo, and H. Sahraoui, Exploring parameter-
efficient fine-tuning techniques for code generation with large language models,
ArXiv preprint arXiv:2308.10462 (2023).

31. Y. Yu, C.-H.H. Yang, J. Kolehmainen, P.G. Shivakumar, Y. Gu, S.R.R. Ren, Q.
Luo, A. Gourav, I.-F. Chen, Y.-C. Liu, et al., Low-rank adaptation of large lan-
guage model rescoring for parameter-efficient speech recognition, Proc. 2023 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU) (2023), 1–8.

32. Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao,
Adaptive budget allocation for parameter-efficient fine-tuning, ArXiv preprint
arXiv:2303.10512 (2023).

33. H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C.A. Raffel, Few-
shot parameter-efficient fine-tuning is better and cheaper than in-context learning.
— Advances in Neural Information Processing Systems 35 (2022), 1950–1965.

34. B. Lester, R. Al-Rfou, and N. Constant, The power of scale for parameter-efficient
prompt tuning, ArXiv preprint arXiv:2104.08691 (2021).

35. C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M.R. Lyu, No more fine-tuning?
An experimental evaluation of prompt tuning in code intelligence, Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (2022), 382–394.

36. H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo, Rosf: Leveraging
information retrieval and supervised learning for recommending code snippets. —
IEEE Transactions on Services Computing 12, No. 1 (2016), 34–46.

37. M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, Bimodal modelling of source code
and natural language, Proc. International Conference on Machine Learning (2015),
2123–2132.

38. Q. Chen and M. Zhou, A neural framework for retrieval and summarization of
source code, Proc. 33rd ACM/IEEE International Conference on Automated Soft-
ware Engineering (2018), 826–831.

39. D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy,
S. Fu, et al., Graphcodebert: Pre-training code representations with data flow, ArXiv
preprint arXiv:2009.08366 (2020).

40. A. Neelakantan, T. Xu, R. Puri, A. Radford, J.M. Han, J. Tworek, Q. Yuan, N.
Tezak, J.W. Kim, C. Hallacy, et al., Text and code embeddings by contrastive pre-
training, ArXiv preprint arXiv:2201.10005 (2022).

REFINING JOINT TEXT AND CODE EMBEDDINGS FOR RETRIEVAL 45

41. Y. Wang, W. Wang, S. Joty, and S.C.H. Hoi, Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation, ArXiv
preprint arXiv:2109.00859 (2021).

42. J. Gu, Z. Chen, and M. Monperrus, Multimodal representation for neural code
search, Proc. 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME) (2021), 483–494.

43. S. Liu, Y. Chen, X. Xie, J. Siow, and Y. Liu, Retrieval-augmented generation for
code summarization via hybrid GNN, ArXiv preprint arXiv:2006.05405 (2020).

44. J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, A novel neural
source code representation based on abstract syntax tree, Proc. 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE) (2019), 783–794.

Поступило 15 ноября 2024 г.Innopolis University,
Innopolis, Russia
E-mail : {k.galliamov,l.khaertdinova,k.denisova}@innopolis.university

