Рефераты

УДК 517.51, 519.216.8

Некоторые экстремальные задачи для мартингальных преобразований. II. Васюнин В. И. — В кн.: Исследования по линейным операторам и теории функций. 52. (Зап. научн. семин. ПОМИ, т. 537), СПб., 2024, с. 5–39.

Данная статья является непосредственным продолжением работы с тем же названием (В. И. Васюнин, П. Б. Затицкий, *Некоторые экстремальные задачи для мартингальных преобразований*. І. Зап. Научн. Сем. ПОМИ, **527** (2023), 5–53), поэтому ни вводная часть работы, ни список литературы здесь не дублируются. Однако для удобства читателя те формулы из первой статьи, на которые есть ссылки, приводятся в специальном добавлении в конце статьи под своими исходными номерами.

В данной работе исследуются две новые локальные фолиации: малые карманы и прямоугольники. Появление таких локальных фолиаций иллюстрируется дальнейшим разбором примеров, когда граничные значения являются полиномами третьей степени.

Библ. – 1 назв.

УДК 517.5

Критерий ограниченности усреднений в пространствах Лебега с переменным показателем на периоде. Виноградов О. Л. — В кн.: Исследования по линейным операторам и теории функций. 52. (Зап. научн. семин. ПОМИ, т. 537), СПб., 2024, с. 40–63.

В работе получен критерий равномерной ограниченности семейства средних Стеклова в пространствах Лебега с переменным показателем, состоящих из периодических функций. Этот критерий совпадает с известным локальным аналогом условия Макенхаупта. Ранее ограниченность средних Стеклова была известна при условии Дини–Липшица. Получены явные оценки норм усредняющих операторов.

Библ. - 19 назв.

УДК 517.51

Новая беллмановская индукция и ослабленная версия нормы ВМО. Добронравов Е. П., Затицкий П. Б., Столяров Д. М. — В кн.: Исследования по линейным операторам и теории функций. 52. (Зап. научн. семин. ПОМИ, т. 537), СПб., 2024, с. 64–93.

Работа расширяет область применения к оценкам в духе Джона и Ниренберга так называемой беллмановской индукции, отказываясь от определённых предположений о выпуклости. В качестве приложения рассмотрена численная характеристика функции, которая существенно меньше нормы в пространстве ВМО, но конечность которой влечёт экспоненциальную интегрируемость исходной функции.

Библ. – 29 назв.

УДК 517.51

Об абсолютно расходящихся рядах Фурье. Кисляков С. В. — В кн.: Исследования по линейным операторам и теории функций. 52. (Зап. научн. семин. ПОМИ, т. 537), СПб., 2024, с. 94–103.

Описан метод построения рядов, упомянутых в заглавии. Он дает функции от нескольких переменных с гладкостью, несколько более высокой, чем $C^{(d/2)}(\mathbb{T}^d)$ и основан на аналоге теоремы де Леу–Кацнельсона–Кахана для классов $C^{(l)}(\mathbb{T}^d)$.

Библ. - 9 назв.

УДК 517.574

Обратная теорема приближения целыми функциями экспоненциального типа. Сильванович О. В., Широков Н. А. — В кн.: Исследования по линейным операторам и теории функций. 52. (Зап. научн. семин. ПОМИ, т. 537), СПб., 2024, с. 104–115.

Пусть $I_k = (a_k, b_k), J_k = [b_k, a_{k+1}], b_k < a_{k+1}, k \in \mathbb{Z}$, – отрезки на вещественной оси, сходящиеся к $+\infty$ и $-\infty$, удовлетворяющие условиям:

 $|I_k|=2^{-n\alpha},$ если $I_k\subset [2^n,2^{n+1}]$ или $I_k\subset [-2^{n+1},-2^n]$ с некоторым lpha>0 при $n\geqslant n_0,$ $2^{n_0}\cdot 2^{-n\alpha}\leqslant |J_k|\leqslant c_12^{n_0}\cdot 2^{-n\alpha}$ с некоторой постоянной $c_1,$ если $J_k\subset [2^n,2^{n+1}]$ или $J_k\subset [-2^{n+1},-2^n],$ $E=\bigcup_{k\in\mathbb{Z}}J_k.$

Пусть $f_{E,1}(z)$ — субгармоническая на всей плоскости $\mathbb C$ функция, удовлетворяющая условиям $f_{E,1}(x)=0$ при $x\in E,\ f_{E,1}(z)$ гармонична

в $\mathbb{C}\setminus E, \overline{\lim_{z\to\infty}} \frac{f_{E,1}(z)}{|z|}=1$ и для любой функции g, удовлетворяющей

условиям $g(x)\leqslant 0,\ x\in E,$ и $\varlimsup_{z\to\infty}\frac{g(z)}{|z|}\leqslant 1,$ имеется неравенство $g(z)\leqslant f_{E,1}(z),\ z\in\mathbb{C}.$

Для t>0 положим $L_t(E)=\{z\in\mathbb{C}:f_{E,1}(z)=t\},\ \rho_t(x)=\mathrm{dist}(x,L_t(E)),\ x\in E.$ Пусть T_σ – множество целых функций F_σ экспоненциального типа, удовлетворяющих условию

$$|F_{\sigma}(z)| \leqslant c_{F_{\sigma}} \exp(\sigma |\text{Im}z|)$$

при $z \in \mathbb{C}, \Lambda^s(E)$ – функции из класса Гёльдера порядка $s, \ 0 < s < 1,$ ограниченные на E.

В статье доказана следующая теорема.

Теорема 1. Предположим, что для функции f, заданной на E, при любом $\sigma \geqslant 1$ найдется функция $F_{\sigma} \in T_{\sigma}$ такая, что имеется оценка

$$|f(x) - F_{\sigma}(x)| \leqslant c_f \rho_{\frac{1}{\sigma}}^s(x), \quad x \in E.$$

Тогда $f \in \Lambda^s(E)$. Библ. – 7 назв.

УДК 517.51

Оценки функций в задаче об идеалах алгебры H^{∞} . Скворцов А. А. — В кн.: Исследования по линейным операторам и теории функций. 52. (Зап. научн. семин. ПОМИ, т. 537), СПб., 2024, с. 116—127.

Недавние результаты автора и С. В. Кислякова (Алгебра и анализ, **35**, No. 5 (2023), 99–116) о независимости разрешимости задачи об идеалах от типа пространств, в которых она ставится, распростанены так, чтобы охватить контекст работы С. Р. Трейля (J. Funct. Analysis, **253** (2007), 220–240) и Дж. Пау (Proc. Amer. Math. Soc., **133** (2005), 167–174).

Библ. – 5 назв.

УДК 517.5

 Φ -неравенства Мазьи на областях. Столяров Д. М. — В кн.: Исследования по линейным операторам и теории функций. 52. (Зап. научн. семин. ПОМИ, т. 537), СПб., 2024, с. 128–150.

Найдены необходимые и достаточные условия на функцию Φ для выполнения неравенства

$$\left| \int_{\Omega} \Phi(K * f) \right| \lesssim \|f\|_{L_1(\mathbb{R}^d)}^p.$$

Здесь K — положительно однородное ядро порядка $\alpha-d$, возможно, векторнозначное, Φ — положительно p-однородная функция, и $p=d/(d-\alpha)$. Область $\Omega\subset\mathbb{R}^d$ либо ограничена и имеет $C^{1,\beta}$ гладкую границу для некоторого $\beta>0$, либо является полупространством в \mathbb{R}^d . Как следствие, мы описываем положительно однородные порядка d/(d-1) функции $\Phi\colon\mathbb{R}^d\to\mathbb{R}$, допускающие равномерную оценку

$$\Big| \int_{\Omega} \Phi(\nabla u) \Big| \lesssim \int_{\Omega} |\Delta u|.$$

Библ. - 16 назв.

УДК 517.547

Обратная теорема полиномиального приближения на эллиптической кривой. Шагай М. А. — В кн.: Исследования по линейным операторам и теории функций. 52. (Зап. научн. семин. ПОМИ, т. 537), СПб., 2024, с. 151–177.

Пусть $\wp(z)$ — двояко-периодическая функция Вейерштрасса с периодами $2\omega_1, 2\omega_2, Q$ — параллелограмм с вершинами $0, 2\omega_1, 2\omega_2, 2(\omega_1+\omega_2), s_k, 1\leqslant k\leqslant m$, — попарно дизъюнктные отрезки, $s_k=[a_k,b_k]\subset Q, 1\leqslant k\leqslant m$. Числа $\varepsilon_{kn}>0$ удовлетворяют условию $\sum\limits_{k=1}^m\sum\limits_{n=1}^\infty \varepsilon_{kn}^2<\infty$. Обозначим через g(z) функцию Грина области $\mathbb{C}\setminus\bigcup\limits_{k=1}^m s_k$ с логарифмическим

вычетом в бесконечности, и пусть $L_h = \{z \in Q \setminus \bigcup_{k=1}^m s_k : g(z) = h\},$ $0 < h < \max_{z \in \overline{Q}} g(z), \rho_h(z) = \operatorname{dist}(z, L_h).$ Пусть $T(z) = (\wp(z), \wp'(z)), z \in Q,$

$$d_{kn}(z) = 1 + \frac{1}{2^n \sqrt{\delta(T(z), T(a_k)) \cdot \delta(T(z), T(b_k))}}, \quad z \in s_k, \text{ где}$$

$$\delta((\zeta, w), (\zeta', w')) = \sqrt{|\zeta - \zeta'|^2 + |w - w'|^2}.$$

В работе доказана следующая теорема.

Теорема 1'. Пусть $2\leqslant p_k<\infty, 1\leqslant k\leqslant m, f_k\in C(s_k)$ и предположим, что найдутся полиномы $\mathsf{P}_{2^n}(u,v),\deg \mathsf{P}_{2^n}\leqslant 2^n$ и постоянная C_* такие, что при $n=1,2,\ldots$ выполнено условие

$$\sum_{k=1}^m \int_{s_k} \left| \frac{f_k(z) - \mathsf{P}_{2^n}(\wp(z),\wp'(z))}{\varepsilon_{kn} \rho_{2^{-n}}(z)} \right|^{p_k} d_{kn}(z) |dz| \leqslant C_*.$$

Tогда $f_k'(z) \in L^{p_k}(s_k), \ 1 \leqslant k \leqslant m.$ Библ. — 4 назв.