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Abstract. LetG be a simply connected Chevalley–Demazure group
scheme without SL2-factors. For any unital commutative ring R, we
denote by E(R) the standard elementary subgroup of G(R), that is,
the subgroup generated by the elementary root unipotent elements.
Set KG

1 (R) = G(R)/E(R). We prove that the natural map

KG
1 (R[x±1

1 , . . . , x±1
n ]) → KG

1

(
R((x1)) . . . ((xn))

)
is injective for any n > 1, if R is either a Dedekind domain or a Noe-
therian ring that is geometrically regular over a Dedekind domain
with perfect residue fields. For n = 1 this map is also an isomor-
phism. As a consequence, we show that if D is a PID such that
SL2(D) = E2(D) (e. g. D = Z), then

G(D[x±1
1 , . . . , x±1

n ]) = E(D[x±1
1 , . . . , x±1

n ]).

This extends earlier results for special linear and symplectic groups
due to A. A. Suslin and V. I. Kopeiko.

§1. Introduction

For any commutative (unital) ring R, let EN (R) denote the elementary
subgroup of SLN (R), i.e., the subgroup generated by elementary matrices
I+teij , 1 6 i, j 6 N , i 6= j, t ∈ R. A. Suslin [20, Corollary 7.10] established
that for any regular ring R such that SK1(R) = 1, one has

SLN (R[x±11 , . . . , x±1n , y1, . . . , ym]) = EN (R[x±11 , . . . , x±1n , y1, . . . , ym])

for any N > max(3,dim(R) + 2) and any n,m > 0. The corresponding
statement for N = 2 is well known to be wrong: for any field k one has

SL2(k[x±11 , . . . , x±1n , y1, . . . , ym]) 6= E2(R[x±11 , . . . , x±1n , y1, . . . , ym]),

as soon as m > 2 or m = 1 and n > 1, see e. g. [3]; to the best of our
knowledge, it is not known whether SL2(k[x±11 , x±12 ]) = E2(k[x±11 , x±12 ]).

Let D be a principal ideal domain (PID for short). Following [9], we say
that D is a special PID, if SLn(D) = En(D) for all n > 2. (In fact, it is
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enough to require that SL2(D) = E2(D), see Lemma 2.8 below.) Clearly,
a special PID D satisfies SK1(D) = 1. Examples of special PIDs are
Euclidean domains and localizations of 2-dimensional regular local rings
at a regular parameter, including the rings A(x) for a discrete valuation
ring A [9, Corollaries 6.2 and 6.3]. Any localization of a special PID is
also a special PID [9, Corollary 6.4]. The following lemma of V. I. Kopeiko
provides one more class of examples.

Lemma 1.1 ([8, Lemma 4]). If D is a special PID, then D((x)) is a special
PID.

The above-mentioned theorem of A. Suslin implies that for any special
PID D one has

SLN (D[x±11 , . . . , x±1n , y1, . . . , ym]) = EN (D[x±11 , . . . , x±1n , y1, . . . , ym])

for any N > 3 and any n,m > 0. The main result of [8] is that for any
special PID D one has

Sp2N (D[x±11 , . . . , x±1n , y1, . . . , ym]) = Ep2N (D[x±11 , . . . , x±1n , y1, . . . , ym])

for any N > 2 and any n,m > 0. Our aim is to extend these two results
to all simply connected semisimple Chevalley–Demazure group schemes of
isotropic rank > 2.

By a Chevalley–Demazure group scheme we mean a split reductive
group scheme in the sense of [4]. These group schemes are defined over Z.
Their groups of points are usually called just Chevalley groups. We say that
a Chevalley–Demazure group scheme G has isotropic rank > n if and only
if every irreducible component of its root system has rank > n. For any
commutative ring R with 1 and any fixed choice of a pinning, or épinglage
of G in the sense of [4], we denote by E the elementary subgroup functor
of G. That is, E(R) is the subgroup of G(R) generated by elementary root
unipotent elements xα(r), α ∈ Φ, r ∈ R, in the notation of [2, 10], where Φ
is the root system of G. If G has isotropic rank > 2, then E(R) is indepen-
dent of the choice of the pinning and normal in G(R) [23, 11]. If a simply
connected Chevalley–Demazure group scheme G has isotropic rank 1, it
means that G is a direct product of several simply connected Chevalley–
Demazure group schemes including at least one factor isomorphic to SL2.
If this is the case, then we always assume that such an isomorphism is fixed
throughout every specific argument, and the corresponding direct factor
of E(R) is a fixed standard elementary subgroup E2(R) of SL2(R); this is
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to take care of the fact that E2(R) is not, in general, a normal subgroup
of SL2(R). We also denote

KG
1 (R) = G(R)/E(R);

this is a group if the isotropic rank of G is > 2, and a pointed set otherwise.
Our main result is the following theorem.

Theorem 1.2. Let D be a special PID. Let G be a simply connected
Chevalley–Demazure group scheme of isotropic rank > 2. Then

KG
1 (D[x±11 , . . . , x±1n , y1, . . . , ym]) = KG

1 (D) = 1

for any m,n > 0.

If n = 0, this result is a special case of our earlier results [16, The-
orems 1.1 and 1.5] (see also Theorem 2.6 below). If n > 1, and if D is
semilocal and contains a field, or if D is itself a field, the claim of Theo-
rem 1.2 is already known by [17, Corollary 3.3]. In fact, it was even proved
there for arbitrary simply connected semisimple reductive group schemes
G of isotropic rank > 2 and arbitrary equicharacteristic semilocal regular
rings D. However, if n > 1, there is no suitable local-global principle that
would allow to deduce any result for non-semilocal rings from the semilocal
case. Instead, in order to prove Theorem 1.2 we prove the following result.

Theorem 1.3. Let A be a Dedekind ring, or a Noetherian ring which is
geometrically regular over a Dedekind ring D with perfect residue fields.
Let G be a simply connected Chevalley–Demazure group scheme of isotropic
rank > 2. Then the natural map

KG
1 (A[x±11 , . . . , x±1n ])→ KG

1

(
A((x1)) . . . ((xn))

)
is injective for any n > 1. If n = 1, this map is an isomorphism.

§2. Proof of Theorems 1.2 and 1.3

Recall that a pair (A, I), where A is a commutative ring and I is an ideal
of A, is called a Henselian pair if I is contained in the Jacobson radical of
A and for any monic polynomial f ∈ A[x] and any factorization f̄ = g0h0,
where f̄ is the image of f in A/I[x] and g0, h0 are two monic polynomials
in A/I[x] generating the unit ideal, there exists a factorization f = gh in
A[x] with g, h monic and ḡ = g0, h̄ = h0.

Proposition 2.1. Let G be a simply connected Chevalley–Demazure group
scheme. Let A be a commutative ring and let I be an ideal of A.
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(1) If I is contained in the Jacobson radical of A, then the natural map
KG

1 (A)→ KG
1 (A/I) is injective.

(2) If (A, I) is a Henselian pair, then KG
1 (A) ∼= KG

1 (A/I).

Proof. (1) Since G(A)→ G(A/I) is a group homomorphism and E(A)→
E(A/I) is surjective, it is enough to show that any element g ∈ G(A)
belongs to E(A), once it is mapped to 1 under G(A) → G(A/I). Let
B, B− be a pair of standard opposite Borel subgroups of G, let UB , UB−

be their unipotent radicals, and let T = B∩B− be their common maximal
torus. The group scheme G contains an open Z-subscheme ΩB = UB ·
T · UB− , isomorphic to the direct product of schemes UB ×Z T ×Z UB− ,
and this subscheme ΩB is a principal open subscheme [2]. That is, there
an element d ∈ Z[G] such that g ∈ G(A) = HomZ(Z[G], A) belongs to
UB(A)T (A)UB−(A) if and only if g(d) ∈ A×. Since G is simply connected,
we have T (A) 6 E(A). Then, if g ∈ G(A) is mapped to 1 ∈ G(A/I), it
follows that g(d) ∈ A is mapped to (A/I)×. Since I is contained in the
Jacobson radical of I, it follows that g(d) ∈ A×. Then g ∈ ΩB(A). Since
G is simply connected, we have T (A) 6 E(A). Hence g ∈ E(A).

(2) By (1) the map KG
1 (A) → KG

1 (A/I) is injective. Since G is affine
and smooth, the map G(A)→ G(A/I) is surjective [6, Th. I.8]. It follows
that KG

1 (A)→ KG
1 (A/I) is surjective. �

Remark 2.2. An analog of Proposition 2.1 for isotropic reductive groups
G was established in [5, §7] under the additional assumption that G is
defined over a semilocal ring C such that A is a C-algebra. The proof for
non-split groups is much more complicated.

The following corollary generalizes [7, Lemma 1 and Remark on p. 1112]
for SLn, n > 2.

Corollary 2.3. Let G be a simply connected Chevalley–Demazure group
scheme. Then KG

1 (A) = KG
1 (A[[x]]) for any commutative ring A.

Proof. The claim follows from Proposition 2.1 since (A[[x]], xA[[x]]) is a
Henselian pair. �

Theorem 2.4. Let G be a simply connected Chevalley–Demazure group
scheme. Let A be a commutative ring. Then

G(A((x))) = G(A[x±1])E(A[[x]]).

In particular, KG
1 (A[x±1])→ KG

1 (A((x))) is surjective.
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Proof. By [17, Corollary 4.4] we have G(A((x))) = G(A[x±1])G(A[[x]]).
By Proposition 2.1 we have G(A[[x]]) = G(A)E(A[[x]]). The claim follows.

�

Lemma 2.5. Let G be a simply connected Chevalley–Demazure group
scheme of isotropic rank > 2. Let A be a commutative ring such that
KG

1 (A) = KG
1 (A[x]). Then KG

1 (A[x±1]) = KG
1

(
A((x))

)
.

Proof. By Theorem 2.4 the mapKG
1 (A[x±1])→ KG

1 (A((x))) is surjective.
By [15, Corollary 3.4] this map is injective. �

Let φ : R→ A be a homomorphism of commutative rings. Following [22]
we will say that φ is geometrically regular, if φ is flat and for every prime
ideal p of R, and every prime ideal q of A lying over p, Aq/pAq = k(p)⊗AAq
is a geometrically regular k(p)-algebra, i. e. if for any purely inseparable
finite field extension k′/k(p) the ring k′⊗k(p)Aq/pAq = k′⊗AAq is regular
in the usual sense. We will just say that A is a geometrically regular R-
algebra, if the structure homomorphism φ : R→ A is clear from context.

The following theorem is a slight extension of the main result of [16].

Theorem 2.6 ([16, Theorems 1.1, 1.5]). Assume that either A is a Dede-
kind ring, or A is a Noetherian ring geometrically regular over a Dedekind
ring with perfect residue fields. Let G be a simply connected Chevalley–
Demazure group scheme of isotropic rank > 2. Then

KG
1 (A) = KG

1 (A[x1, . . . , xn]) for any n > 1.

Proof. If A is a Dedekind ring, the claim is contained in [16, Theorem 1.1].
Assume that A is geometrically regular over a Dedekind ring D with per-
fect residue fields. Since A[x1, . . . , xn] is also geometrically regular over D
for any n > 1, it is enough to show that KG

1 (A) = KG
1 (A[x]). By the gen-

eralized Quillen-Suslin local-global principle (see [20, Theorem 3.1], [21,
Corollary 4.4], [11, Lemma 17], [19, Theorem 5.4]) in order to show that
KG

1 (A) = KG
1 (A[x]), it is enough to show that KG

1 (Am) = KG
1 (Am[x])

for every maximal ideal m of A. By the very definition of a geometri-
cally regular ring homomorphism given above, every maximal localization
Am is geometrically regular over the corresponding prime localization Dp

of D. By Popescu’s theorem [13] (see [22, Theorem 1.1]), it follows that
Am is a filtered direct limit of smooth Dp-algebras. Since KG

1 commutes
with filtered direct limits, we can assume that Am is actually a localiza-
tion of a smooth Dp-algebra, and thus essentially smooth over Dp. Then
KG

1 (Am[x]) = KG
1 (Am) by [16, Theorem 1.5]. �
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Lemma 2.7. Let D be a Dedekind ring with perfect residue fields, and let
A be a Noetherian ring which is geometrically regular over D. Then A[[x]]
and A((x)) are Noetherian rings geometrically regular over D.

Proof. Since A is Noetherian, the ring A[[x]] is flat over A, and hence its
localization A((x)) is also flat over A. Then both these rings are flat overD.
Since A is Noetherian and regular, both these rings are also Noetherian
and regular. Set B = A[[x]] for brevity, and denote by φ : D → A the
structure morphism of A over D. It remains to check that for every prime
ideal p of D, and every prime ideal q of B lying over p, Bq/φ(p)Bq =
k(p)⊗BBq is a geometrically regular k(p)-algebra. Since k(p) is perfect by
assumption, it is enough to know that Bq/φ(p)Bq is a regular local ring.
Now if φ−1(q∩A) = p = 0, then Bq contains the field Dp = k(p), and hence
k(p)⊗BBq = Bq, which is obviously regular. If φ−1(q∩A) = p = (π), where
π is a prime element of D, then let n be a maximal ideal of A containing
φ(π), and let m = n+xB be the corresponding maximal ideal of B. Since
k(p) ⊗A An = An/φ(p)An is regular, φ(π) is a regular element of An.
Hence φ(π) is a regular element of Bm = An[[x]], and hence Bm/φ(p)Bm
is also regular. Then Bq/φ(p)Bq = (Bm/φ(p)Bm)q/φ(p)Bm

is also regular.
This shows that A[[x]] is geometrically regular over D. Since A((x)) is a
localization of A[[x]], it follows that A((x)) is also geometrically regular
over D. �

Proof of Theorem 1.3. By Theorem 2.6 we have

KG
1 (A[x2, . . . , xn][x1]) = KG

1 (A[x2, . . . , xn]). (1)

Now if n = 1, the claim of the theorem follows from Lemma 2.5. We prove
the rest of the claim by induction on n.

Since A[x±12 , . . . , x±1n ] is a localization of A[x2, . . . , xn], by [14, Lemma
4.6] (or [1, Lemma 4.2]) the equality (1) implies that

KG
1 (A[x±12 , . . . , x±1n ][x1]) = KG

1 (A[x±12 , . . . , x±1n ]).

Hence by Lemma 2.5 the map

KG
1 (A[x±11 , . . . , x±1n ])→ KG

1

(
A[x±12 , . . . , x±1n ]((x1))

)
(2)

is an isomorphism. Since the map (2) factors through the map

KG
1 (A[x±11 , . . . , x±1n ])→ KG

1

(
A((x1))[x±12 , . . . , x±1n ]

)
,

the latter map is also injective.
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Now if A is a Dedekind ring, then A[[x1]] is a regular ring of dimen-
sion 2, and, since x1 belongs to every maximal ideal of A[[x1]], we conclude
that A((x1)) is a regular ring of dimension 1, hence also Dedekind. If A
is Noetherian and geometrically regular over D, by Lemma 2.7 the ring
A((x1)) is also Noetherian and geometrically regular over D. Summing up,
the induction assumption applies to A((x1)), and we are done. �

For the proof of Theorem 1.2 we need the following lemma which follows
from the stability theorems of M. R. Stein and E. B. Plotkin [18, 12].

Lemma 2.8. [16, Lemma 3.1] Let R be a Noetherian ring of Krull dimen-
sion 6 1. If SL2(R) = E2(R), then G(R) = E(R) for any simply connected
Chevalley–Demazure group scheme G.

Proof of Theorem 1.2. By Theorem 2.6 we have

KG
1 (D[x1, . . . , xn, y1, . . . , ym]) = KG

1 (D[x1, . . . , xn]).

SinceD[x±11 , . . ., x±1n ]=D[x1, . . ., xn]x1...xn is a localization ofD[x1, . . ., xn],
by [14, Lemma 4.6] (or [1, Lemma 4.2]) this implies that

KG
1 (D[x±11 , . . . , x±1n ][y1, . . . , ym]) = KG

1 (D[x±11 , . . . , x±1n ]).

By Theorem 1.3 the map

KG
1 (D[x±11 , . . . , x±1n ])→ KG

1

(
D((x1)) . . . ((xn))

)
is injective. By Lemma 1.1 A = D((x1)) . . . ((xn)) is a special PID. By
definition, it means that SL2(A) = E2(A). Then by Lemma 2.8 we have
KG

1 (A) = 1 for any simply connected Chevalley–Demazure group scheme
of isotropic rank > 2. This finishes the proof. �

References
1. E. Abe, Whitehead groups of Chevalley groups over polynomial rings. — Comm.

Algebra 11 (1983), 1271–1307.
2. C. Chevalley, Sur certains groupes simples. — Tohoku Math. J. 7 (1955), 14–66.
3. Huah Chu, On the GE2 of graded rings. — J. Algebra 90 (1984), 208–216.
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tative (Rennes, 1972), Exp. No. 10, 13 pp; Publ. Sém. Math. Univ. Rennes, 1972.
7. В. И. Копейко, О структуре специальной линейной группы над кольцами

лорановских многочленов. — Фундамент. и прикл. матем. 1, No. 4 (1995), 1111–
1114.



CHEVALLEY GROUPS OVER LAURENT POLYNOMIAL RINGS 159

8. В. И. Копейко, Симплектические группы над кольцами лорановских
многочленов и диаграммы склейки. — Фундамент. и прикл. матем. 5, No. 3
(1999), 943–945.

9. T. Y. Lam, Serre’s problem on projective modules, Springer Monographs in Math-
ematics, Springer-Verlag, Berlin, 2006.

10. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples
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