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NICE TRIPLES IN THE DVR CONTEXT

Abstract. A theory of standard triples was invented by V. Voe-
vodsky in [14] to construct the triangulated category of motives.
Being inspired by that theory a theory of nice triples was invented in
[7] in order to attack the Grothendieck–Serre conjecture and related
problem. However both the mentioned theories were developed for
smooth varieties over a field. In the present paper a theory of nice
triples is developed for smooth schemes over a DVR. Theorem 1.4 is
used in [12] as one of a major step in the proof of the Grothendieck–
Serre conjecture in the constant mixed characteristic case.

§1. Introduction

In the present paper we work with schemes over a DVR ring D of mixed
characteristic. The major our interest is the case of D having a finite
residue field. The main aim of the present paper is to prove Theorem 1.4
(= Theorem 6.3). Our proof is based on theory of nice triples atapted
to V -smooth schemes, where V = Spec D is such that the residue field
k(v) at its closed point v is finite. If X = PnV , then this result is proved
in [3, Theorem 1.2] using a different approach.

If D has an infinite residue field it is not necessary to use Theorem 1.4
to approach the Grothendieck–Serre conjecture (see [12, Proof of Theo-
rem 1.7]). This is the basic reason to focus on the case of DVR ring D with
a finite residue field in the present paper.

We expect that Theorem 1.4 is true (and probably has a straight forward
proof) in the infinite residue field case.

Notation 1.1. In this paper D is a DVR ring of mixed characteristic. We
write V for Spec D, v ∈ V for the closed point of V , η ∈ V for the generic
point of V . For each V -scheme S write Sv for the closed fibre of S and
Sη for its generic fibre. It is supposed in this paper that the residie field
k(v) is finite.

Key words and phrases: nice triple, mixed characteristic, Grothendieck–Serre con-
jecture, smooth schemes.
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Agreement 1.2. (Condition (∗)). Let M ⊆ An
V be a closed subset. We

will say that M satisfies the condition (∗) iff codimAn
v
(Mv) > 2 and

codimAn
η
(Mη) > 2.

Notation 1.3. We will write A◦,nV for any open subscheme of An
V of the

form An
V − M , where M ⊆ An

V is closed subjecting the condition (∗).
Define open subschemes P◦,nV of PnV similarly.

If S ⊆ An
V is a closed subset (say, a divisor), then for each open subset

in An
V of the form A◦,nV write S◦ for S ∩A◦,nV and call S◦ the trace of S

in A◦,nV .
Similarly, for each closed T in PnV and each open subset in PnV of the

form P◦,nV write T ◦ for T ∩P◦,nV and call T ◦ the trace of T in P◦,nV .

Theorem 1.4 (Geometric). Let X = P◦,nV , that is the closed subset M =
PnV −X enjoys the condition (*) as in Agreement 1.2. Let x ∈ Xv be its
closed point. Let Z ⊆ PnV be a divisor not containing Pnv such that x ∈ Zv.
Write O = OX,x and U = Spec(O). Then there is a monic polynomial
h ∈ O[t], a commutative diagram of V -schemes of the form

(A1 × U)h

inc

��

Yh := Yτ∗(h)
τhoo

inc

��

(pX)|Yh // X − Z

inc

��
(A1 × U) Y

τoo pX // X

(1)

and a V -morphism δ : U → Y , which enjoy the following conditions
(i) the left hand side square is an elementary distinguished square

in the category of affine U -smooth schemes in the sense of [5, Def-
inition 3.1.3];

(ii) the morphism δ is a section of the morphism prU ◦ τ and pX ◦ δ =
can : U → X, where can is the canonical morphism;

(iii) τ ◦ δ = i0 : U → A1 × U is the zero section of the projection
prU : A1 × U → U ;

Our proof is based on a modification of the theory of nice triples invented
in [7] and inspired by the Voevodsky theory of standard triples [14]. The
proof is organized as follows.

(i) the Artin notion of elementary fibration is recalled and two results
are stated and proved in Section 2 (point out that Theorem 2.4 is heavily
based on [4, Theorem 1.4]);
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(ii) the notion of a nice triple over a regular local base and certain
related notions are recalled in Section 3;

(iii) Theorems 4.3 and 4.2 are stated and proved in Section 4, which
allows to prove Theorem 6.1 and its Corollary 6.2 in Section 6;

(iv) a special basic nice triple (qU : X → U,∆, f) over U = Spec OX,x
is constructed in Section 5 (see Proposition 5.1);

(v) Theorem 6.3 is derived from Corollary 6.2 in Section 6;
(vi) finally Theorem 1.4 is derived from Theorem 6.3 in Section 6.

§2. Some elementary fibration

Based on [4, Theorem 1.4] we extend in Theorem 2.4 a result of M. Artin
from [1] concerning existence of nice neighborhoods. The following notion
is introduced by Artin in [1, Exp. XI, Déf. 3.1].

Definition 2.1. An elementary fibration is a morphism of schemes p :
X → S which can be included in a commutative diagram

X

p

&&

j // X

p

��

Y
ioo

q

xx
S

(2)

of morphisms satisfying the following conditions:
(i) j is an open immersion dense at each fibre of p, and X = X−Y ;
(ii) p is smooth projective all of whose fibres are geometrically irre-

ducible of dimension one;
(iii) q is finite étale all of whose fibres are non-empty.

Agreement 2.2. If p : X → S is an elementary fibration, and the diagram
(2) enjoys the properties (i), (ii), (iii) in Definition 2.1, then the diagram
(2) is called a diagram of the elementary fibration q : Y → S.

Let Z ⊂ X be a closed subscheme. A morphism p : X → S of schemes
is called an elementary Z-fibration if it is an elementary fibration and the
morphism p|Z : Z → S is finite. In this case, we say that (2) is a diagram
of the elementary Z-fibration p : X → S.

Remark 2.3. Clearly, an elementary fibration is an almost elementary
fibration in the sense of [7, Definition 2.1].

Now take again X = P◦,nV , Z, x ∈ Zv as in Theorem 1.4. A straight-
forward analysis of the proof of [4, Theorem 1.4] shows that the following
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result is true (it is a very partial extension of Artin’s result [1, Example XI,
Proposition 3.3] to schemes over a DVR.)

Theorem 2.4. There is an open S ⊂ An−1
V , an open neighborhood ẊS ⊂

P◦,nV = X of the point x ∈ P◦,nv ⊂ P◦,nV = X and an elementary fibration
q̇S : ẊS → S and a commutative diagram of S-schemes

ẊS

q̇S
''

jS // X̂S

q̂S

��

WS
ioo

prS

ww
S

(3)

which is a diagram of the elementary ŻS-fibration (ŻS := Z ∩ ẊS) and
x ∈ (ŻS)v.

Remark 2.5. Let q̇S : ẊS → S, ŻS , x ∈ (ŻS)v as in Theorem 2.4, s =
q̇S(x) ∈ S ⊂ An−1

V be the point in S. Put S = SpecOS,s = SpecOAn−1
V ,s.

Taking the base change of the diagram (3) by means of the embedding
S ↪→ S we get an elementary ŻS-fibration q̇S : ẊS → S, where ŻS := Z∩ẊS

and a commutative diagram of S-schemes

ẊS

q̇S
''

jS // X̂S

q̂S

��

WS
iSoo

prS
ww

S

(4)

which is a diagram of the elementary ŻS-fibration q̇S : ẊS → S. Clearly, x
is in (ŻS)v.

Similarly to [7, Proposition 2.4] we have the following result.

Proposition 2.6. For the diagram (4) of the elementary ŻS-fibration one
can find a commutative diagram of S-schemes

ẊS

jS //

π

��

X̂S

π

��

WS
iSoo

��
A1 × S

in // P1 × S {∞} × S
ioo

(5)

such that the left-hand side square is Cartesian, the morphism π̄ is finite
surjective and π is such that prS ◦ π = q̇S, where prS is the projection
A1 × S→ S.
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In particular, π : ẊS → A1 × S is a finite surjective morphism of S-
schemes, where ẊS and A1×S are regarded as S-schemes via the morphism
q̇S and the projection prS, respectively. Note that the scheme ẊS is affine,
since the morphism π is finite.

Remark 2.7. Let ŻS ⊂ ẊS be the divisor and x ∈ ŻS be the point as
in Remark 2.5. Then the morphism π|ŻS

: ŻS → A1 × S is finite since
the morphism π is finite. Regarding the closed subset π(ŻS) as a reduced
closed subscheme in A1

S one can find a monic polynomial g ∈ Γ(S,OS)[t]

such that the closed subscheme π(ŻS) ofA1
S is defined by the principle ideal

(g) ⊂ Γ(S,OS)[t]. Put f = π∗(g) ∈ Γ(ẊS,OẊS
). Clearly, the f vanishes at

the point x and the S-morphism q̇S|{f=0} : {f = 0} → S is finite. Also
ŻS ⊂ {f = 0}.

The following result is pretty closed to Theorem 1.4. It will be proved
below (see Theorem 6.3) and it will be used to prove Theorem 1.4.

Theorem 2.8 (Intermediate). Let q̇S : ẊS → S be the elementary ŻS-
fibration and x ∈ ŻS be the point as in Remark 2.5. Let U = Spec(OẊS,x

).
Then there is a monic polynomial h ∈ OẊS,x

[t], a commutative diagram of
schemes with an irreducible affine U -smooth Y

(A1 × U)h

inc

��

Yh := Yτ∗(h)
τhoo

inc

��

(ṗX)|Yh // (ẊS)f

inc

��
(A1 × U) Y

τoo ṗX // ẊS

(6)

and a morphism δ : U → Y subject to the following conditions:
(i) the left hand side square is an elementary distinguished square

in the category of affine U -smooth schemes in the sense of [5, Def-
inition 3.1.3];

(ii) the morphism δ is a section of the morphism prU ◦ τ and ṗX ◦ δ =

ċan : U → ẊS, where ċan is the canonical embedding;
(iii) τ ◦ δ = i0 : U → A1 × U is the zero section of the projection

prU : A1 × U → U ;

§3. Nice triples over a local regular base

LetW be a local regular scheme with the closed point w, O = Γ(W,OW ).
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Definition 3.1. A nice triple over W consists of the data
(i) a smooth morphism qW : X→W , where X is irreducible,
(ii) an element f ∈ Γ(X,OX),
(iii) a section ∆ of the morphism qW ,

subject to the following conditions:
(a) each irreducible component of each fibre of the morphism qW has

dimension one,
(b) the module Γ(X,OX)/f · Γ(X,OX) is finite as a O-module,
(c) there exists a finite surjective W -morphism Π : X→ A1 ×W ,
(d) ∆∗(f) 6= 0 ∈ Γ(W,OW ) = O.

There are many choices of the morphism Π. Any of them is regarded as
assigned to the nice triple.

Definition 3.2. A morphism between two nice triples over W

(q′ : X′ →W, f ′,∆′)→ (q : X→W, f,∆)

is an étale morphism of W -schemes θ : X′ → X such that
(1) q′W = qW ◦ θ,
(2) f ′ = θ∗(f) · h′ for an element h′ ∈ Γ(X′,OX′),
(3) ∆ = θ ◦∆′.

The item (2) implies that Γ(X′,OX′)/θ
∗(f) ·Γ(X′,OX′) is a finite O-mo-

dule.
Note also that no conditions are imposed on the interrelation of Π′

and Π.

Definition 3.3. A nice triple (qW : X→W,∆, f) over W is called special
nice triple if the closed point of ∆(W ) is contained in the set of closed
points of {f = 0}.
Remark 3.4. Let (X, f,∆) be a special nice triple over W and let θ :
(X′, f ′,∆′)→ (X, f,∆) be a morphism between nice triples over W . Then
the triple (X′, f ′,∆′) is a special nice triple over W .

§4. Two crucial results

Over the rest of the paper we suppose that the residue field k(w) is
finite. Let us state two crucial results which are used in Section 6 to prove
Theorem 6.1. Their proofs are given in the present section. If W as in
Definition 3.1 then for any W -scheme Y and the closed point w ∈W set

Yw = Y ×W w.
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For a finite set A denote by ]A the cardinality of A.

Definition 4.1. Let (X, f,∆) be a special nice triple over the W . Recall
that the residue field k(w) at the closed point w ∈ W is supposed to be
finite. We say that the triple (X, f,∆) is (∗)-special nice triple (or shortly
(∗)-special), if the following conditions hold:

(1∗) for Z = {f = 0} ⊂ X and for any closed point w ∈W , any integer
d > 1 one has

]{z ∈ Zw|deg [k(z) : k(w)] = d} 6 ]{x ∈ A1
w|deg [k(x) : k(w)] = d};

(2∗) for the vanishing locus Z of f and for the closed point w ∈W the
point ∆(w) ∈ Zw is the only k(w)-rational point of Zw = Z×W w.

The following theorem is very much similar to [8, Theorem 3.8]. In more
details. In [8, Theorem 3.8] the base U is an essentially smooth semi-local
scheme over a field. In Theorem 4.2 below the base W is an essentially
smooth local scheme over the DVR scheme V . Clearly, as U , so W are
regular semi-local schemes. This is the reason why as the statement, so
the proof of Theorem 4.2 repeats literally as the statement, so the proof
of Theorem [8, Theorem 3.8].

Theorem 4.2. Let W and O be as in Section 3. Let (q′W : X′ →W, f ′,∆′)
be a (∗)-special nice triple over W . Let Z′ be the closed subscheme of X
defined by the principal ideal (f ′). Then there exists a finite surjective
morphism

A1 ×W σ←− X′

of W -schemes which enjoys the following properties:

(a) the morphism A1 ×W σ|Z′←−−− Z′ is a closed embedding;
(b) σ is étale in a neighborhood of Z′ ∪∆′(W );
(c) σ−1(σ(Z′)) = Z′

∐
Z′′ scheme theoretically and Z′′ ∩∆′(W ) = ∅;

(d) σ−1({0}×W ) = ∆′(W )
∐

D scheme theoretically and D∩Z′ = ∅;
(e) for D1 := σ−1({1} ×W ) one has D1 ∩ Z′ = ∅.
(f) there is a monic polynomial h∈O[t] such that

(h)=Ker[O[t]
−◦σ∗−−−→ Γ(X′,OX′)/(f

′)]

The following theorem is a slight extension of [8, Theorem 3.9]
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Theorem 4.3. Let W be as in Section 3. Let (X, f,∆) be a special nice
triple over W . Then there exists a morphism θ : (X′, f ′,∆′) → (X, f,∆)
of nice triples over W such that (X′, f ′,∆′) is a (∗)-special nice triple
over W .

To prepare the proof of Theorem 4.3 we use Notation as in [8, Section 4]
and the notation of the present section. Particularly, the scheme S below
in this prove has nothing common with the one from Section 1. We also
use Lemma 4.4 stated right below.

Let W be as in Definition 3.1. Let S be an irreducible regular semi-
local V -scheme strictly flat over V and p : S → W be a strictly flat V -
morphism. Let T ↪→ S be a closed sub-scheme of S such that the restriction
p|T : T → W is an isomorphism. Let δ : W → T be the inverse to p|T .
We will assume below that dim(T ) < dim(S), where dim is the Krull
dimension.

Lemma 4.4 ([8, Appendix A]). Suppose that all the closed points of S
have finite residue fields. Suppose that for the closed point w ∈ W the
scheme Sw is a semi-local Dedekind scheme. Then there exists a
finite étale morphism ρ : S′ → S (with an irreducible scheme S′) and a
section δ : T → S′ of ρ over T such that the following holds

(1) for the closed point w ∈W let w′ ∈ T be a unique point such that
p(w′) = w, then the point δ(w′) ∈ S′w is the only k(w)-rational
point of S′w,

(2) for the closed point w ∈W and any integer d > 1 one has

]{z ∈ S′w|[k(z) : k(w)] = d} 6 ]{x ∈ A1
w|[k(x) : k(w)] = d}.

Proof of Theorem 4.3. In this proof given our special nice triple (X,f,∆)
over W we construct a new one (X′, f ′,∆′) over W and a morphism

θ : (X′, f ′,∆′)→ (X, f,∆)

of nice triples over W , which has the following property:
if Π : X → A1 ×W is a finite surjective morphism assinged to the nice
triple, and Y = Π−1(Π(Z∪∆(W ))) is the closed subset in X, and y1, . . . , ym
are all its closed points, and S = Spec(OX,y1,...,ym), and S′ = θ−1(S), then
S′ is étale and finite over S, irreducible and the set of closed points of the
closed subset {f ′ = 0} in X′ is contained in the set of closed points of S′.

Let Π : X→ A1 ×W be the finite surjective W -morphism consider the
following diagram
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Z

��
X− Z �

� // X

qW

��

Π // A1 ×W

W

∆

OO

Here and in the Construction 4.5 below Z is the closed subset defined by
the equation f = 0. By the assumption, Z is finite over W .

Construction 4.5. (compare with [6, the proof of Lemma 8.1]) Let W
be as in Definition 3.1 and let (X, f,∆) be a nice triple over W . Since ∆ is
a section of qW , hence ∆(W ) is a closed subset in X. Let Π : X→ A1×W
a finite surjective morphism of W -schemes, which exists, since (X, f,∆) is
a nice triple over W . Let Y = Π−1(Π(Z ∪ ∆(W ))) be the closed subset
in X. Since Z and ∆(W ) are both finite over W and since Π is a finite
morphism of W -schemes, Y is also finite over W . Denote by y1, . . . , ym
its closed points and let S = Spec(OX,y1,...,ym). Since Y is also finite over
W it is closed in X. Since Y is contained in S it is also closed in S. Set
T = ∆(W ) ⊆ S.

So, this construction converts our nice triple (X, f,∆) and our mor-
phism Π to certain data (Z,Y, S, T ), where Z,Y, T are closed subsets as in
X, so in S. Point out that S is a semi-local subscheme in X. Particularly,
the set of all closed points of Z is contained in the set of all closed points
of S.

The closed points of S are the points y1, ..., ym. For each index i the
residue field extension k(yi)/k(w) is finite. The residue field k(w) is finite.
Thus, for each index i the residue field k(yi) is finite. So, we are in a
position to apply Lemma 4.4.

Let p = qW |S : S → W and δ = ∆ : W → S. Applying Lemma 4.4
to S, T and δ we get S′, ρ : S′ → S, and δ : T → S′ subjecting to the
conditions (1) and (2) from the lemma 4.4. Recall that ρ : S′ → S is a
finite étale morphism (with an irreducible scheme S′) and δ is a section of
ρ over T ⊆ S.
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Applying the second part of the construction [8, Construction 4.2] and
also [8, Proposition 4.3] to the special nice triple (X, f,∆), the finite sur-
jective morphism Π and to the finite étale morphism ρ and to its section
δ over T we get

(i′) the nice triple (X′, f ′,∆′) over W ;
(ii′) the morphism θ : (X′, f ′,∆′) → (X, f,∆) between the special nice

triples;
(iii′) the equality f ′ = (θ)∗(f);
(iv′) the vanishing locus Z′ of f ′ on X′ such that its set of closed points

is contained in the set of closed points of the subscheme S′.
The property (ii′) shows particularly that the triple (X′, f ′,∆′) is a

special nice triple.
The properties (1) and (2) of the W -scheme S′ (see Lemma 4.4) show

that the special nice triple (X′, f ′,∆′) over W is (∗)-special. That follows
from the property (iv′) mentioned just above.

This completes the proof of the theorem. �

§5. Basic nice triple

Let X = P◦,nV . That is the closed subsetM = PnV −X enjoys the condi-
tion (*) as in Agreement 1.2. Let x ∈ Xv be its closed point. Let Z ⊆ PnV be
a divisor not containingPnv such that x ∈ Zv. By Theorem 2.4, Remark 2.5,
Proposition 2.6 and Remark 2.7 there are the following preliminary data

(a) the affine open S in An−1
V ;

(b) the affine open ẊS in X = P◦,nV , its closed subset ŻS = Z ∩ ẊS , the
point x ∈ (ŻS)v;

(c) the elementary ŻS-fibration q̇S : ẊS → S and the point s = q̇S(x) ∈
S ⊂ An−1

V ;
(d) the subscheme S = SpecOS,s = SpecOAn−1

V ,s of the scheme S;
and

(i) the elementary ŻS-fibration q̇S : ẊS → S, which is the base change
of the q̇S by means of the inclusion S ↪→ S and the point x is in (ŻS)v;

(ii) the finite surjective S-morphism π : ẊS → A1 × S;
(iii) the function f ∈ Γ(ẊS, OẊS

) with ŻS ⊂ {f = 0} (so, the f vanishes
at the point x);

(iv) the locus {f = 0} ∩ ẊS is S-finite.
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Put U := SpecOX,x = SpecOẊS ,x ⊂ ẊS. We will regard U as an

S-scheme via the morphism U ↪→ XS
q̇S−→ S. The following proposition

provides us with a basic nice triple over U .

Proposition 5.1. Let ẊS, x ∈ ẊS, f ∈ Γ(ẊS, OẊS
) be as just above in this

Section. Then one can construct a special nice triple (qU : X → U,∆, f)

over U and an essentially smooth morphism qẊS
: X → ẊS such that

qẊS
◦∆ = ċan, f = q∗

ẊS
(f) (here ċan : U ↪→ ẊS is the inclusion).

Proof. Consider the V -schemes U and X = U ×S ẊS, the projections
qU : X→ U and qẊS

: X→ ẊS. Put f = q∗
ẊS

(f) ∈ Γ(X, OX). Consider also
the diagonal section ∆ : U → X of the projection qU . Check that

(qU : X→ U,∆, f)

is a special nice triple over U . First note that the scheme X is regular. Thus,
it is a disjoint union of its irreducible components. If X is not irreducible,
then replace it with its irreducible component containing ∆(U). Neverthe-
less write X for that specific component and write f for f |that component.
Now we are ready indeed to check that the (qU : X→ U,∆, f) is a special
nice triple over U .

First check requirements on the data: indeed, the scheme X is irre-
ducible, the morphism qU is smooth, ∆ is its section, f ∈ Γ(X,OX). Sec-
ondly check that these data enjoys conditions (a)–(d). The morphism qU
is the base change of the morphism q̇S : ẊS → S and the morphism q̇S
is our elementary fibration. Thus the qU enjoys the condition (a). The S-
morphism q̇S|{f=0} : {f = 0} → S is finite. Thus the function f enjoys the
condition (b). Now check the condition (d). Since qẊS

◦∆ = ċan : U ↪→ ẊS

one has ∆∗(f) = f|U . It is sufficient to show that f 6= 0 in Γ(ẊS, OẊS
).

This is the case since the closed subset {f = 0} of ẊS is finite over S

(and hence this set does not coincides with ẊS). The condition (d) is
checked. Check the condition (c). Consider the finite surjective morphism
π : ẊS → A1×S of S-schemes as in Proposition 2.6. Then the U -morphism
Π = idU ×S π : X→ U ×S A

1
S = A1

U is finite surjective as the base change
of the morphism π. So, the triple (qU : X → U,∆, f) is a nice triple over
U . It is a special nice triple, since the function f vanishes at the point x.



140 I. A. PANIN

The morphism qẊS
: X→ ẊS is the base change of the composite mor-

phism U ↪→ ẊS
q̇S−→ S. Thus, the qẊS

is essentially smooth. The equality
qẊS
◦∆= ċan is obvious. Finally, f=q∗X(f) by the very definition of f . �

§6. Theorem 6.1 and Theorems 2.8 and 1.4

The main aim of this section is to prove Theorem 1.4. Theorem 6.1
below is a purely geometric one. If the residue field k(v) consists of two
elements and if the closed point of u ∈ U is k(v)-rational and the scheme
Z′ below is such that its closed fibre Z′u contains three k(v)-rational points,
then there are no closed embedding Z′ into A1 × U . So, one of the main
problem in the proof of the next theorem is to find an X′, a morphism q′XS

and a function f ′ to overcome the mentioned difficulties.

Theorem 6.1. Let ẊS, x ∈ ẊS, f ∈ Γ(ẊS,OẊS
) be as in Proposition 5.1.

Let U = Spec(OẊS,x
). Then there is a diagram of the form

A1 × U

prU
''

X′

��

σoo

q′U
��

q′XS // ẊS

U

can

88

∆′

[[ (7)

with an irreducible affine scheme X′, a smooth morphism q′U , a finite
surjective U -morphism σ, an essentially smooth morphism q′XS

and f ′ =
(q′XS

)∗(f) ∈ Γ(X′,OX′), which enjoys the following properties:

(a) if Z′ is the closed subscheme of X′ defined by the principal ideal
(f ′), then the morphism σ|Z′ : Z′ → A1×U is a closed embedding
and the morphism q′U |Z′ : Z′ → U is finite;

(a′) q′U ◦∆′ = idU and q′XS
◦∆′ = ċan : U ↪→ ẊS and σ ◦∆′ = i0 (the

first equality shows that ∆′(U) is a closed subscheme in X′);
(b) σ is étale in a neighborhood of Z′ ∪∆′(U);
(c) σ−1(σ(Z′)) = Z′

∐
Z′′ scheme theoretically for some closed sub-

scheme Z′′ and Z′′ ∩∆′(U) = ∅;
(d) D0 := σ−1({0} × U) = ∆′(U)

∐
D′0 scheme theoretically for some

closed subscheme D′0 and D′0 ∩ Z′ = ∅;
(e) for D1 := σ−1({1} × U) one has D1 ∩ Z′ = ∅;
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(f) there is a monic h∈O[t] such that (h)=Ker[O[t]
σ∗−→ Γ(X′,OX′)

−−→
Γ(X′,OX′)/(f

′)], where O := OẊS,x
and the map bar takes any

g ∈ Γ(X′,OX′) to ḡ ∈ Γ(X′,OX′)/(f
′).

Proof of Theorem 6.1. Let ẊS, x ∈ ẊS, f ∈ Γ(ẊS, OẊS
), the special

nice triple (qU : X → U,∆, f) over U , the essentially smooth morphism
qẊS

: X → ẊS be as in Proposition 5.1. Then qẊS
◦ ∆ = ċan, where

ċan : U ↪→ ẊS is the embedding, f = q∗
ẊS

(f) by the same Proposition.
By Theorem 4.3 there exists a morphism θ : (X′, f ′,∆′) → (X, f,∆)

such that the triple (X′, f ′,∆′) is a (∗)-special nice triple over U .
The triple (X′, f ′,∆′) is a (∗)-special nice triple over U . Thus by Theo-

rem 4.2 there is a finite surjective morphismA1×U σ←− X′ of the U -schemes
satisfying the conditions (a) to (f) from that theorem. Hence one has a di-
agram

A1 × U

prU
''

X′

��

σoo

q′U
��

q′XS // ẊS

U

can

88

∆′

[[ (8)

with the irreducible scheme X′, the smooth morphism q′U := qU ◦ θ, the
finite surjective morphism σ and the essentially smooth morphism q′XS

:=
qẊS
◦ θ and with the function f ′ ∈ (q′XS

)∗(f) ∈ Γ(X′,OX′), which enjoy the
properties (a) to (f) from Theorem 6.1. Whence the Theorem 6.1. �

To formulate a first consequence of the Theorem 6.1 (see Corollary 6.2)
note that using the items (b) and (c) of Theorem 6.1 one can find an
element g ∈ I(Z′′) such that
(1) (f ′) + (g) = Γ(X′,OX′),
(2) Ker((∆′)∗) + (g) = Γ(X′,OX′),
(3) σg = σ|X′g : X′g → A1

U is étale.

Corollary 6.2 (Corollary of Theorem 6.1). The function f ′ from Theo-
rem 6.1, the polynomial h from the item (f ) of that theorem, the morphism
σ : X′ → A1

U and the function g ∈ Γ(X′,OX′) defined just above enjoy the
following properties:

(i) the morphism σg = σ|X′g : X′g → A1 × U is étale;
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(ii) data (O[t], σ∗g : O[t] → Γ(X′,OX′)g, h) satisfies the hypotheses of
[2, Proposition 2.6], i.e., Γ(X′,OX′)g is a finitely generated O[t]-
algebra, the element (σg)

∗(h) is not a zero-divisor in Γ(X′,OX′)g
and O[t]/(h) = Γ(X′,OX′)g/hΓ(X′,OX′)g;

(iii) (∆′(U) ∪ Z′) ⊂ X′g and σg ◦∆′ = i0 : U → A1 × U ,
(iv) X′gh ⊆ X′gf ′ ⊆ X′f ′ ⊆ X′(q′XS

)∗(f);

(v) O[t]/(h) = Γ(X,OX)/(f ′), hΓ(X′,OX′) = (f ′) ∩ I(Z′′), and (f ′) +
I(Z′′) = Γ(X′,OX′).

Proof of Corollary 6.2. We use notation from Theorem 6.1. Since X is
a regular affine irreducible scheme and σ : X′ → A1

U is a finite surjective
morphism, the induced O-algebra homomorphism σ∗ : O[t] → Γ(X′,OX′)
is a monomorphism. We will regard the O-algebra O[t] as a subalgebra
via σ∗.

The assertions (i) and (iii) of the Corollary hold by our choice of g. The
assertion (iv) holds, since σ∗(h) is in the principal ideal (f ′) (use the prop-
erties (a) and (f) from Theorem 6.1). Prove now the assertion (ii). The
morphism σ is finite. Hence the O[t]-algebra Γ(X′,OX′)g is finitely gener-
ated. The scheme X′ is regular and irreducible. Thus, the ring Γ(X′,OX′)
is a domain. The homomorphism σ∗ is injective. Hence, the element h is
not zero and is not a zero divisor in Γ(X′,OX′)g.

It remains to check that O[t]/(h) = Γ(X′,OX′)g/hΓ(X′,OX′)g. Firstly,
by the choice of h and by the item (a) of Theorem 6.1 one has O[t]/(h) =
Γ(X′,OX′)/(f

′). Secondly, by the property (1) of the element g one has
Γ(X′,OX′)/(f

′) = Γ(X′,OX′)g/f
′Γ(X′,OX′)g. Finally, by the items (c) and

(a) of Theorem 6.1 one has

Γ(X′,OX′)/(f
′) × Γ(X′,OX′)/I(Z′′) = Γ(X′,OX′)/(h). (9)

Localizing both sides of (9) in g one gets an equality

Γ(X′,OX′)g/f
′Γ(X′,OX′)g = Γ(X′,OX′)g/hΓ(X′,OX′)g.

Finally, we have a chain of equalities

O[t]/(h) = Γ(X′,OX′)/(f
′) = Γ(X′,OX′)g/f

′Γ(X′,OX′)g

= Γ(X′,OX′)g/hΓ(X′,OX′)g.

Whence the assertion (ii).
Prove the assertion (v). The equality O[t]/(h) = Γ(X′,OX′)/(f

′) is
checked in the proof of the assertion (ii). The item (c) of Theorem 6.1



NICE TRIPLES IN THE DVR CONTEXT 143

yields the equality (f ′) + I(Z′′) = Γ(X′,OX′). Finally, the equality (9)
yields the one hΓ(X′,OX′) = (f ′) ∩ I(Z′′). �

Set Y := X′g, ṗX = q′
ẊS
|Y : Y → ẊS, pU = q′U |Y : Y → U , τ = σg,

τh = σgh, δ = ∆′ and note that prU ◦ τ = pU . Take the monic polinomial
h ∈ O[t] from the item (f) of Theorem 6.1. With this replacement of
notation and with the element h we arrive to the following

Theorem 6.3 (=Theorem 2.8). Let ẊS, x ∈ ẊS, f ∈ Γ(ẊS,OẊS
) be

as in Proposition 5.1. Put U = Spec(OẊS,x
) and O = OẊS,x

. Then the
monic h ∈ O[t], the commutative diagram of V -schemes together with the
irreducible affine U -smooth scheme Y

(A1 × U)h

inc

��

Yh := Yτ∗(h)
τhoo

inc

��

(ṗX)|Yh // (ẊS)f

inc

��
(A1 × U) Y

τoo ṗX // ẊS

(10)

and the morphism δ : U → Y enjoy the conditions stated in Theorem 2.8.

Proof. The items (iii) and (iv) of the Corollary 6.2 show that the mor-
phisms δ : U → Y and (ṗX)|Yh : Yh → (ẊS)f are well defined. The items
(i), (ii) of that Corollary show that the left hand side square in the diagram
(10) is an elementary distinguished square in the category of smooth U -
schemes in the sense of [5, Definition 3.1.3]. The equalities ṗX ◦ δ = ċan
and τ ◦ δ = i0 are clear. �

Proof of Theorem 1.4. Consider the following commutative diagram

(A1×U)h

inc

��

Yh := Yτ∗(h)
τhoo

inc

��

(ṗX)|Yh // (ẊS)f

inc

��

in // X − Z

inc

��
(A1×U) Y

τoo ṗX // ẊS
in // X

(11)

where the left square and the middle one equals to the left and the right
square respectively of the diagram (10). Clearly, Theorem 6.3 yields The-
orem 1.4. Theorem 1.4 is proved. �
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