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Abstract. We consider the dynamic problems for the discrete sys-
tems with discrete time associated with finite and semi-infinite Ja-
cobi matrices. The result of the paper is a procedure of association
of special Hilbert spaces of functions, namely de Branges space,
playing an important role in the inverse spectral theory, with these
systems. We point out the relationships with the classical moment
problems theory and compare properties of classical Hankel matri-
ces associated with moment problems with properties of matrices of
connecting operators associated with dynamical systems.

Dedicated to the anniversary of Nina Nikolaevna Uraltseva

§1. Introduction

For a given sequence of positive numbers {a0, a1, . . .} (in what follows
we assume a0 = 1) and real numbers {b1, b2, . . .}, we denote by A the
semi-infinite Jacobi matrix

A =


b1 a1 0 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 a3 0 . . .
. . . . . . . . . . . . . . . . . .

 . (1)

For N ∈ N, by AN we denote the N ×N Jacobi matrix which is a block
of (1) consisting of the intersection of first N columns with first N rows
of A. We consider the dynamical system corresponding to a semi-infinite
Jacobi matrix:

un,t+1+un,t−1−anun+1,t−an−1un−1,t−bnun,t= 0, t>0, n>1,

un,−1 = un, 0 = 0, n > 1

u0, t = gt, t > 0,

(2)

Key words and phrases: Hamburger moment problem, Stieltjes moment prob-
lem, Hausdorff moment problem, Boundary control method, Krein equations, Jacobi
matrices.
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where g = (g0, g1, . . .) is a boundary control, gi ∈ C, i = 0, 1, 2, . . ., the
solution to (2) is denoted by ug.

De Branges spaces [8, 9, 17] play an important role in the inverse spec-
tral theory. In [10,11] the authors show how to associate finite-dimensional
de Branges spaces with the dynamical systems of the form (2). Note that
our approach differs from the classical one and potentially admits the gen-
eralization to the multidimensional systems [15]. The algorithm proposed
in [10, 11] is as follows: fixing some finite time t = T one introduces the
reachable set of the dynamical system at this time:

UT :=
{
ug·,T | g ∈ F

T
}
.

Then one needs to apply the Fourier transform associated with the oper-
ator corresponding to the matrix A to elements from UT and get a linear
manifold FUT . Then this linear manifold is equipped with the norm de-
fined by the connecting operator CT associated with the system (2), which
resulted in the finite-dimensional de Branges space associated with AT .

Thus for the system (2), due to the finiteness of the speed of wave prop-
agation, the described procedure leads to the finite dimensional Hilbert
space of analytic functions associated with AT (not with the whole ma-
trix A!). The natural question then is to try to associate some infinite-
dimensional functional spaces with the dynamical system (2) with semi-
infinite matrix, taking T →∞.

For a given sequence of moments s0, s1, s2, . . . a solution of a Hamburger
moment problem [1, 18] is a Borel measure dρ(λ) on R such that

sk =

∞∫
−∞

λk dρ(λ), k = 0, 1, 2, . . . . (3)

If in а Hamburger moment problem an additional constraint supp dρ ⊂
[0,+∞) or supp dρ ⊂ [0, 1] is imposed on the measure, then such a prob-
lem is called Stieltjes moment problem or Hausdorff moment problem. The
set of solutions of Hamburger moment problem is denoted by MH . The
moment problem (moment sequence s0, s1, . . .) is called determinate if a
solution exists and is unique, if a solution is not unique, it is called indeter-
minate, the same notations are used in respect to corresponding measures.
The relationships of classical moments problems and dynamic inverse prob-
lem for the system (2) are described in [13,14].
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The following semi-infinite Hankel matrix is associated with the moment
problem (see [1])

S =


s0 s1 s2 s3 . . .
s1 s2 s3 . . . . . .
s2 s3 . . . . . . . . .
s3 . . . . . . . . . . . .
. . . . . . . . . . . . . . .

 . (4)

The N ×N block of this matrix is denoted by SN .
The connecting operator CT associated with the system (2) (for fixed

time t = T ) plays a central role in the Boundary Control method [3,4], an
approach to inverse dynamic problems. In [13, 14] the authors shown the
simple relationship between CT and ST . As CT was used in the procedure
of the construction of finite-dimensional spaces, the natural question then
is to study properties of “semi-infinite” connecting operator C in a way the
semi-infinite Hankel matrix S was studied in [5, 7, 20,21].

In the second section we provide all the necessary information on de
Branges spaces. In the third section we list the results for the finite and
semi-infinite operators SN , S according to [5,7,20,21]. In the forth section
we briefly outline the results for the dynamical system (2) and for dynam-
ical system associated with AN according to [12]. In the fifth section we
describe the procedure of the de Branges spaces construction in the finite
dimensional case according to [10, 11]. After that in the last section we
introduce the semi-infinite matrix C and compare its properties with ones
of the “moment problem” counterpart Hankel matrix S. All these give us
the possibility to introduce the infinite-dimensional de Branges spaces in
the limit circle (indeterminate) case for the system (2) .

§2. de Branges spaces.

Here we provide the information on de Branges spaces in accordance
with [16, 17]. The entire function E : C 7→ C is called a Hermite–Biehler
function if |E(z)| > |E(z)| for z ∈ C+. We use the notation F#(z) = F (z).
The Hardy space H2 is defined by: f ∈ H2 if f is holomorphic in C+ and

sup
y>0

∞∫
−∞
|f(x + iy)|2 dx < ∞. Then the de Branges space B(E) consists of

entire functions such that:

B(E) :=

{
F : C 7→ C, F entire,

F

E
,
F#

E
∈ H2

}
.
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The space B(E) with the scalar product

[F,G]B(E) =
1

π

∫
R

F (λ)G(λ)
dλ

|E(λ)|2

is a Hilbert space. For any z ∈ C the reproducing kernel is introduced by
the relation [8, Theorem 19, p. 50].

Jz(ξ) :=
E(z)E(ξ)− E(z)E(ξ)

2i(z − ξ)
. (5)

Then

F (z) = [Jz, F ]B(E) =
1

π

∫
R

Jz(λ)F (λ)
dλ

|E(λ)|2
.

We observe that a Hermite–Biehler function E(λ) defines Jz by (5). The
converse is also true [8, Theorem 22, p. 55].

Theorem 1. Let X be a Hilbert space of entire functions with reproducing
kernel such that

1) if f ∈ X then f# ∈ X and ‖f‖X = ‖f#‖X ,
2) if f ∈ X and ω ∈ C such that f(ω) = 0, then z−ω

z−ωf(z) ∈ X and∥∥∥ z−ωz−ωf(z)
∥∥∥
X

= ‖f‖X ,

then X is a de Branges space based on the function

E(z) =
√
π(1− iz)Ji(z)‖Ji‖−1X ,

where Jz is a reproducing kernel.

§3. Classical moment problems, Hankel matrices,
minimal eigenvalues and closability. Associated

Hilbert space of analytic functions.

With the semi-infinite matrix A we associate the symmetric operator A
(we keep the same notation) in the space l2, defined on finite sequences:

D = {κ = (κ1,κ2, . . .) | ∃ N ∈ N : κn = 0, n > N} , (6)

and given by the rule

(Aθ)1 = b1θ1 + a1θ2,

(Aθ)n = anθn+1 + an−1θn−1 + bnθn, n > 2.
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By [ · , · ] we denote the scalar product in l2. For a given sequence κ =
(κ1,κ2, . . .) we define a new sequence

(Gκ)1 = b1κ1 + a1κ2,

(Gκ)n = anκn+1 + an−1κn−1 + bnκn, n > 2.

The adjoint operator A∗κ = Gκ is defined on the domain

D (A∗) = {κ = (κ1,κ2, . . .) ∈ l2 | (Gκ) ∈ l2} .

In the limit point case (i.e when A has deficiency indices (0, 0)), A is es-
sentially self-adjoint. In the limit circle case, i.e. when A has deficiency
indices (1, 1), we denote by p(λ) = (p1(λ), p2(λ), . . .) and by q(λ) =
(q1(λ), q2(λ), . . .) two solutions of the difference equation (we set here
a0=1):

anφn+1 + an−1φn−1 + bnφn = λφn, n > 1, (7)

satisfying Cauchy data p1(λ) = 1, p2(λ) = λ−b1
a1

, q1(λ) = 0, q2(λ) = 1
a1
.

Thus pn(λ), qn(λ) are polynomials of orders n − 1 and n − 2. Then [19,
Lemma 6.22]

D (A∗) = D(A)+̇Cp(0)+̇Cq(0),

where +̇ denotes the direct sum and A is a closure of A. All self-adjoint
extensions of A are parameterized by h ∈ R ∪ {∞}, are denoted by A∞, h
and are defined on the domain

D(A∞, h) =

{
D(A)+̇C(q(0) + hp(0)), h ∈ R
D(A)+̇Cp(0), h =∞.

All the details the reader can find in [18, 19]. We introduce the measure
dρ∞, h(λ) =

[
dE

A∞, h

λ e1, e1

]
, where e1 = (1, 0, . . .) and dE

A∞,h

λ is the

projection-valued spectral measure of A∞, h such that EA∞, h

λ−0 = E
A∞, h

λ .
Let {s0, s1.s2, . . .} be a moment sequence, dρ ∈ MH be a solution to

moment problem (3), S, SN be Hankel matrices (4). The well-known fact
on the solvability of the moments problem [1, 18, 19] is given in terms of
positivity of these matrices.

Theorem 2. The moment problem (3) has a solution if and only if the
following condition holds:

SN > 0, N = 1, 2, 3, . . .
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Note that in this case the matrix A is determined by the moments in a
one-to-one manner.

In [5–7, 20, 21] the authors studied properties of matrix SN and corre-
sponding semi-infinite matrix S. Below we list the number of important
results obtained by them. Having fixed N , we denote by λN the smallest
eigenvalue of SN :

λN = min{lk | lk is eigenvalue of SN , k = 1, . . . , N}.

The following theorem was proved in [5].

Theorem 3. The moment problem associated with the sequence {sk} is
determined (the matrix A is in the limit point case) if and only if

lim
N→∞

λN → 0.

In the limit circle case

lim
N→∞

λN >

(∫ 2π

0

l
(
eiθ
) dθ

2π

)−1
, l(z) =

( ∞∑
k=0

|pk(z)|2
)−1

.

The Hankel matrix S give rise to the formally defined operator Q in l2:

(Qf)n =

∞∑
m=0

sn+mfm, f ∈ l2.

Then without any a priory assumptions on the sequence {sk}, only the
quadratic form of this operator

S[f, f ] =
∑
m,n>0

sm+nfmfn (8)

is well-defined on D. We always assume the positivity condition (cf. The-
orem 2) ∑

m,n>0

sm+nfmfn > 0, f ∈ D.

The following result is obtained in [7].

Theorem 4. If operator A in the limit circle case then operator S defined
via quadratic form (8) is closable.

There exist operator A in the limit point case such that operator S
defined via quadratic form (8) is closable.
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The solutions of the indeterminate moment problem form an infinite
convex setMH of measuresM with unbounded support, for which moment
identities (3) hold. In this set there exist extremal measures M̃ ∈MH such
that the set of polynomials C[λ] is dense in L2(R, M̃). These measures
correspond to Neumann extension A∞,h of operator A were described in
the beginning of Section 3, we denoted them dρ∞,h, these measures are
discrete and are of the form

M̃ =
∑
k

ckδλk
(λ).

Then the result of Stieltjes says that if one mass is removed, then the new
measure

M1 := M̃ − c1δλ1(λ)

is determinate. The existence of examples of the closability of S in the
determinate situation follows from this theorem.

In the indeterminate case the orthonormal with respect to measure M
polynomials form an orthonormal basis in L2(R,M) ifM is extremal. IfM
is not extremal then they are basis in C[λ] where the closure is assumed
in L2(R,M). In both cases C[λ] is isomorphic to the space E of entire
functions of the form

u(z) =

∞∑
k=1

gkpk(z), g ∈ l2, pk are orthonormal w.r.t. measure M.

Note (see [19, Sec. 7]) that the reproducing kernel in this space has a form

J∞z (λ) =

∞∑
n=1

pn(z)pn(λ) (9)

and the right hand side converges uniformly on compact subsets of C to
holomorphic function on C2. For this kernel one has

∞∫
−∞

J∞z (λ)f(λ)dM(λ) = f(z), (10)

for all polynomials f(z).
In the determinate (limit point) case C[λ] is dense in L2(R,M), but

since the quantity (9) diverges, and as a consequence, the reproducing
kernel is absent, there are no results on the equivalence of C[λ] to some
space of analytic functions.
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§4. Dynamical system with discrete time associated
with finite and semi-infinite Jacobi matrices.

Proofs of statements of this section can be found in [12,13].
We consider the dynamical system with discrete time associated with

the matrix AN :
vn,t+1+vn,t−1−anvn+1,t−an−1vn−1,t−bnvn,t=0, t>0, 16n6N,

vn,−1 = vn,0 = 0, 16n 6 N + 1,

v0,t = ft, vN+1,t = 0, t > 0,

(11)
where f = (f0, f1, . . .) is a boundary control, fi ∈ C, i = 0, 1, 2, . . .. The
solution to (11) is denoted by vf .

The operator corresponding to a finite Jacobi matrix we also denote by
AN : RN 7→ RN , it is given by

(Aψ)1 = b1ψ1 + a1ψ2, n = 1,

(Aψ)n = anψn+1 + an−1ψn−1 + bnψn, 2 6 n 6 N − 1,

(Aψ)N = aN−1ψN−1 + bNψN , n = N,

Denote by {λk}Nk=1 roots of the equation pN+1(λ) = 0, it is known [1]
that they are real and distinct. We introduce the vectors φn ∈ RN by the
rule φni := pi(λn), n, i = 1, . . . , N, and define the numbers ρk by

(φk, φl) = δklρk, k, l = 1, . . . , N,

where ( · , · ) is a scalar product in RN , and δkl is a Kronecker symbol.

Definition 1. The set of pairs

{λk, ρk}Nk=1

is called spectral data of the operator AN .

The spectral function of operator AN is introduced by the rule

ρN (λ) :=
∑

{k |λk<λ}

1

ρk
.

The results of [2, Sections 4.5, 5.5] imply that in the limit circle case
dρN → dρ∞, h ∗−weakly as N →∞, where

h = − lim
n→∞

qn(0)

pn(0)
. (12)
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The outer space of dynamical systems (11), (2) is FT := CT , FT 3
g, f = (f0, f1, . . . , fT−1) with the inner product (f, g)FT :=

∑T−1
n=0 figi.

The input 7−→ output correspondences in systems (11), (2) are realized
by response operators: RTN , R

T : FT 7→ CT defined by rules

(
RTNf

)
t

= vf1, t =
(
rN ∗ f·−1

)
t

=

t∑
s=0

rNs ft−1−s, t = 1, . . . , T,

(
RT f

)
t

= uf1, t = (r ∗ f·−1)t =

t∑
s=0

rsft−1−s, t = 1, . . . , T,

where rN = (rN0 , r
N
1 , . . . , r

N
T−1), r = (r0, r1, . . . , rT−1) are response vectors,

convolution kernels of response operators.
Let Tk(2λ) be Chebyshev polynomials of the second kind, i.e. they sat-

isfy {
Tt+1(λ) + Tt−1(λ)− λTt(λ) = 0,

T0(λ) = 0, T1(λ) = 1.

Proposition 1. The solution vf to system (11) and the response vector
rN admit representations

vfn,t =
∞∫
−∞

t∑
k=1

Tk(λ)ft−kφn(λ) dρN (λ), t ∈ N, n = 1, . . . N, (13)

rNt−1 =
∞∫
−∞
Tt(λ) dρN (λ), t ∈ N. (14)

Remark 1. The solution uf and response vector r corresponding to sys-
tem (2) with semi-infinite Jacobi matrix A admit representations (13), (14)
with dρN substituted by any dρ(λ) ∈MH and n ∈ N.

The inner space of dynamical system (11) is HN := CN , h ∈ HN ,
h = (h1, . . . , hN ), h,m ∈ HN , (h,m)HN :=

∑N
k=1 hkmk, v

f
·, T ∈ HN for

all T ∈ N. For the system (11) the control operator WT
N : FT 7→ HN is

defined by the rule

WT
Nf :=

(
vf1, T , . . . , v

f
N, T

)
.

The set
UT := WT

NFT =
{(
vf1, T , . . . , v

f
N, T

) ∣∣ f ∈ FT}
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is called reachable. For the system (2) the control operatorWT : FT 7→ HT
is introduced by

WT f :=
(
uf1, T , . . . , u

f
T, T

)
.

This operator admits the representation WT = WTJT :

WT=



a0 w1,1 w1,2 . . . w1,T−1
0 a0a1 w2,2 . . . w2,T−1
· · · · ·
0 . . .

∏k−1
j=1 aj . . . wk,T−1

· · · · ·
0 0 0 . . .

∏T−1
j=1 aj

 , JT=


0 0 0 . . . 1
0 0 0 . . . 0
· · · · ·
0 . . . 1 0 0
· · · · ·
1 0 0 0 0

 .

(15)
Everywhere below we substantially use the finiteness of the speed of

wave propagation in systems (11), (2), which implies the following remark.

Remark 2. Solution vf to system (2) and solution uf to system (11)
satisfy

ufn, t = vfn, t, n 6 t 6 N.

WN = WN
N , rt = rNt , t = 0, . . . , 2N − 1.

The connecting operator for the system (11) CTN : FT 7→ FT is defined
via the quadratic form: for arbitrary f, g ∈ FT we set(

CTNf, g
)
FT :=

(
WT
Nf,W

T
Ng
)
HN =

(
vf·, T , v

g
·, T

)
HN

.

For the system (2) the connecting operator CT : FT 7→ FT is introduced
by the rule:(

CT f, g
)
FT :=

(
WT f,WT g

)
HT =

(
uf·, T , u

g
·, T

)
HT

. (16)

In [11,12] the following formulas were obtained.

Proposition 2. The matrix of the connecting operator CTN for systems
(11) and the matrix of the connecting operator CT for system (2) admit
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spectral representations

{CTN}l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρN (λ), l,m = 0, . . . , T − 1,

{CT }l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρ(λ), l,m = 0, . . . , T − 1,

in the last equality we can take any dρ(λ) ∈ MH . The following dynamic
representation valid if T 6 N :

CT = CTN , {CT }ij =
T−max {i,j}∑

k=0

r|i−j|+2k,

CT =


r0+r2+. . .+r2T−2 · . . . rT +rT−2 rT−1
r1+r3+. . .+r2T−3 · . . . rT−1+rT−3 rT−2

· · · · ·
rT−3+rT−1+rT+1 · r0+r2+r4 r1+r3 r2

rT +rT−2 · r1+r3 r0+r2 r1
rT−1 · r2 r1 r0

 (17)

We introduce matrices CT := JTC
TJT thus this matrix keeps the struc-

ture of CT but “is filled” from the upper left corner. Then we have

CT = (WT )
∗
WT .

§5. De Branges spaces for finite Jacobi matrices

By dρ we denote the spectral measure of A in the limit point case or
dρ∞,h with h defined in (12) in the limit circle case. According to [2] this
measure give rise to the Fourier transform F : l2 7→ L2(R, dρ), defined by
the rule:

(Fa)(λ) =

∞∑
n=0

akpk(λ), a = (a0, a1, . . .) ∈ l2,
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where pk(λ) is a solution to (7) satisfying Cauchy data p1(λ) = 1, p2(λ) =
λ−b1
a1

. The inverse transform and Parseval identity have forms:

ak =

∞∫
−∞

(Fa)(λ)pk(λ) dρ(λ),

∞∑
k=0

akbk =

∞∫
−∞

(Fa)(λ)(Fb)(λ) dρ(λ). (18)

We assume that T is fixed and f ∈ FT . Then for such control and for
λ ∈ C we have the following representation [11] for the Fourier transform
of the solution to (2) at t = T :(

Fuf·,T

)
(λ) =

T∑
k=1

Tk(λ)fT−k, λ ∈ C.

Now we introduce the linear manifold of Fourier images of states of dy-
namical system (2) at time t = T , i.e., the Fourier image of the reachable
set:

BTA:=FUT=
{(
FuJT f·,T

)
(λ) | JT f ∈FT

}
=

{
T∑
k=1

Tk(λ)fk | f ∈FT
}
. (19)

Note that BTA = CT−1[λ]. It would be preferable for us to use CT instead of
CT , although that leads to changing of some formulas comparing to [11,14].

We equip BTA with the scalar product defined by the rule:

[F,G]BT
A

:= (CT f, g)Ft , F,G ∈ BTA, (20)

F (λ) =

T∑
k=1

Tk(λ)fk, G(λ) =

T∑
k=1

Tk(λ)gk, f, g ∈ FT .

Evaluating (20) making use of (18) yields:

[F,G]BT
A

= (CT f, g)FT =
(
CTJT f, JT g

)
FT =

(
uJT f·,T , uJT g·,T

)
HT

=

∞∫
−∞

(FuJNf·,N )(λ)(FuJNg·,N )(λ) dρ∞, h(λ)=

∞∫
−∞

F (λ)G(λ) dρ∞, h(λ). (21)

Where the last equality is due to the finite speed of wave propagation in
(2), (11). In [12] the authors proved the following theorem.
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Theorem 5. The vector (r0, r1, r2, . . . , r2N−2) is a response vector for the
dynamical system (11) if and only if the matrix of connecting operator CN
defined by (16), (17) with T = N is positive definite.

This theorem shows that (21) is a scalar product in BTA. But we can say
even more [11].

Theorem 6. By dynamical system with discrete time (2) one can construct
the de Branges space by (19) As a set of functions it coincides with the
space of Fourier images of states of dynamical system (2) at time t = T
(or what is the same, states of (11) with N = T at the same time), i.e. the
Fourier image of a reachable set, and is the set of polynomials with real
coefficients of the order less or equal to T − 1. The norm in BTA is defined
via the connecting operator:

[F,G]BT
A

:= (CT f, g)FT , F,G ∈ BTA,

where

F (λ) =

T∑
k=1

Tk(λ)fk, G(λ) =

T∑
k=1

Tk(λ)gk, f, g ∈ FT .

The reproducing kernel has a form

JTz (λ) =

T∑
k=1

Tk(λ)(jzT )k,

where jzT is a solution to Krein-type equation

CT j
z
T =


T1(z)
T2(z)
·

TT (z)

. (22)

Note [10,12] that control JT jzT drives the system (2) to the special state
at t = T : (

WTJT j
z
T

)
i

=
(
WT
T JT j

z
T

)
i

= pi(z), i = 1, . . . , T.
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Thus the reproducing kernel in BTA is given by

JTz (λ) =

T∑
k=1

Tk(λ)(jzT )k =
(
CT j

λ
T , j

z
T

)
FT =

(
W ∗TWT j

λ
T , j

z
T

)
FT

=
(
WT j

λ
T ,WT j

z
T

)
HT =

T∑
n=1

pn(z)pn(λ).

Remark 3. Due to the finite speed of wave propagation in (2), (11) (cf.
Remark 2) we can use the system (11) with N = T and use operator CTT
and the measure dρT (λ) in formulas for the scalar product (21).

5.1. Remark on canonical systems and Jacobi matrices. Let 2× 2
matrix function 0 6 H = H∗ ∈ L1,loc([0, L);R2×2) be a Hamiltonian,

define the matrix J =

(
0 1

− 1 0

)
and the vector Y =

(
Y1
Y2

)
be solution

to the following Cauchy problem:{
−J dYdx = λHY,

Y (0) = C,
(23)

for C ∈R2, C 6= 0. Without loss of generality we assume that trH(x)=1.
Then the function Ex(λ) = Y1(x, λ) + iY2(x, λ) is a Hermite–Biehler func-
tion (EL(λ) makes sense if L < ∞), it is called de Branges function of
the system (23) since one can construct de Branges space based on this
function. On the other hand, EL serves as an inverse spectral data for the
canonical system (23). The main result of the theory [8,17] says that every
Hermite-Biehler function satisfying some additional conditions comes from
some canonical system.

Remark 4. The Jacobi matrices are particular examples of canonical
system (23). The Hamiltonian H(x) defined on the interval (0, L) related
to the matrix A is piecewise constant and has a special structure [17].
Moreover, the Jacobi matrix A is in the limit circle case if and only if
L < +∞.

This remark leads to the following question: is it possible to introduce
the de Branges spaces by the method from Section 5 for semi-infinite Jacobi
matrices without passing to canonical systems? If the answer is “yes” then
this method should “feel” the difference between limit point and limit circle
cases for Jacobi operator A, and the norm in the space can be expressed
in the dynamic terms as in finite-dimensional situation.
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§6. Properties of connecting operator and Hilbert
spaces of functions associated with semi-infinite

Jacobi matrices.

6.1. Operator C. We consider the matrix C formally defined by the
product of two matrices: C = (W )

∗
W (cf. (15), (16)), where

W =



a0 w1,1 w1,2 . . .
0 a0a1 w2,2 . . .
· · · ·
0 . . .

∏k−1
j=1 aj . . .

· · · ·
0 0 0 . . .


and

C =


r0 r1 r2 . . . . . .
r1 r0 + r2 r1 + r3 . . . . . .
r2 r1 + r3 · · ·
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

 , {C}ij =

max {i,j}−1∑
k=0

r|i−j|+2k.

In our approach to de Branges spaces the finite matrices CT plays an
important role since they are used in the scalar product (20). We suggest
that matrix C should play the same role in semi-infinite case.

The matrix CT is connected with the classical Hankel matrix ST by the
following rule:

CT = ΛTST (ΛT )
∗
.

Proposition 3. The entries of the matrix ΛT ∈ RT×T are given by

ΛT = {αij} =


0 if i < j,

0 if i+ j is odd,
Dj

i+j
2

(−1)
i+j
2 +j otherwise

where Dk
n are binomial coefficients. The entries of the response vector are

related to moments by the rule:T1(λ)
. . .

TT (λ)

 = ΛT


1
λ
. . .
λT−1

 ,


r0
r1
. . .
rT−1

 = ΛT


s0
s1
. . .
sT−1

 . (24)
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We rewrite the Krein equation (22) in terms of ST : taking into account
(24) we get that

STΛ∗T j
λ
T =


1
λ
. . .
λT−1

.
And introducing the vector fλT := Λ∗T j

λ
T we come to the equivalent form

of (22):

ST f
λ
T =


1
λ
. . .
λT−1

. (25)

Therefore the reproducing kernel in BTA is represented by

JTz (λ)=
(
CT j

λ
T , j

z
T

)
FT =


 1

. . .
λT−1

,Λ∗T jzT

FT

=

T−1∑
n=0

fzT,kλ
k.

Krein equations in the form (22) and in the form (25) demonstrate the
importance of the knowledge of the invertability properties of operators
ST and CT when T goes to infinity. The Theorem 3 answers this question
for S, below we answer the same question for C.

We introduce the notation:

βT := min
{
γk | γk is an eigenvalue of CT , k = 1, . . . , T

}
.

Then we can formulate the “dynamic” analog of Theorem 3.

Theorem 7. If the moment problem associated with sequence {sk} is in-
determinate (the matrix A is in the limit circle case) then

lim
T→∞

βT >

 1∫
−1

l−1(x)
dx√

1− x2

−1 , l−1(z) =

∞∑
k=0

|pk(z)|2. (26)

Proof. We use the variational principal which says that

βT = min
{

(CT f, f)FT | ‖f‖2 = 1
}
.

Passing to reciprocal gives
1

βT
= max

{
‖f‖2 | (CT f, f)FT = 1

}
. (27)
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Take functions F,G ∈ BTA, then

F (λ) =

T∑
k=1

fkTk(λ), G(λ) =

T∑
k=1

gkTk(λ)

for some f, g ∈ FT . Since Tk(λ) are Chebyshev polynomials of the second
kind, they are orthogonal with respect to the measure

dν(λ) =
χ(−1,1)(λ)
√

1− λ2
dλ,

then

‖f‖2 =

T∑
k=1

|fk|2 =

1∫
−1

|F (λ)|2 dλ√
1− λ2

,

(CT f, g)FT =

∫
R

F (λ)G(λ) dρ(λ), dρλ ∈MH .

Let us take another representation of F (λ):

F (λ) =

T∑
k=1

ckpk(λ).

Then for such F we have that∫
R

|F (λ)|2 dρ(λ) = (CT f, f)FT =

T∑
k=1

|ck|2.

Thus we can rewrite (27) as:

1

βT
= max


1∫
−1

T∑
i=1

cipi(λ)

T∑
j=1

cjpj(λ)
dλ√

1− λ2
∣∣∣ T∑
k=1

|ck|2 = 1

 . (28)

Introducing the notation kij :=
1∫
−1
pi(λ)pj(λ) dλ√

1−λ2
, we rewrite (28) as

1

βT
= max


T∑

i,j=1

kijcicj |
T∑
k=1

|ck|2 = 1

 . (29)
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Define the matrix K := {kij}Ti,j=1, being a Gram matrix, K is positive.
The latter implies that the right hand side of (29) is monotonically increas-
ing, and consequently, βT is monotonically decreasing as T → ∞, which
guarantees the existence of the limit in (26). Then we proceed with the
estimate:

1

βT
6 TrK =

1∫
−1

T∑
k=1

|pk(λ)|2 dλ
√

1− λ2
6

1∫
−1

l−1(λ) dλ√
1− λ2

.

The latter inequality yields the statement of the theorem. �

Remark 5. We note that the characterization limit point/limit circle in
terms of βT as in the Theorem 3 does not hold. The simple example of
free Jacobi operator, i.e. when ak = 1, bk = 0, k = 1, 2, . . . confirms this.
In this case it is not hard to see that CT = IT is an identity operator and
consequntly, βT = 1 for any N .

We introduce the notation:

γT = max
{
γk | γk is an eigenvalue of CT , k = 1, . . . , T

}
.

Lemma 1. If there exist such a constant M ∈ R that γT 6 M for all
T = 1, 2, . . ., then operator A is in the limit point case (the moment problem
associated with the sequence {sk} is determined).

Proof. The condition of the statement implies that the spectrum of C−1T
is contained in [ 1

M ,+∞). Then we can estimate the quadratic form(
(ST )

−1
ξ, ξ
)

=
(

(CT )
−1

ΛT ξ,ΛT ξ
)
>

1

M
(ΛT ξ,ΛT ξ) , ξ ∈ FT . (30)

Choosing ξ = e1 = (1, 0, . . . , 0) we observe that due to (24) we have that

ΛT


1
0
·
0

 =


T1(0)
T2(0)
·

TT (0)

 . (31)

Since it is known that

T2n−1(0) = (−1)n−1, T2n(0) = 0, (32)

using (30), (31), (32), we come to the estimate(
(ST )

−1
e1, e1

)
>

1

M

T

2
.
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The latter inequality means that the maximal eigenvalue of S−1T tends to
infinity when T goes to infinity, which in turn implies that the minimal
eigenvalue of ST tends to zero when T goes to infinity. That yields the
limit point case due to Theorem 3. �

The matrix C = {cn,m}∞n,m=0 give rise to the (formally defined) operator
C in l2:

(Cf)n :=

∞∑
m=0

cnmfm, f ∈ l2.

Then without any a’priory assumptions on cnm, only the quadratic form

C[f, f ] :=
∑
m,n>0

cnmfmfn

is well-defined on the domain D (6).
We always assume the positivity condition∑

m,n>0

cnmfmfn > 0, f ∈ D,

which guarantees [14] the existence Jacobi matrix A and the (not necessar-
ily uniquely defined) measureM ∈MH which solves the moment problem
(3). The following result is valid.

Theorem 8. The quadratic form C[ , ] is closable in l2 if one of the fol-
lowing occurs:

• a) If the Jacobi operator A is in the limit circle case (the moment
problem associated with sequence {sk} is indetermined)

• b) If operator A is bounded, i.e., for all k = 1, 2, . . ., |ak|, |bk| 6 c
for some c ∈ R+ and its spectral measure is absolutely continuous
with respect to Lebesgue measure.

Proof. Consider the operator B : l2 7→ L2(R,M), M ∈ MH , acting by
the rule

Bf :=
∑
k

fkTk(λ),

with the domain D. In view of (20) the relationship between B and C[, ]
is of the form

C[f, f ] = ‖Bf‖2L2(R,M), f ∈ D.
By definition, the form C[ , ] is closable in l2 if and only if the operator B
is closable.
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We need to show that for the sequence D 3 f (n) → 0 in l2 such that
and Bf (n) → F in L2(R,M) we necessarily have that F = 0.

In the limit circle case we use the existence of the holomorphic kernel
(9), which gives that the limit function is analytic: F ∈ E . Indeed the
sequence fn ∈ D, so E 3 Bf (n) → F in L2(R,M) then (see the end of the
Section 3) F ∈ E . Alternatively, to get the same result, we can pass to the
limit in (10). Since f (n) → 0 in l2, we have that corresponding

Bf (n) =: F (n) → 0 in L2

(
−1, 1;

dλ√
1− λ2

)
.

The latter immediately yields F = 0 in L2(−1, 1; dρ), so F = 0 on (−1, 1)
and thus being analytic in C, F = 0 in C. This implies the closability of
the operator B and of the quadratic form C[ , ].

In the case of bounded Jacobi matrix A we can assume that ‖A‖ < 1
(otherwise considering the operator αA with appropriate α). In this case
we have that the solution of the moment problem is unique and denoted by
M . The support of theis measure is bounded: suppM ⊂ (−1, 1). Repeating
the above arguments we get that for the limit function F , which is in this
case is not necessarily analytic, we also have that F = 0 in L2(−1, 1; dρ)
and thus F = 0 almost everywhere on (−1, 1). But then we immediately
obtain that F = 0 in L2(R,M) since the support of M ⊂ (−1, 1) and
M is absolutely continuous with respect to dx. And thus C[ , ] and B are
closable. �

Now we assume the sequence s0, s1, . . . is indeterminate (the matrix A
is in the limit circle case). By analogy with (19) we introduce the linear
manifold

B∞A :=

{ ∞∑
k=1

fkTk(λ)
∣∣ C[f, f ] <∞

}
.

The scalar product in B∞A is given by the rule

[F,G]B∞
A

:= C[f, g] =

∞∫
−∞

F (λ)G(λ) dM, M ∈MH ,

F,G ∈ B∞A , F (λ) =

∞∑
k=1

fkTk(λ), G(λ) =

∞∑
k=1

gkTk(λ).
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The reproducing kernel is given by (9):

J∞z (λ) =

∞∑
n=1

pn(z)pn(λ).

The conditions of Theorem 1 verifying B∞A is a de Branges space are triv-
ially checked.
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