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DERIVATION OF FULLY COMPUTABLE ERROR
BOUNDS FROM A POSTERIORI ERROR IDENTITIES

ABSTRACT. A posteriori error identities are functional relations that
control distances between the exact solution of a boundary value
problem and any function from the respective energy space. They
have been derived for many boundary value problems associated
with partial differential equations of elliptic and parabolic types. A
posteriori identities have a common structure: their left hand sides
form certain error measures and the right hand ones consist of di-
rectly computable terms and a linear functional, which contains un-
known error function. Fully computable estimates follow from such
an identity provided that this functional is efficiently estimated. The
difficulty that arises is due to the fact that computational simplicity
and efficiency of such an estimate are contradictory requirements. A
method suggested in the paper, largely overcomes this difficulty. It
uses an auxiliary finite dimensional problem to estimate the linear
functional containing unknown error function. The resulting esti-
mates minimise possible overestimation of this term and imply sharp
and fully computable majorants and minorants of errors.

§1. INTRODUCTION

As a rule, mathematical models based on partial differential equations
operate with so—called weak (generalised) solutions, which are defined as
rather abstract objects (elements of infinite-dimensional functional spaces,
e.g., Sobolev spaces). If such a problem Au = f is well-posed, then the so-
lution u exists and is unique, but in the majority of cases there is no hope
to find it exactly. Therefore, quantitative analysis actually comes down
to the problem of constructing a sufficiently good approximate solution,
that is, to the issue of computer modeling. The main limitation is that
only discrete (finite-dimensional) objects are representable in a computer.

Key words and phrases: deviations from the exact solution of a boundary value
problem, error identities, a posteriori estimates of the functional type.
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Therefore, in quantitative analysis we are forced to replace w by an ap-
proximation wu,,, which belongs to a certain finite dimensional space V,
(dimVy, = m < +00).

Hence the first principal problem is to show that solutions of finite
dimensional problems are able to approzimate u with any desired accuracy.
This problem is well studied (e.g., see [4,5,9,12,13,25]). For many classes of
problems it is known that u,, tends to u when the dimensionality m tends
to infinity provided that certain additional conditions are fulfilled and all
the computations are done exactly. These results provide justification of
an approximation method. Theoretical convergence guarantees that (in
principle) approximations can be found arbitrarily close to the solution.

However, the conditions necessary for convergence and a priori error
estimates are often violated. In real life computations, instead of the se-
quence {u,, } we have another sequence {u,, }, where %,, contains errors of
various types (e.g., integration and roundoff errors, errors arising in itera-
tion procedures and due to defects in codes). This fact generates the second
fundamental problem: Reliable verification of computational results. Essen-
tially, it is reduced to finding guaranteed and fully computable estimates
of the distance between any function in the admissible functional class
(e.g., energy space) and solution of a boundary value problem. The esti-
mate must compute sufficiently sharp bounds of the distance using only
robust and well-tested numerical procedures (computation of integrals,
solving linear finite dimensional problems, convex minimisation, etc.). If
for a class of problems such an estimate is not found, then it remains un-
clear how to obtain reliable quantitative results. In this situation, we can
construct approximations, but have no way to compare them with the ex-
act solution and confirm the validity. Moreover, if it will be shown that
for some problem such an estimate is principally impossible, then the re-
spective mathematical model would look like a thing-in-itself that admits
theoretical considerations but not applicable for quantitative analysis.

In the context of elliptic type problems, the required estimates have
beed derived and comprehensively studied over the past 25 years (see [15—-
18] and references cited therein). All of them follow from the functional
relations called a posteriori error identities. One side of such an identity
contains a measure of the distance between a function(s) computed and
the solution. Another side contain integral terms that depend on known
data (domain, coefficients, etc.) and known functions. These terms are
directly computable. In addition, the identity usually has a different term,
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which includes unknown error function. The simplest and the most studied
example is related to the class of linear boundary value problems of the
form (3.1)—(3.2). Here, the corresponding error identity (3.3) has a typical
structure. The left hand side of (3.3) is presented by the sum of two squared
error norms (where ¢ := v —u, e¢* =y —p, and p := AVu). The first term
in the right hand side contains known functions v and y (e.g., numerical
approximations of u and p), while the second term (R(y),e)y contains
unknown error function e.

Identities (3.13), (3.26), (3.31), and (3.18) are derived in Sec. 3 for
several other problems. They have quite similar structures: error measures
in the left hand side and computable quantities in the right hand one. Full
computability is violated by the only one term, which is a linear functional
of e. Hence, the problem of fully guaranteed and computable error control
is de facto reduced to getting efficient estimates of (R, e)y by a computable
quantity and a certain suitable norm of e.

Analysis of this problem is the main purpose of the article. In Sec. 4,
we suggest several methods to solve it. The corresponding estimates are
derived in Sec. 5 and Sec. 6 contains some numerical results that show
efficiency of the estimates.

§2. NOTATION AND DEFINITIONS

First, we recall several notions of convex analysis. Let X be a reflexive
Banach space and X* denote the space conjugate to X with the product
<z x > Rfor x € X and z* € X*. A convex lower semicontinuous
function (l.s.c.) functional ® : X — R has a counterpart ®* : X* — R
defined by the relation

O (z*):=sup { <z",x > —P(x) },
zeX

which is called the Fenchel conjugate to ®. The pair of functionals ® and
®* generates the compound functional

Do (z,2%) := O(z) + D" (x*)— < z*,x > . (2.1)
It is easy to see that
Dy (x,2") 20 VzeX z"eX" (2.2)

This functional vanishes if and only if 2 and z* are connected by certain
relations (e.g., see [11])

Do(z,2") =0 < z* C 0®(z) and x C 9P (z™). (2.3)
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Here 09 is the subdifferential of @. If ® (resp. ®*) is Gateaux differentiable,
then the subdifferential inclusion in (2.3) is replaced by the relation z* =
®'(z) (resp. = ®*(z*)), where prime denotes the derivative.

Throughout the paper V denotes a reflexive Banach space with the
norm || - ||y and V* is the space conjugate to V. The duality pairing of
v € V and v* € V* is denoted by (v*,v). V is a Hilbert space with the
scalar product (-,-)y. It is assumed that V is is compactly embedded in
V), so that the spaces V, V, and V* form the so called Helfand triple. If
v* € V then (v*,v) = (v*,v)y.

We use another Hilbert space U supplied with the scalar product (-, )¢
and the norm || - ||y. Next, A : V — U is a bounded linear operator and
A* : U — V* is the conjugate operator defined by the relation

(y, Av)y = (A"y,v) YyeU, veV.
Also, we introduce the subspace
Q" :={qeU | A"qe V}.

Let A: U — U be a bounded positive definite operator and A~! denote
the respective inverse operator. Using them we introduce the spaces Y and
Y™ that contain the same elements as U but operate with different norms
lyll4 == (Ay, y)v and [|y[|4 -1 := (A y,y)v. It is assumed that there exist
constants 0 < ¢4 < €4 such that

callylt < llylla <ealyllz; vy eU. (2.4)

Elements of spaces V', V, and U are functions defined in an open bounded
domain Q C R%, d > 1 with Lipschitz boundary I'. In the examples be-
low, they are Lebesgue and Sobolev spaces for scalar and vector-valued
functions. For them, we use standard notation L,(Q) (or L,(©2,R%)) and
Wé(Q) (where I,p > 1) and mark above by o if the respective functions
vanish on I". Norms of scalar and vector valued functions, which are squre
integrable in 2 are denoted by || - ||q-

If KerA contains only zero function, then ||Aw|y can be used as a norm
of V and we have the inequality

|lwlly < Cal|Awlly Yw € V. (2.5)

For example, if A is the gradient operator and V' contains functions vanish-
ing near the boundary, then (2.5) is the Friedrichs inequality. The constant
C reflects important quantitative relations associated with the spaces V
and V. Therefore, it often arises in a posteriori estimates of the functional
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type. However, we can also use other inequalities that can be viewed as
advanced forms of (2.5). Such an inequality has the form

dlzrel& ||w — ’(ﬂ”v < C\II,A”AwHU Yw € Vg, (26)

where ¥ € V is a certain set of functions that excludes any function from
KerA. In this case, the constant Cy A is usually smaller than Cj, so that
it may be advantageous to use (2.6) instead of (2.5). The simplest form of
(2.6) is known as the Poincaré inequality for functions with zero mean:

inf [|w — cllo < Cp|[Vulo  Yuwe (). (2.7)

If 2 is a convex domain, then Cp < Ldiam (see [14]).

§3. A POSTERIORI ERROR IDENTITIES

A posteriori error identities are functional relations that contain mea-
sures of errors in one side and computable quantities in the other. They
hold for any functions that belong to the basic (energy) class. Therefore,
error identities form a basis for getting fully computable error estimates
for a wide spectrum of approximations regardless of their origin.

3.1. Linear problems of the type A*AAu+/¢ = 0. This class of math-
ematical models originates from the equations

Ap+i=0, (3.1)
p = AAu, (3.2)

which usually reflect physical relations: (3.1) is a certain conservation (bal-
ance) law and (3.2) is a constitutive relation (physical law associated with
a particular media). Hence the solution is presented by two functions u
and p. Let v € V be a function considered as an approximation of u and
y € U be an approximation of p. Then

*

e:=v—u and e :=y—p

are the corresponding errors.
Error identities for problems of the class (3.1)—(3.2) are well studied
(see [18-20]). If £ € V, then the identity reads as follows:

le* [ + Aell% = lly — AAv[% - + 2(R(y), e)v, (3-3)
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where
R(y) :==A"y+LeV.

Applications of (3.3) to a posteriori error estimation of numerical approx-
imations was studied in [20]. It can be also used to analysis of modeling
errors (see [19,23] and some other publications cited therein).

Consider a more general case, where £ € V* and has the form

(t,w) = (z, Aw)y + (f,w)y, where f€Vand zeU.
Then the corresponding generalised solution is defined by the relation
(AAu + z, Aw)y + (f,w)y =0 Yw e V. (3.4)
In this case, p := AAu+ z and (3.4) reads
(vaw)U+(f7w)V:0 Yw € V.
Hence for any v € V and y € Q*,
ly = Adv — 2[5 = lly = plZ-+ + [A(v — w) % — 2(y — p, A(v —w)y
= lly = ol + IA(v = @)% = 2(A"y + f,v — w)y
and we arrive at the identity
le* -1 + [Aell% = lly — AAv — 2[5 -1 + 2(R(y), e)v, (3.5)
where
Ry) :=Ay+ feV.
We can rewrite (3.5) in the following form:
1Aell% + lle*[Z-r = lly — Adv + 2][% -
+ 29(e", Ae) +2(1 =) (R(y), e)y, ~€[0,1]. (3.6)
By the Young’s inequality
* Y *
29/(e", Ae)| < vellAell + Zlle*[5-1, >0,
we obtain the estimate
g *
(L =) llAely + (1= 1) eI
<lly = Adv = 2| +2(1 = N(R(y), e)v, (3.7

where v < € <

==
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Two limit versions of (3.7) (for e = v and € = %) imply the estimates

(1= %) max{ [ Acl, e*]13-: |
<lly = AAv = 2[5 + 21 = 7)(R(y), ey (3.8)

and

(Lo Aellf + 1+ 2) llel5-
> [ly—AAv — 2|41 +2(1 = D (R(),e)v, (3.9)

where € > 0. In particular, for v = ¢ = 1 we have
. 1
IAelZ + lle”I%-1 = 5ly—Adv — 2[5 (3.10)

The first term in the right hand sides of (3.5), (3.7), and (3.9) depends
on known data (A4, z, Q) and computed functions v and y. It is directly
computable. However, the second term (R(y), e)y contains unknown error
function e. This situation is typical for many other problems.

3.2. Convection diffusion problem. As a second example, we consider
the convection diffusion problem
—Au+a-Vu=f in Q, (3.11)
u=0 onTI. (3.12)
Let
a € Loo(?,R?Y) and diva = 0.
In this case, U = Lo(Q,R%), V = Ly(Q), V = H'(Q), and p = Vu. It is

easy to see that

IV =yl = [Velld + lle*[1% +2/V€~6*dw
Q

= ||V€||?2 + ||6*H?Z - 2/edive*dx
Q

=HVd%+WW%—2/?wwy—mp+me
Q
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/ea~Ved:c:%/a~V62dx:0,

Q Q

Since

we conclude that

Vel + 'l = Vo= vl 2 [ Rgv)eds. (313)
Q
where
R(y,v) :=divy —a- Vv + f.
This error identity has the same structure as (3.3). The left hand side is a
natural error measure and the right hand one consists of the computable

norm ||[Vv —y|| and the functional [ R(y,v)edz. It is clear that tis integral
)
term can be estimated in such a way that the unknown e is estimated

by the norm ||Ve||, so that the identity implies fully computable error
estimates. The problem is how to do this efficiently avoiding significant
overestimation. Various options are discussed in Sec. 4.

Identities similar to (3.13) hold for the evolutionary convection-diffusion
problem

ug —divp+a-Vu+ g*u— f in Q7 :=Q x (0,7), (3.14)
u(z,t) =0 in Sp:=T x(0,T), (3.15)

u(z,0) = up(x) x € Q, (3.16)

p = AVu inQr:=Qx(0,T7) (3.17)

with positive definite symmetric matrix A and coefficients satisfying the
conditions

1
a= Lo (Q,RY), diva € Loo(Q), 0 < 5 diva + 0? =: 02,

0<0€Lu(Q), feLa(Qr), uoe HYS).

In [22], it is shown that for the problem (3.14)-(3.17) the following identity
holds:

p(e, ) + ez, TG

T
_ He(a:,O)H?Z+/Hy—AVv||A71dt—2/Rf(v,y)edxdt, (3.18)
0 Qr
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where v(z,t) and y(z,t) are approximations of u(z,t) and p(x,t), respec-
tively,

T 1/2
ple €)= /(IIVelli +lle*[5-1 + 2lloaell?,)dt
0

is a measure of deviation from (u,p), and
Ry(v,y) := f — v +divy —a- Vo — g*v

can be viewed as residual of (3.14). If v(x,t) satisfies the initial condition
(3.16), then the first term in the right hand side of (3.18) vanishes. The
second term contains known functions v and y and can be easily computed.
The third term is the integral formed by unknown e and known residual
function Ry (v,y). We see that the structure of (3.18) is the same as of
(3.3) and (3.13).

3.3. General elliptic problem for monotone operators. Consider
the following abstract elliptic problem: find uw € V, p* € Y* and 0 € V*,
such that

Au+£0=0, where  Au := A"p*(u) + wo(u),  (3.19)

where ¢ € V*, w > 0. The dependence of p* from u is defined implicitly
(cf. (2.1)-(2.3)) by the relation

D¢ (Au,p*) := G(Au) + G*(p*) — (p*, Au) = 0. (3.20)
If G is differentiable, then (3.20) implies the explicit relation
p* = G'(u).

By means of (3.20) we may consider a various functional relations (in-
cluding those presented by multivalued mappings) in a compact unified
form.

Analogously, 0 = o(u) is defined by the relation

Dr(u,0) = R(u)+ R*(0) — (o,u) = 0. (3.21)

We assume that the functionals G : Y — R and R : V — R are convex,
continuous, and nonnegative functionals. In addition

G(0y) = R(0y) = 0, (3.22)
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where Oy and Oy are zero elements of Y and V, respectively. Also, we
assume that the functional G satisfies the coercivity condition

G(A

W) _ Lo as [fully — oo, (3.23)
[lwllv
Notice that in this general case, the spaces Y and Y™ contain different

elements and (+,-) denotes the duality pairing of these spaces. Therefore,
in this section we mark elements of Y* by stars.

Lemma 1. The operator A defined by (3.20), (3.21), and (3.23) is mono-
tone and coercive.

lim inf

Proof. Let uj,us € V, 01,02 € V*, and p}, p5 € Y* satisfy the conditions
Da(Vui,p;) =0 and Dg(u;,0,) =0 i=1,2. (3.24)
We have
(Auy — Aug,uy —ug) = (pi — 03, AMur — ug)) + (01 — 02, u1 — u2).
In view of (3.20) and (3.21), the right hand side of this identity is equal to
G(Vur) + G*(p1) + G(Vuz) + G*(p3) — (p3, Vur) — (p1, Vuz)
+ R(u1) + R*(01) + R(uz) + R*(02) — (02, u1) — (01, u2).
Hence
(Auy — Aug,ug — uz)
= Dc(Vui,p3) + Da(Vue,pT) + Dr(ui, 02) + Dr(ug, 01).

Recalling (2.2), we see that the operator A4 is monotone.
Since

(Aw,w) = (A"p"(w) + wo(w), w) = (p* (w), Aw)y + wlo(w), w)
and
G(Aw) + G*(p"(w)) — (p*(w), Aw)y =0,
R(w) + R*(o(w)) — (o(w), w) =0,
we see that
(Aw, w) = G(Aw) + wR(w) + G (p*(w)) + wR" (o (w)).
In view of (3.22), congugate functionals satisfy the condition

G*(p*) +wR"(0) 2 0.
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Hence by (3.23) we find that

. (Aw,w)
lim inf = +00 as |lw|ly — +o0
[[wllv
and the coercivity is guaranteed. O

Well-posedness of the problem (3.19)—(3.21) follows from Lemma 1 and
Browder-Minty theorem. The corresponding generalised solution satisfies
the relation

(P (uw), Aw) + wlo(u),w) + L,wy=0 YweV, (3.25)

where p*(u) and o(u) are defined by (3.20) and (3.21).

A posteriori error identity for this class of problems was derived in [21].
For convenience of the reader, we reproduce (with some modifications) the
respective proof below.

Theorem 1. Foranyv € V,y* € Y*, and 7 € V*, it holds
Da(Au,y*)+De(Av, p*) + wDgr(u, 7) + wDg(v,0)
= DG(AU,ZJ*) +WDR(UvT) + <]R(y*a7—)76>7 (326)
where R(y*, 7) := A*y* + wr + £.
Proof. It is easy to see that
Da(Av,y™) = G(Au) + G™(y") — (", Au) + G(Av) + G*(p*) — (p*, Av)
+ (", Au) + (p", Av) — (p*, Au) — (¥, Av)
= Dg(Au,y*) + Da(Av, p*) + (p* —y*, A(v —w)) (3.27)
and
Dg(v,7) = R(v) + R*(7) — (7,v)
= R(u)+R* ()= (7, u)+ R(v)+R*(0) = {0, v) +(, u) (0, v) = (0, u) = (T, v)
=Dgr(u,7) + Dr(v,0) + (0 —T,v —u). (3.28)
By (3.27) and (3.28) we obtain
D¢ (Av,y*) + wDr(v, 7)
= Da(Au,y*) + Da(Av,p*) + wDg(u, 7) + wDr(v, 0)
+ (@ -y Alv—u)+wlo—T1,v—u). (3.29)
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Since e € V, we use (3.25) and find that
(p*, Ae) + w(o,e) = — (L, e).
Using this relation we represent the last two terms of (3.29) in the form
(p" —y*,Ae) + w(oc —1,e) = (—A"y" —wr — L, e) = —(R(y", 7),€).(3.30)
Now (3.26) follows from (3.29) and (3.30). O

Remark 1. If w = 0, then we arrive at the identity
De(Au, y* )+ D (Av, p*) = Da(Av, y*) + (A*y™ + £, e). (3.31)

Applications of this type error identities to estimation of errors of generated
by simplification, homogenisation, and dimension reduction of mathemat-
ical models are studied in the book [19].

First versions of error identities were derived for convex variational prob-
lems, where we can use properties of the primal and dual variational prob-
lems [15,16]. They are derived for various nonlinear problems (see [2,24]
and a systematic overview in the book [19]). However, error identities also
hold for problems that have no variational settings (see [21,22] and some
other publications cited therein). In the proof of Theorem 1 we have used
(3.25) and properties of compound functionals only. Hence justification of
(3.26) (and other above presented identities) do not require variational
duality arguments.

We see that the identity (3.26) has the same structure as (3.3), (3.5),
(3.13) and many others derived in [2, 16,19, 21, 24] for various nonlinear
problems. The left hand side of (3.26) consist of four nonnegative terms,
which can be viewed as nonlinear error measures. They vanish if and only
if approximations coincide with the exact solutions, while the right hand
one contains directly computable terms D¢ (Av, y*) and wDgr(v, 7) together
with the term (R(y*,7),e).

§4. EVALUATION OF THE TERM (R, e)

Identities (3.5), (3.13), (5.11), (3.31), and (3.26) contain the term (R, e),
where the function e is unknown. If we knew the value of this term, then
the error control problem would be completely solved. Therefore, the key
question is how to estimate (R, e) via the quantities in the left hand sides
of the identities. In this section, we discuss various ways of getting such
type estimates. They develop the ideas earlier exposed in [20].
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4.1. Computability and efficiency. First, we note that
(R, e} <IIR[lv-[lAellv, (4.1)

where

(R, w)
R||y+ = sup .
IRllv- = sup 1l

If R is more regular and belongs to V, then using (2.5) we have
(Ra w)V

R|ly~ = sup < ColR]ly
IR]| SUP TRl IR]
and obtain the estimates
(R, e)| < CallR|lv[Aellv (4.2)
and
c3? I
R < —A|IR|1Z + S| Ael? . 4.
(R, e) 2MQAII b+ SllAelly Vu>0 (4.3)

Setting u € (0, 1] and applying (4.1) and (4.3) to the simplest error identity
(3.3), we get estimates for the combined error norms with weights:

" 1
(1= @l Ael + lle*]%-1 < ly — Adv|%-2 + en IR - (4.4)
and
2 2 2 Cx 2
(L= pl[Aelld + lle*[[a- < [ly — AAvf3- + fea R[], (4.5)

The estimate (4.4) is theoretically correct, but practically useless because
it operates with an incomputable supremum type norm. The norm ||R||y,
is computable (it is an intergal type norm), so that the right hand side of
(4.4) is easy to calculate. However, (4.2) is a much coarser upper bound
than (4.1). Besides, there is another difference between ||R||y« and ||R|y
essential from the viewpoint of numerical applications. As a rule, approxi-
mations (e.g., Galerkin finite element approximations u;) converge to the
exact solution u in the basic energy space only, i.e., ||up — u|ly — 0 as the
mesh parameter h tends to zero. If y is defined by a simple reconstruction
of up (e.g., yn = AAuy,), then R(y,) may not belong to V and converges
in a weak sense only, i.e.,

IR(yn)[lv= — 0. (4.6)
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For (4.4) this type of convergence is admissible, but for the estimate (4.5)
it is too weak. Various averaging (post—processing) procedures are often
applied to replace y;, by a close and more regular function yj. The result-
ing improvements are usually reduced to the following: we have uniform
boundedness of ||R(yx)|ly and can show that

R(yp) — 0 weakly in Vash — 0. (4.7)

In this case, (4.5) can be used for the pair (v,yp), but it may essentially
overestimate the error.

In other words, the estimate (4.4) is fully adapted to properties of nu-
merical approximations converging to the solution pair (u, p). However, its
right hand side contains an incomputable term. In opposite, (4.5) is fully
computable, but may generate essential overestimation and in certain cases
may be inefficient.

To overcome this contradiction between the efficiency and computability
we follow the idea suggested in [20]. It is based on wusing an auziliary
problem generated by R. Let uz € V be such that

(BAug, Aw)y = (R, w), Yw eV, (4.8)

where B : U — U is a certain bounded self-adjoint positive definite opera-
tor satisfying the condition

esllyly < By,y)v = lyllz <eslyllf-

This problem is uniquely solvable for any R € V* and the operator B is at
our disposal. We may set B = A, or define it as a simplification of A, or
even set B = 1, where 1 is the unit operator. By (4.8) we obtain

(R,e) < |[|AugllulAefv

and replace (4.4) by

. 1
(L= mlAeld +lle*l%- < ly — AAvl% - + ;IIAuRH?p (4.9)

Let g5, be a sequence satisfying (4.6) and R(%y;) € V. Then the right hand
side of (4.8) tends to zero and, therefore, |[Augg,)|lv — 0. Hence proper
behaviour of the right hand side of (4.9) is guaranteed. Of course, this fact
is not sufficient to say that all difficulties have been overcome. The function
ug, that solves (4.6) is generally unknown. However, we get a computable
estimate if to replace (4.6) by a finite dimensional problem:
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Find ug,m €V, CV
(BAug m, Aw;)y = (R, w; ) Yw; € Vi, (4.10)
where w; € V, i =1,2,...,m are linearly independent functions and
Vin := span{wy, wa, ..., Wy, .

For any function v € V', we define the orthogonal projection on V,,, as
the element v,, € V,,, satisfying the relations

(BA(vy, —0), Aw;)y =0 Vw; € V. (4.11)
Let V- be the orthogonal complement to V| i.e.,
Vi={veV | BAv,Aw)y =0, i=1,2,..,m}.

In view of (4.11), e := e —e,,, € V.- and by (4.10) we have the principal
decomposition

(R,e) = (BAug m, Aem)u + (R, e ). (4.12)

The first term in the right hand side of (4.12) tends to zero if R weakly
tends to zero (this fact follows from (4.10)) and ug », is known (it is found
by solving a finite dimensional problem). Therefore, this term satisfies the
requirements. The second term contains not the whole error e, but only
its projection on V-. If m grows then the impact of this term decreases.
Our next goal is to estimate it as accurate as possible using properties of
specially constructed subspaces V,,.

4.2. Decomposition of (R,e) by a set of orthogonal functions.
Without a loss of generality, we may assume that the functions w;, i =
1,2, ...,m are orthogonalised and normed, so that

(BAU)Z',AU}J')U = 6,‘]‘, (413)
where d;; is the Kronecker symbol. Using the Gram-Schmidt orthonor-
malization a system of m linearly independent functions can be reformed
to a system satisfying (4.13). Another condition imposed on w; is more

demanding: we assume that the functions w; are sufficiently regular, so
that

gi = Bw; €V 1=1,2,...,m, (4.14)

where B : V — V* is defined as B = A*BA. Notice that for any v € V' it
holds

(Bu,v) = (BAv, Av)y > e[| A3 > é—%llvll%- (4.15)
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If {w;} is a system of linearly independent functions in V, then {g;} form a
system of linearly independent functions in V. Indeed, assume the opposite,

ie., 21 Cigi = > ;Bw; = 0 for some (y, (s, ..., (n, which are not all equal
1= i=1

NIE!

to zero. Then for v := > (;w; # 0 we have Bv = 0 and

7

Il
-

m

(BAw, Av)y = Y (BAw;, Aw;)u¢i¢y = (2> 0.
=1

ij=1

We arrive at a contradiction with (4.15), which shows that the assumption
on g; was not correct.

Henceforth, T' denotes the Gram matrix, whose entries are defined by
the relations T;; = (gs,9;)v. This matrix is non degenerate and has the
inverse matrix 7~1. Next, let

be Rqa b= {bk}a bk = (Ra 7/%)\},
reR™, r={r}, ri =R g)v,
S = {spi} € M7, spi = (Yr, 9i)v,

and D := ST~'ST € M%%9 be a nondegenerate matrix. Here vy, k =
1,2,...,q, ¢ < m are linearly independent functions forming the set ¥ (cf.
(2.6)). We define the set

VTS = {90 € Vm | (907wk)v = (vak)\h k= 1327 ""q'}a
which is a subspace of V,,.

Lemma 2. ForanyecV,R eV, and pu > 0, it holds
K 2, 1 2 C\%',A 2
(R, e}l < ElAel+5- ( IAunmllp + =2 (IRIE - 022)) ), (4.16)
2 2p Cp

where ug ., is defined by (4.10),

N(r,z) =T Yr-r—D7 1z 2,
Cy A is a constant in (2.6), g; are defined by (4.14), and 2z :=b— ST 'r .
Proof. In view of (4.11), we have

0= (BA(es, —€),Aw))y = (e —em,g:)y 1=1,2,...,m.
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m
Therefore, for any ¢ = > k;g; it holds
i=1

(Rye)y = (R,em)y + (R,e —en)y
= (BAug,m, Aen)v + (R —p,e —em)y.  (4.17)

The function ¢ € V,, is at our disposal. We set ¢ = @ € V,¥| where
IR—lly = o, IR = lly- (4.18)

Problem (4.18), has another equivalent form

R — = R — (R—-
Join, R — ol = min maX{II oIl +kzlék ) }
:HRH%— Lir+ D7ty 2

Now, we estimate the last term in (4.17) using (4.18) and (2.6)

|(R—p,e—em)y| =R —p,e—en—)y
< min R =gy inf e —em —
min [|R —plly inf fle —emn —llv

m

< (IR =777+ D712 2) Conll(e = emllu-
Hence (4.17) implies the estimate

(R, e)v| < [[Aur,ml|Bl[Aem|s

C‘I/ A -1 €
+ IR — T4+ D'z - z) || Akl
= )
C B 1/2
< (1At m + =22 (HRHV ereD7zz)) CllAells (4.19)
Now (4.16) follows from (4.19) and Young’s inequality. O

Remark 2. If we do not impose additional orthogonality conditions and
use V,, instead of V¥, then the constant in (2.5) replaces Gy o and (4.16)
has a simpler form

1 Cc3 "
(R0} < g | I+ 22 (RIS - Zl i) | +5 el (420)
0.
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This estimate has a clear meaning. Let V,,, = span{gi, g2, ..., gm } and
V= {v eV (v,g:)y =0,i=1,2, ...,m}.

In this case the coefficients x; are defined by the minimisation problem

min IR — Z kigi|l3, so that the function R, Z kig; is the orthogonal

prOJectlon of R to V,,. Hence R = R,,, + R} where RL € V.t and

m

RIS — > Tijtriry = RIS (4.21)

ij=1

By (4.21) we rewrite (4.20) as follows:

1 %
(R}l < o (Il + 2RI ) + Hlel,

Unlike (4.3), this estimate includes only a part of R that belongs to the
orthogonal complement V;-. The larger is m the smaller is ||R} ||y Theo-
retically, if the subspaces {V,,} are limit dense in V (what will be if {V,,,}
are limit dense in V) then R ||y, — 0 as m — oo. Certainly, in practice
we limit ourselves to some finite m.

4.3. Problem (3.1)—(3.2). The estimate (4.20) holds for any e € V
regardless of the origin of this error function. Consider the case, where
B=A¢eV, e=v—u,v eV, and u solves the problem

(AAu, Aw)y + (¢, w)y = 0. (4.22)
In this case, the term (R, e,,)y can be explicitly computed. Error compo-
nent e, = Y. a;w; is defined by the coefficients «;, which can be found
i=1
by the orthogonality relation
0= (AA(em —€), Aw;)y = (AA(er, — v+ u), Aw;)y
= Zai(AAwi,ij)U — (AAU,ij)U — (f,’wj)v.
i=1
Recalling (4.13), we find that
a; = (Cw;)y + (AAv, Aw;)p. (4.23)
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Thus,
||A€m||124 = ZO‘?’ (R7 em)V = Z%‘Pi; pPi = (vai)Va
=1 =1

and instead of (4.17) we have

(R’ e)V = (R7 em)V + (R, € — em)V = Zaipi + (R +p,e— em)V;
=1

m
where ¢ = > k;g; € Vi,. We estimate the last term and derive the esti-
i=1

mates

m 1/2
Ry <Y awpi+ (IRIG =T r) lelly
i=1

- Ca 2 o1 \M?
<+ (IR =T r) ClAelly (4:24)
i=1 VEa Y

and (for p > 0)

" c
(Ra e)V < Zaipi +
i=1

2
_ P
e (IR =770 ) &+ SlAClR. (4:29)

The estimate (4.25) is sharper than (4.20) because the first quantity in the
right hand side is equal to (R, e,;,)y. In (4.16), it is estimated from above
by means of ug .

4.4. Decomposition of (R,e) by a set of eigenfunctions. Let the set
of functions w;, i = 1,2, ...,m be formed by eigenfunctions of the operator
A*A. In this case,

(AU)Z',A’UJJ')U = <A*Awl,wj> = )\Z-(whwj)v = 0 7 75 j,
1
(wivwi)v = Y7 ||Awl||?] =1
The subspaces
Vm:span{wl,wg, ...,wm} and V,#z{v eV | (v,w;)p=0, i:1,2,...7m}

create orthogonal decomposition V' = V,,, ® V. with respect to the product

(5 )y
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Lemma 3. For any ReV,ecV, and p > 0 it holds

1 (& 1 U
R,e)y| < — 2 4 R3] + S|Ae?, 4.26
I(R,e)v] o (;p Am+1” 1% 2|| |G} (4.26)
where
pi = (R,w;)y and I\R#II%:HRII%*ZM? (4.27)
=1

Proof. As before, we use decomposition of the error e = e, + €., which

implies decomposition of the key term
(R,e)y = (R, en)v + (R, )y (4.28)

Since (Aen,, Aei ) = 0, we see that in this case errors satisfy a Pythagorean
type identity in the space U

[Aellf = l|Aemll? + Il Az, 17 (4.29)
To estimate the first term of (4.28), we use the auxiliary finite dimen-

sional problem: find ugp ., = Y B;w; such that
i=1

(Aug,m, Aw) = (R, w)y, Yw € V. (4.30)
The coefficients §; are defined by the system

ZﬂZ(sz,AwJ) = (R,wj)v = pj7 ] = 1,27 ey M
=1

It is easy to see that 3; = p;. Hence

m m
IAunmlf =D BEllAwslE =D o}
i=1 i=1

and by (4.30) we find that
[(Ryem)| = |(Atur,m, Aem)| < [ Augm|v|Aem|v- (4.31)
Consider another part of (4.28). We have

R, ex)y = (R — Z KiW;, € )y
i=1
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We set k; = A\;p; and find that
m 1/2
R, ey < (IRIE =S 00?) llekllv = IREIvlle v, (432)
i=1

Notice that e, € V.- and, therefore,

lemllv < 1Az llo- (4.33)
>\m+1
By (4.32) and (4.33) we obtain
1
(R, em)| < IRz vl Al (4.34)
m+1

From (4.28), (4.31), and (4.34), it follows that

m 1/2
1
(R, )] < (Zﬂ?) HAemIIU+\/A—HR#LII%IIA%HU
m+1

=1
m ) 1/2
< Dopl+—IREIS | lAelu. (4.35)
i—1 Am+1

We arrive at (4.17) by applying Young’s inequality to the right hand side
of (4.35). O

Remark 3. Let B = 1 and, consequently, ¢z = 1. Compare (4.17) and
(4.26). Since
1 Ao

CA o weV ||’w||v

=72

we have C’?\ = )\% > ﬁ The first term in round brackets is the same in

both relations (it represents ||Aug ,|/7). Hence (4.26) is sharper than (4.17).

4.5. Particular case. Now we focus attention on a special, but impor-
tant case where the error function e is generated by the problem (3.1)—(3.2)
with A = 1 so that u satisfies the equation

A*Au+ 0= 0. (4.36)

This equation is an abstract form of elliptic equations associated with
self-adjoint operators, which are used in natural sciences.
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Notice that the first m coefficients -; in the representation u = Zfil Vi w;
can be defined by solving a system of linear simultaneous equations

> vi(Awi, Awj)y + (Gwy) =0, j=1,2,...,m, (4.37)
i=1

wherefrom ~; = —¢;, ¢; :== (£, w;)y. We use the identity (3.3)
eIz + llAellf = lly — Avllf +2(R,e)y, R:=Ay+Ll  (4.38)
To estimate the last term we decompose the error: e = e, + ez, Let (; :=

i (v, w;)y, then the first summand of this decomposition is computable:

m m

Cm = Um —Um = > _ (G —y)wi = > _(Gi + li)wi.

i=1 i=1

We have
(R,e)y = (R,em)y + (R eh)y = S + (R, €5y,

where

m

S =Y i (G—=w) = DG+ ) i
i=1

i=1

By (4.34), we conclude that

1
(R, €)y < Epy + ———| Ry Iy || Aellu
V )\m+1

<O+ ——IRLIZ + EyjAel? 4.39

+ 5o IRAI + GlAely (439)
and
1
(R,e)y = T — ———|R;, [lv | Ae]lv-

\Y4 >\m+1

Thus, (4.38) yields two sided bounds

(L= mwlAellE +lle*E < lly — AvlE +28m + IRZ (1, (4.40)

HAm41

. 1
(L + pllAelf + e*llE > lly — Avllf + 25m — mllanllia (4.41)

where p € (0,1] in (4.40) and p > 0 in (4.41).
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4.6. Sharpness of the estimate. Possible overestimation in (4.40) and
underestimation in (4.41) is associated exclusively with the last term, and
depends on the quantity

1 m
= —(IRIZ =X xe?).
+1 i=1

Since
m

Am+1 — 0o and Z)\ipf — |R||% as m — oo,
i=1
this term tends to zero. Hence the estimates (4.40) and (4.41) become
sharper as m grows and converge to the exact value from above and below.
Consider one case where this fact very easy to observe. Let y = Av. Then
e* = Ae and (4.40) reads

H 2 K Em
1—Byne)z <o, (1+8), w=2m
(= Blel <z (145, =g

Set u = v/2k. Then

1 2
el < 5,1 VA2 (4.42)
1—+/Kk/2
Notice that
j=1

Therefore,

:ig—ké pr and E,, =

Z i -

Am+1 i=m-+1

Since

el = (DG + ) Aws, (G + ) Aws) = D26+ 6)? sz,
i=1

=1 =1

we see that E,, — 0 and X, — ||Ae||?, and x monotonically tends to zero
as m — +oo. Hence the left hand side of (4.42) tends to the right hand
one.
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4.7. Extension of the applicability area. Above discussed method is
based on the knowledge of m eigenfunctions. This fact imposes restrictions
on the shape of Q. We can partially bypass them if V' consists of the
functions satisfying homogeneous boundary conditions on 9.

Let 2 C SAI, where Q is a "simple" domain for which the eigenfunctions
w; are known. We extend u by setting u = 0 in Q \ ©Q and denote it by @.
Analogously v and R are the extensions of v and R by zero. Then,

o~ o~ e in Q
e=v—u= ~

0 inQ\Q
and
(R, )vo) = (R, &)y (4.43)
If the operator A admits analogous extension, which preseves the norm
I Aellue) = IA8] 4. (4.44)

then by Lemma 3 we have

€) o)

1 LSS [T
<3 ( (||R||2 Zm%)) +LAeI ) (445)
i=1

where p; = V(Q From (4.43), (4.44), and (4.45) it follows that

[(R,e)y Q>|

(ZAMA (IR 0 > 1p2)>+;‘|Ae%m). (4.46)

Thus, we get an upper bound using known eigenfunctions associated with Q.

Also, it is worth noting that the method outlined in Sec. 4.5 can be also
used to improve the approximation v. With no additional expenditures we
find the function

= Z%ACH—E Jwi,

which is as a better approximation of v than v,,. Indeed,

il 1 1 1
v;g:v—em:vm—l—vm—vm—i—um:vm+u—um:u+em.
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Therefore, the corresponding error e = v —u = e has zero projection

on V,, and (v,w;)y = (v, w;)y for any j > m + 1. Recalling (4.29), we
conclude that the error of v} is smaller than the error of v.

4.8. Generalizations. It may seem that the whole topic about getting
estimates (4.40) and (4.41) for the problem (4.36) is rather special, but
this is not the case. For any of the mathematical models considered in
Sec. 2 (and for many others), fully reliable error control problem can be
reduced to the case studied in Sec. 4.5. Indeed, we can replace (4.12) by

(R,e) = (BAvg,Ae)y + (BA(ug — vgr), Ae)y, (4.47)
where vy is an approximation of uy defined by (4.8) and ey := vy — ug.
Then

(Rye) < ([[Avsllu + [[Aex|lB)||Ae] 5

and

(Ree) < (0wl + [Aenll) + §laclh, vi> 0. (d4as)
This estimate has the same structure as (4.20) and (4.26). It yields guar-
anteed and computable error estimates provided that the first term in the
right hand side of (4.48) is computable. This goal is achieved if we solve
the linear problem (4.6) numerically and find a sharp computable bound
for the norm of the corresponding error e;. We are free to choose a method
of finding vy and it is not required that it is the exact solution (Galerkin
approximation) of (4.8). Thus, (4.48) shows principal ability to control the
accuracy of approzimations to various problems using an auziliary linear
problem only.
To estimate ex we set B = 1 and use the method considered in Sec. 4.5.
The auxiliary problem (4.8) reads

A" Aug + R =0. (4.49)
Let vz and yr be approximations of uy and py := Aug, respectively. Then
€r = Up — Up, €5 =Yy —DPr, and A%el =A"yp+R =:R(yz).
For (4.49) we use (3.7) with z = 0 and A = 1. It reads
(L =ve)llAellf + (1= ) le”llf < lly —Avlf +2(1 = 7)(e", Ae), (4.50)
where 7 and € are parameters satisfying the conditions

v=20, €>0, ve<1l, ande>=n~.
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If vy =-¢,v=u1gr, y=yr, and R(yz) € V, then (4.50) has the form

(1 =)[Aexllf < lyn— Avallfr +2(1 = ) (Rly), en)v-

To estimate the term (R(yg), er)v, we use (4.39), which reads

1%
(R(yr); er)y < B + 19y ) 1 + §||A6R||¥]7 Vv > 0.

2V}‘m+1

Combining the last two inequalities, we obtain the estimate

1= v+v =) Aerllf < llyn— AvelZ

1 _
21— S+ S L2, (51)
VAm-i—l
where
- vai
B = 3 (e + ) @0
and

m

1R m I = 1R @ID = > (R(yw), wi)3-

=1

Let v =+ < 1. Then (4.51) has the form

— Avg|]?
||yR = RHU +22m+

[Aer |z <
TS 1y YAmt1

[RAEPFA (4.52)

Estimates (4.48) and (4.52) imply an upper bound of |(R, e)y|. For exam-
ple, set v = 1 in (4.52). Then, for any p > 0 we have

1 1%
(R, e)y| < EHA'UR,“2U + §||A€||2U
2 2 1 L2
5 (Bl Aol + IR m)ml3).
M m+1

All terms in the right hand side of this estimate (except ||Ae||?) depend
only on approximate solutions of (4.49) and known data.



146 S. REPIN

§5. A POSTERIORI ERROR ESTIMATES

In the literature, various a posteriori error estimates are mainly studied
in the context of adaptive computational methods. There are known several
types of a posteriori indicators (residual, hierarchical, goal-oriented, post-
processing, etc.), which are relatively cheap and usually suggest a correct
way of changing meshes (or other parameters of approximations) in order
to get the best approximate solution at the next iteration. Theses methods
exploit specific features of approximations (e.g., Galerkin orthogonality)
and properties of exact solutions (e.g., additional regularity) to construct
simply computable indicators of errors. Typically, they are adapted to a
particular problem or numerical method. The reader will find the corre-
sponding theory and numerous examples in [1,3,6-8,10,26,27] and many
other publications cited therein.

Estimates considered in this section follow another concept. They are
derived from a posteriori error identities that hold for all deviations from
the exact solutions. The only one requirement is that they must belong to
the same functional class as the generalised solution of the problem under
consideration. We show that above derived estimates of the term (R,e)
imply guaranteed and fully computable error bounds for various boundary
value problems, which are valid for the same wide class of deviations. The
identities and estimates are obtained by general methods of functional
analysis and theory of boundary value problems without attracting any
additional information (e.g., on properties of approximations or numerical
methods). Therefore, they are often called a posteriori estimates/identities
of the functional type. They possess maximal universality and can be also
applied to analysis of modeling errors [19].

5.1. Problem (3.4). We use (3.8) in the form

(1= *)lAel% < lly = AAv — 2|5 -0+ 2(1 = )(R(y), e)y (5.1)
and apply (4.25) to the last term. We find that
Cia
2cap

- [
(). bl <3 oo+ S22 (IRIE = 5(2)) + 1Ack
=1

In the case considered, B = A and (4.13) reads

(AA’LU“AU)])U = (5” ’L,] = 1,2, ey M.
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Therefore,
1Ael% = [IAem % + [ Aes %, (5.2)

where [[Aen, || = 3 o?. From (5.1) and (5.2), it follows that
=1
(1 =) [Ael% < lly — Adv — 2[5

+2(1 = 7)(R(y), e Za
< lly— AAv — 2|30 — Z o

3

wherefrom we deduce the estimate

(1—y)(1 47— i)HAe;ni <y — Ao — 2|3

(Zazpz (||RHV S(r,2)) — ( +v§:af)

Set p=cy7,

(||R||v 20,2)) + lAel).

O 1/2
L(y,v,2) = |ly— AAv—z[[ 4= and Iy(y) :== —=(|R||3 — X(r, 2)
VvEa

Then we arrive at the estimates

1 1 -
I < g e 4 DB + 3 (0 (1 a) G
and
2 L 2, 1o - 2
IAeld € =By, 2 + ~By) + Y (200 —7ad).  (55)
—7 v i=1
Setting in (5.5) v = 21 +1 , we obtain
I (y) Zl%

A (1w, 2) + I )+2 Qipi = 7 = (56
I8¢l < (Bl,2) + I Z S T ks A
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5.2. Convection—diffusion problem (3.11)—(3.12). We set B = 1
and define the auxiliary problem (4.6) as follows: find uy € V := ]}1(9)
such that
/VuR -Vwdr = /R(U,y) wdz Yw €'V, (5.7)
Q Q
where R(y,v) :=divy —a- Vo + f.
Let {w;}, i =1,2,...,m be a system of functions in Vj such that
/Vwi -Vw;dxr = 0.
Q
In accordance with (4.14) (where B = A), we additionally require that
Aw; € V:= Ly(N).
A finite dimensional counterpart of (5.7) is the problem: find ug ,, € V,,, C
Vo such that

/VuRym - Vwdx = /R(y, v) wdx Yw € V. (5.8)
Q Q
First, we use (4.20) and (3.13) to get the following error majorant

N 1
1= wlIVeld +llelId < Vo -yl + ;lIVuR,mII?z
Ci‘“ R 2 _ 1.
+ IRy, v)lI rer), (5.9)
where Cp is a constant in the Friedrichs inequality ||w|q < Cr||Vw||q for
any w € i (Q),
we (0,1, = f/R(y,v)Awidx, and T;; = /Awiijdx.
Q Q
It is easy to see that the left hand side of (5.9) is fully fully computable.

Also, we have a lower error bound
1
L+ wIVeld + eIt = Vo —yl§ - ;”vun,m“%
Ct

- L(RG NG -Trr), (310
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where p > 0.
If {w;} are the eigenfunctions of A, then Lemma 3 can be applied. In
this case, we obtain other bounds

* 1 =
(1= )| Vel + [le*]13 < /|w —ydat >

Q =1

(IR0l - Soat) G

and

* 1 <
(L4 @IVl + €13 > /|w—y\2dx— >t
1=1

(- Beol) 6

Notice that possible overestimation in (5.11) (and underestimation in (5.12))
is generated by the second and third terms in the right hand sides of these

estimates. Assume that v = v, and y = y, where vy — win ;Il (), yx = p
in Ly(Q, R?) and ||divys||o is uniformly bounded as k — +oo. In this case
pi = [(fw; — (a-vg)w; — yx - Vw;)dz — 0. The last term can be also made
Q
arbitrarily small if m is sufficiently large (see Remark 4.6).
Now, we consider estimates that follow from (4.16). Let Qs

- Y
where {2 are open Lipschitz subdomains with the diameters d(Qk) such
that Q, NQ; =0 if k # j and

b = 1 ifz e Q,
FTY 0 ifz g Qy,

We define ¥ = span{t1, s, ..., ¥, } and set ¢ = i Ck¥k. Then (cf. (2.7))

k=1
inf [lw—¢|3 = inf an Cell3,
Tl’ k12 aq k=1
z d2 2 2
Z ||Vw||9k C3 ¢lIVuw|3, (5.13)

k=1
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where Cy v = %m}gx{d(ﬂk)}.
(5.9

In this case, (5.9) is replaced by the estimate

. 1
(L= mwVeld + le*lls < Ve —ylg + ;IIVUR,mII%
2

C
= (IR, )= D7 (0= ST ) - (b= ST7) ), (5.14)

where sp; = [ Aw;dz,and by = [ Rdz. The estimate (5.14) will give
Qe Qp

sharper error bounds than (5.14) if Q is divided into a large amount of

subdomains €, having small diameters, so that the constant in (5.13) is

essentially smaller than Cp.

5.3. Estimates for the problem (3.19)—(3.21). Consider the case,
where G(y) = %(Ay,y)U, and A : U — U is a bounded linear operator
satisfying (2.4).

In this case, G*(y*) = 3(A~'y*.y*) and (3.26) reads

1 1.
SJAely + e’ ios + D, 7) + Da(v.0)
1
— §||y* — AAvHi_l + wDgr(v,7) + (R(y*,wr),e) (5.15)

Here p* = AAu, e* = y* —p*, and 7 is an approximation of ¢. To estimate
(R(y*,wT),€) we use Lemma 2 with B = A and find that

. 1 Cx u
(R wr),e)] < 5 (nAuR,mni + A||R;||%) + LAl (5.16)
Y €xq

where ||Rz ||y is defined by (4.21) and ug ., solves the finite dimensional
problem

(AAug m, Aw)u = (R(Y",wT), W) YWy, € Vi,

From (5.15) and (5.16), we deduce the estimates
(1= wllAelZ + le*%-1 + 20Dr(u, 7) + 2wDr(v,0) < [ly* — AAv[3-

1 C?
+2wDR(v,T) + ~||Aug |} + —2|RE | (5.17)
K HEA
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and
(14 @l Aellh + [le*]%-1 + 20Dr(u, 7) + 20Dr(v, 0) = |y = AAv|% -
1 C?
+2wDR(v, ) = = [ Aug mlZ — =2 R[5 (5.18)
H HE4

Right hand sides of (5.17) and (5.18) contain ug_,, and directly computable
quantities.
If w = 0 then we arrive at the problem (4.22). In this case,

m

. C3 0
(R(y™), e)v| <Y aipi+ TQIIR#LH% + 5 Ae iz, (5.19)
i=1
where «; are defined bty(4.23). Thus, (5.17) and (5.18) are replaced by

m
CQ
(1= mllAel + lle 5 < lly™ = ANolZ0 + ) aipi + —2 Ry |3,
i=1 Hea
m

. C3
(L + mllAeld + N5 > Ny — ANol%0 + ) aip? — ﬁIIR#H%-
=1 -

Consider the case where € is a "simple" domain so that the correspond-
ing eigenfunctions w; are known. Then (4.35) yields the estimate

m 1 1/2
§:p%+A|R$mJ el
m—+1

=1

|ﬁW@ﬂM<;<
A

and instead of (5.17) and (5.18) we have two-sided estimates
(1=l Aell + lle*|%- + 2wDr(u, 7) + 2w DR (v, 0)
1

1 m
< ly* — AAv||4 -1 + 2wDR (v, T) + —5- 24
n s+ 2Pl i (30 5

IIR$II%> (5.20)

and

(1 + )l Ael% + lle*%-1 + 2wDr(u, 7) + 2wDr(v, 0)

. 1 (& 1
>ly" = ADvl3 2 +20Dn(v, 7) = —5 | D pi+——IRulS | (5:21)
//(‘QA i—1 m—+1

where ||R:: ||y is defined by (4.27).
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If V consists of the functions vanishing on the boundary, then we can
use arguments of Sec. 4.7 and apply similar estimates with eigenfunctions
associated with an extended domain €.

§6. COMPARISON OF THE ESTIMATES

Above considered error bounds have been derived from error identities
be estimation of the only one term: (R,e)y. Therefore, their efficiency
depends only on overestimation of this term.

Consider the simples estimate (4.2) first. It is natural to characterise
the value of overestimation by the quantity

Cha o
[Aelld + lle*[%-

which relates it to the actual error norm.
Consider the estimate (4.20). For B = A we have a similar quantity

o2 1/2
(sl + SHIREIZ ) lAela = (R, )v]

[Aell% + llex 1% -

O3 (e, e*) := . (6.2)
which involves the solution ug ., of the finite dimensional problem (4.10)
and depends on the number m.

Computable error bounds based on the estimate (4.24) also generate
overestimation. We characterise it by the quantity

Z}l aipi + SRy llv[Aella — (R, e)y

Of'(e,e) :== (6.3)
’ [ Aell% + llex 1%
Here || A, |5 = [[Ael% — 3 of.
i=1
a; = (Ahe, Awy)y, pi = (Ryw;)y = (A"e*,w;)y = (¥, Aw;)u,
gi = N AAw;, and r; = (R, g;)y = (A%e”, g:)v.
The estimate (4.35) used in Lemma 3 implies the quantity
m m 1/2
(8 i s ORI = 55 0) ) elinela— .0
O (e,e*) :=—= - (6.4)

1AellZ + llex 1%
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Finally, overestimation of the method discussed in Sec. 4.5 for the problem
A*Au+ ¢ = 0 is given by the quantity

M
;pi(Ci—%)Jr — Ryl [[Aellv — (R, e)y

Amt1

[[Ael? + [|e*||*

Ot (e, e) :=

m
where ]R,J;L =R — > A\jp;w; and w; are the eigenfunctions.
i=1
To get a presentation on the difference between the estimates, we com-
pute O; i =1,2,3,4,5 for the problem

(¢u) +f=0 Q= (-11),
u(—1) =u(l) =0,

where ¢ > ¢o > 0 is a differentiable function. In this case, p = ou/,
Ate* =—e”, L=—f, Cn=2,and ¢y = ¢o. Let w; = sin (F(z + 1)).
Then

1 1
[Ae]l% = /¢|€'I2d% le* - = /¢_1|6*|2d90~
-1 21
and the coefficients are defined by the formulas
1 1 1
; = /gbe/wgdac, pi = /6*w§dx, gi = —(ow}), r; = /gie*’d:c.
-1 1 Z1

Fig. 1 corresponds to the case, where ¢(x) = 1 4+ x and v is a piece-
wise affine interpolant of the exact solution u. The functions u and v are
depicted in the left part of 1. The right part shows the behaviour of O;.
The value of O; is depicted by stars. It does not depend on m and shows
maximal level of overestimation. Approximation depicted in Fig. 2 is rather
coarse. Nevertheless, the estimates O;. and O3 provide good results, which
are improving as m grows. The estimates O4. and Os work excellent with
very small overestimation. Fig. 3 is related to the case, where approxima-
tion is such that the corresponding error has a rather special shape. In
spite of this, the estimates provide good results. Certainly, in this case the
efficiency of Oy — Oy is different. However for O, and O5 overestimation
level is minimal and Os also demonstrate sharp estimates when m > 40.
In general, the results lead to the conclusion that the estimates discussed
in Sec. 4 are robust with respect to approximation type and are efficient
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Figure 1

Figure 2

for the functions close to the exact solution as well as for coarse approxi-
mations. Further verification of them in application to more complicated
multydimensional problems is the subject of subsequent publications.
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11.

12.

13.

Figure 3
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