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Abstract. The flux function in the Buckley–Leverett equation,
that is, the function characterizing the ratio of the relative mobility
functions of the two phases, is considered. The common conjecture
stating that any convex mobilities result in an S-shaped Buckley–
Leverett function is analyzed and disproved by a counterexample.
Additionally, sufficient conditions for the S-shaped Buckley–Leverett
function are given. The class of functions satisfying those conditions
is proven to be closed under multiplication. Some functions from
known relative mobility models are confirmed to be in that class.
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1. Introduction

In fluid dynamics, the Buckley–Leverett equation is one of the simplest
conservation laws used to model two-phase flow in porous media. The
equation is given by:

st + f(s)x = 0, (1)

where s = s(x, t) is the water saturation and f is the fractional flow func-
tion, also known as the Buckley–Leverett function. This function charac-
terizes the ratio of relative mobilities of the two phases, which is expressed
as:

f(s) =
ma(s)

ma(s) +mb(1− s)
,

where ma and mb represent the relative phase mobilities, typically water
and oil mobilities in the context of petroleum sciences. These mobility
functions are often assumed to be increasing and convex.
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The Buckley–Leverett equation (1) could be paired with an arbitrary
Cauchy problem or some other initial-boundary problem. There are ample
results on existence, non-uniqueness (in general) and uniqueness (in certain
classes of solutions) and even some explicit solution formulae for such
problems (see e. g. [1, Chapter 2]). But the model problem for it is the
Riemann problem

s(x, 0) =

{
sL, x 6 0,

sR, x > 0,
(2)

describing the evolution of a single discontinuity.
In the early works on the subject the assumption that the Buckley–

Leverett function f is S-shaped is prevalent. This is likely due to the fact
that an S-shaped function is used as the only example in the principal work
by Buckley and Leverett [2], and this assumption is repeated in many pa-
pers thereafter for this and other more generalized problems. This assump-
tion is no longer critical in the case of the Buckley–Leverett equation (1),
since the Riemann problem(2) for it can be solved analytically for any suffi-
ciently smooth function f by the convex hull construction given by Oleinik
(see [3, 4] or [1, Sec. 2.4]). Nonetheless, it is still often important in more
general conservation systems that include more phases or components, or
have additional parameters such as temperature (see [5–10]). However,
there is no comprehensive research on when f is actually S-shaped. The
prevalent conjecture among engineers is that convex mobilities result in an
S-shaped fractional flow function. Some mathematicians hold similar ex-
pectations. The only paper known to the author (and the one that inspired
this work) investigating sufficient conditions for the S-shaped function is
the paper by Castañeda [11]. That paper proves that when relative phase
mobilities ma and mb are power functions with exponent greater than 1,
the resultant Buckley–Leverett function f is S-shaped. It also states that
the author could not find a counterexample to the convex conjecture.

Even in the context of the Riemann problem (2) for the equation (1)
the S-shaped property still has significance. When we solve the problem
by the convex hull construction, the straight segments on the convex hull
of f correspond to shocks (travelling discontinuities) and strictly convex
parts correspond to continuous rarefaction waves. Therefore, when f is S-
shaped, the solution contains at most one shock, whereas for the function
f with more than one inflection point, some Riemann problem solutions
may contain two or more shocks. Noteworthy in this context is [7, Claim
17]. It does not give any conditions for when f is S-shaped, but instead
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assumes the mobilities are convex and proves the solution of the particular
Riemann problem with sL = 1, sR = 0 always contains only one shock.

In this paper, we provide sufficient conditions for the Buckley–Leverett
function to be S-shaped. The paper has the following structure: Sec. 2
defines a special subclassM of convex mobilities and proves the theorem
asserting that mobilities ma, mb from that class always give an S-shaped
fractional flow function f . Additionally, it proves the proposed class of con-
vex functions is closed under multiplication. Sec. 3 presents several coun-
terexamples of two convex functions outsideM that produce a fractional
flow function that is not S-shaped, and contains the graphs illustrating the
provided counterexamples. Appendix A applies the proposed conditions to
some known relative mobility models.

2. Sufficient conditions for the S-shaped function

Definition 1. LetM be a set of functions m ∈ C2[0, 1], such that:
(C1) Function m is fixed at zero and convex, i. e.

(C1.1) m(0) = m′(0) = 0;
(C1.2) m′′(s) > 0 for s > 0.

(C2) Additionally,
m′′

m′
is a decreasing function on (0, 1).

Remark 1. Any power function m(s) = Asa with A > 0 and power a > 1

is in M, since
m′′

m′
=
a− 1

s
is decreasing. Thus, Theorem 1 below covers

the result of [11, Theorem 409].

Remark 2. It trivially follows from (C1) that every function m ∈ M
is positive and increasing, i. e. m(s),m′(s) > 0 for s > 0. We use this
property repeatedly without reference.

Lemma 1. Let m∈M. Then
m′

m
is also a decreasing function. Therefore,

for all m ∈M the following variation of (C2) holds:

(C2*)
m′

m
and

m′′

m′
are decreasing functions on (0, 1).

Proof. To prove
m′

m
is a decreasing function we need to demonstrate(

m′

m

)′
=
m′′m−m′2

m2
< 0,
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which is equivalent to
m′

m
>
m′′

m′
,

which, considering (C1) and (C2), follows from Cauchy’s Mean Value The-
orem:

m′(x)

m(x)
=
m′(x)−m′(0)
m(x)−m(0)

=
m′′(x̃)

m′(x̃)
>
m′′(x)

m′(x)

holds for all x ∈ (0, 1) and certain x̃ ∈ (0, x). �

Remark 3. Let m ∈M. Then it is easy to see that lim
s→0

m′′

m
= +∞.

Remark 4. Though we require only C2 smoothness from our functions,

(C2) guarantees that the derivative
(
m′′

m′

)′
in the sense of distributions

exists and is negative, and thus exists the generalized derivative

m′′′ = m′
(
m′′

m′

)′
+

(m′′)2

m′
.

Therefore, in the proofs below we operate the third derivative f ′′′, exam-
ining its sign to discern the local monotonicity of the second derivative f ′′.

Theorem 1. Let ma and mb be two mobility functions from the class

M. Then the fractional flow function f(s) =
ma(s)

ma(s) +mb(1− s)
is S-

shaped, that is, there exists a unique inflection point s∗ ∈ (0, 1), such that
f ′′(s∗) = 0.

Proof. We note that (mb(1 − s))′ = −m′b(1 − s), thus mb changes sign
with every derivative. Keeping that in mind, we omit the variables s and
1 − s in the notation hereafter, implying that mb and its derivatives are
applied to the variable 1− s.

Denote M = ma +mb and h = m′amb +mam
′
b. It is easy to calculate

f ′ =
h

M2
, f ′′ =

h′M − 2M ′h

M3
, (3)

where h′ = m′′amb −mam
′′
b . We solve the equation f ′′ = 0, or equivalently

g := h′ − 2M ′

M
h = 0, (4)

and aim to demonstrate that it has a unique solution on (0, 1).
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SinceM,h > 0 trivially, we note that if h′ and −M ′ have the same sign,
then f ′′ and g have it too. Thus, any solution of (4) must satisfy

h′M ′ > 0 or h′ =M ′ = 0. (5)

Note also that M ′ is increasing due to (C1) (since M ′′ = m′′a + m′′b >
0) and it changes sign exactly one time from negative to positive (since
M ′(0) = −m′b(1) < 0 and M ′(1) = m′a(1) > 0). Denote by sM the sign
change point:

M ′(s) < 0, 0 6 s < sM ; M ′(sM ) = 0; M ′(s) > 0, sM < s 6 1.

Similarly, due to (C2*) we deduce that
m′′a
ma

=
m′′a
m′a

m′a
ma

is decreasing and,

keeping in mind the difference in the variable,
m′′b
mb

=
m′′b
m′b

m′b
mb

is increasing.

Thus,
m′′a
ma
− m′′b
mb

is a decreasing function and has one sign change from

positive to negative (due to Remark 3 the values near 0 are positive and
the values near 1 are negative). We denote the sign change point sh. Note
that

m′′a
ma
− m′′b
mb

=
m′′amb −mam

′′
b

mamb
=

h′

mamb
,

therefore

h′(s) > 0, 0 < s < sh; h′(sh) = 0; h′(s) < 0, sh < s < 1.

From (5) we know that any solution of (4) must lie between sM and sh.
If sM = sh, then s∗ = sM = sh is the unique solution of (4), and the
theorem is proved. Otherwise, we will first consider the case sM < sh. The
other case is very similar, but we list the differences at the end of this
proof nonetheless.

Case sM < sh. Let us first prove the existence of s∗. It is easy to note
that M ′(sM ) = h′(sh) = 0, therefore

f ′′(sM ) =
h′(sM )

M2(sM )
> 0,

f ′′(sh) = −
2M ′(sh)h(sh)

M3(sh)
< 0,

thus a solution must exist.
In order to prove uniqueness, we intend to demonstrate that f ′′ is

strictly decreasing at the point s∗, and thus changes sign from positive



252 N. V. RASTEGAEV

to negative:

f ′′(s∗) = 0 =⇒ f ′′′(s∗) = g′(s∗)M2(s∗) < 0. (6)

It is clear, that there could only be one such change of sign, therefore the
uniqueness proof would be complete. In order to prove (6), we note that
from (4) we have

h(s∗) = h′(s∗)
M(s∗)

2M ′(s∗)
.

Therefore, we calculate

g′(s∗) =

(
h′ − 2M ′

M
h

)′∣∣∣∣∣
s=s∗

= h′′(s∗)− h′(s∗) M(s∗)

2M ′(s∗)

[
2M ′′(s∗)

M(s∗)
− 2(M ′(s∗))2

(M(s∗))2

]
− h′(s∗)2M

′(s∗)

M(s∗)

= h′′(s∗)− h′(s∗)
[
M ′′(s∗)

M ′(s∗)
+
M ′(s∗)

M(s∗)

]
.

All we need to do is demonstrate that

h′′ − h′
[
M ′′

M ′
+
M ′

M

]
< 0 (7)

holds for all s between sM and sh, and (6) will follow immediately.
By the definition of sM and sh, on (sM , sh) we have

M ′ > 0, h′ > 0. (8)

Note that
h′

m′am
′
b

=
m′′amb −mam

′′
b

m′am
′
b

=
m′′a
m′a

mb

m′b
− m′′b
m′b

ma

m′a

is decreasing due to (C2*). Indeed,
m′′a
m′a

and
mb

m′b
are both decreasing (recall

that mb has argument 1− s), while m
′′
b

m′b
and

ma

m′a
are increasing. Thus

h′′ − h′
[
m′′a
m′a
− m′′b
m′b

]
= m′am

′
b

(
h′

m′am
′
b

)′
< 0. (9)

Note also that
M ′′

M ′
+
M ′

M
>
M ′′

M ′
=
m′′a +m′′b
m′a −m′b

>
m′′a
m′a

>
m′′a
m′a
− m′′b
m′b

. (10)
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Here, the first inequality holds because M ′ > 0 due to (8). The second
inequality holds due tom′b,m

′′
b > 0, keeping in mind thatm′a > m′b because

M ′ > 0. And the third inequality holds similarly because m′b,m
′′
b > 0, thus

m′′b
m′b

> 0. Therefore, combining the relations (9) and (10) we obtain (7) and

prove the uniqueness of s∗.
Case sM > sh. In this case on (sh, sM ) we have

M ′ < 0, h′ < 0.

Now f ′′(sh) > 0 and f ′′(sM ) < 0, thus a solution exists. The steps of the
uniqueness proof are the same. We note that

M ′′

M ′
+
M ′

M
<
M ′′

M ′
=
m′′a +m′′b
m′a −m′b

< −m
′′
b

m′b
<
m′′a
m′a
− m′′b
m′b

,

therefore (7) still follows from (9). Other than that, no modifications are
required, thus the theorem is proved. �

In practice, the following theorem is very helpful in verifying condition
(C2*) for some common functions.

Theorem 2. Let m1 and m2 be positive and increasing functions on (0, 1)
satisfying (C2*). Then their product m1m2 also satisfies (C2*).

Remark 5. It is important for applications in Appendix A that this state-
ment does not require (C1), therefore widening the set of possible multi-
plicators ofM.

Proof. In this proof, we will use the notation i = 1, 2. Note that since
m′i
mi

and
m′′i
m′i

are decreasing, their product
m′′i
mi

is also decreasing. Consider the

derivatives of these three fractions and we obtain

m′′imi − (m′i)
2 < 0, m′′′i m

′
i − (m′′i )

2 < 0, m′′′i mi −m′′im′i < 0.

It is easy to see that(
(m1m2)

′

m1m2

)′
= (ln(m1m2))

′′= (lnm1)
′′+(lnm2)

′′=

(
m′1
m1

)′
+

(
m′2
m2

)′
< 0.

Sadly, the same simple trick does not work for the second fraction. Instead,

we prove that
(m1m2)

′′

(m1m2)′
is decreasing by expanding the derivatives and
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grouping some terms to achieve a similar estimate:

(m1m2)
′′′(m1m2)

′ − ((m1m2)
′′)2

= (m′′′1 m2 + 3m′′1m
′
2 + 3m′1m

′′
2 +m1m

′′′
2 )(m′1m2 +m1m

′
2)

− (m′′1m2 + 2m′1m
′
2 +m1m

′′
2)

2

= m2
2(m

′′′
1 m

′
1 − (m′′1)

2) +m2
1(m

′′′
2 m

′
2 − (m′′2)

2)

+m′2m2(m
′′′
1 m1 −m′′1m′1) +m′1m1(m

′′′
2 m2 −m′′2m′2)

+ (m′2)
2(m′′1m1 − (m′1)

2) + (m′1)
2(m′′2m2 − (m′2)

2)

− 2(m′′1m1 − (m′1)
2)(m′′2m2 − (m′2)

2) < 0. �

Corollary 1. The classM is closed under multiplication.

3. Counterexample for the convex conjecture

Theorem 3. Let ma = mb be a mobility function satisfying (C1). Addi-
tionally, let (

m′′a
m3
a

)′∣∣∣∣∣
s=0.5

> 0. (11)

Then the corresponding fractional flow function has more than one inflec-
tion point and therefore is not S-shaped.

Proof. In this proof we use the notations and conventions introduced in
the proof of Theorem 1. Note that due to symmetry, we have

M ′(0.5) = h′(0.5) = 0.

Therefore, using (3),

f ′′(0.5) =
h′M − 2M ′h

M3

∣∣∣∣
s=0.5

= 0,

thus, s = 0.5 is an inflection point. However,

f ′′′(0.5) =

(
h′M − 2M ′h

M3

)′∣∣∣∣∣
s=0.5

=
h′′M − 2M ′′h

M3

∣∣∣∣
s=0.5

=
m′′′a m

2
a − 3m′′am

′
ama

2m3
a

∣∣∣∣
s=0.5

=
m2
a

2

(
m′′a
m3
a

)′∣∣∣∣∣
s=0.5

> 0,
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so f ′′ changes sign from negative to positive at s = 0.5. Therefore, there
must exist at least two more inflection points, one before 0.5 and one
after. �

Here is an example of a mobility satisfying (C1) and (11):

ma(s) = mb(s) = s1.1(1 + 15s10).

See Fig. 1 and Fig. 2 for the corresponding plots. One can see that f ′′ has
3 zeroes and f is not S-shaped.

It is clear that (11) contradicts (C2). But the class of functions satisfying
neither (C2), nor (11) is vast, and it leaves the following question: is it
possible to construct a wider class M, for which Theorem 1 holds, by
weakening the (C2) restriction? We leave it an open problem for now. What
is clear is that (11) is not the only way to construct a counterexample,
just the most direct one. It is possible to construct mobilities that do
not satisfy (11) but still lead to additional inflection points. To give an
example, functions ma(s) = mb(s) = s1.1(1+15s30) result in f ′′′(0.5) < 0,
but f still has 5 inflection points, as clearly shown on Fig. 3 and Fig. 4.

The graphs for the counterexample ma(s) = mb(s) = s1.1(1 + 15s10):

Figure 1. Function f . Figure 2. f ′′with 3 zeroes.
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The graphs for the counterexample ma(s) = mb(s) = s1.1(1 + 15s30):

Figure 3. Function f . Figure 4. f ′′ with 5 zeroes.

Appendix A

In this appendix, we check various known relative mobility models
against the conditions (C1), (C2).

A.1. The simplest Corey-type model. The simplest and the most
commonly used relative mobility model (see [12]) is the power law model

ma(s) = Asa, mb(s) = Bsb,

where A,B > 0, a, b > 1. As we already noted in Remark 1, any power
function with power greater than 1 satisfies (C1), (C2), therefore ma,mb ∈
M.

A.2. Brooks and Corey model. The original model proposed by Corey
(see [13]) is

ma(s) = s4, mb(s) = s2(1− (1− s)2).
Later, Brooks and Corey introduce a parameter to generalize that model
(see [14]). That resulted in the following functions:

ma(s) = s
2+3λ

λ , mb(s) = s2
(
1− (1− s)

2+λ
λ

)
,
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where λ is the pore size distribution index. This was further generalized
in [15] to include an additional parameter:

ma(s) = sη+
2+λ
λ , mb(s) = sη

(
1− (1− s)

2+λ
λ

)
.

In all variations, ma is a power function, and thus was already considered
previously. To study mb we first analyze the expression in the brackets.
Denote α = 2+λ

λ .

Lemma 2. Function nα(s) = 1− (1− s)α on (0, 1) is positive, increasing
and satisfies (C2*) for all α > 1.

Proof.

n′α(s) = α(1− s)α−1 > 0, n′′α(s) = −α(α− 1)(1− s)α−2 < 0.

Therefore,
n′′αnα − (n′α)

2 < 0,

so n′α/nα is decreasing and

n′′α
n′α

=
1− α
1− s

is also a decreasing function. �

Therefore, due to Theorem 2 we obtain (C1.1) and (C2*) for mb for all
η > 1 and λ > 0. The only condition left to check is (C1.2). We calculate
the second derivative

m′′b (s) = sη−2
[
η(η − 1)− P (s)(1− s)α−2

]
, (12)

where

P (s) = η(η − 1)− 2ηγs+ γ(γ + 1)s2, γ = η + α− 1.

It is clear that for 1 < α < 2 (that is λ > 2) the last term blows up near
s = 1, thus (C1.2) is broken. Otherwise, the following Lemma shows that
mb is convex for all η > 2.

Lemma 3. Let α, η > 2. Then mb(s) = sη (1− (1− s)α) is convex on
(0, 1).

Proof. It is clear that m′′b is positive near 0 and 1. It is also easy to see
that

(η(η − 1)− P (s)(1− s)α−2)′ = (1− s)α−3 [(α− 2)P (s)− (1− s)P ′(s)] ,



258 N. V. RASTEGAEV

and the function in square brackets

(α−2)P (s)− (1−s)P ′(s) = α
(
γ(γ + 1)s2 − 2γ(η + 1)s+ η(η + 1)

)
(13)

has at most two zeroes on (0, 1). Therefore, the expression in the brackets
in (12) has at most two extrema on (0, 1), and if we show them to be
positive, the proof will be concluded. Let z ∈ (0, 1) be a root of (13). Note
that (13) gives us

P (z) = 2γz − 2η.

Using this and Bernoulli’s inequality, we estimate

η(η − 1)(1− z)2−α − P (z) > η(η − 1) + η(η − 1)(α− 2)z − 2γz + 2η

= (η − 2z)(η + 1) + (α− 2)(η − 2)(η + 1)z>0.

�

Therefore, mb ∈M for all α, η > 2 (or equivalently 0 < λ 6 2, η > 2).

Remark 6. For 1 6 η 6 2 there exists a separating value η0(α), such that
mb is convex for η > η0(α) and the convexity breaks for η 6 η0(α). To
obtain this separating value we need to calculate the largest root of (13):

z =
η + 1

γ + 1
+

√
(η + 1)2

(γ + 1)2
− η(η + 1)

γ(γ + 1)
,

substitute this expression into the relation

(2γz − 2η)(1− z)α−2 = η(η − 1)

and solve the resulting equation for η as an implicit function of α.
Numerical experiment shows that this equation admits a unique solution

for every α, but we omit any rigorous proof. The resulting curve is shown
on Fig. 5. Notably, the curve itself has a limiting value as α→ +∞:

lim
α→+∞

η0(α) = η∞,

where η∞ ≈ 1.122183 solves the implicit equation

(2 + 2
√
η + 1)eη+1+

√
η+1 = η(η − 1).

Therefore, mb is never convex for 1 6 η 6 η∞.
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Figure 5. The graph of η0(α) with η∞ asymptotics.

A.3. Chierici model. Chierici (see [16]) proposed an exponential law
for the relative mobility functions:

ma(s) = A exp

[
−B

(
s

1− s

)−C]
.

This expression is often not convex, so we are just going to provide an
example of Chierici functions satisfying our conditions. Let C = 1, B > 2.
Then

ma(s) = A exp

[
−B 1− s

s

]
, m′a(s) =

AB

s2
exp

[
−B 1− s

s

]
> 0,

m′′a(s) =
AB2 − 2ABs

s4
exp

[
−B 1− s

s

]
> 0,(

m′a
ma

)′
= −2B

s3
< 0,

(
m′′a
m′a

)′
=

(
B − 2s

s2

)′
=

2s− 2B

s3
< 0.

Therefore ma ∈M for C = 1 and all B > 2.
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