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ON FINDING BIFURCATIONS FOR

NONVARIATIONAL ELLIPTIC SYSTEMS BY

THE EXTENDED QUOTIENTS METHOD

Abstract. We develop a new method for �nding bifurcations for
nonlinear systems of equations based on a direct �nding of bifurca-
tions through saddle points of extended quotients. The method is
applied to �nd the saddle-node bifurcation point for system of el-
liptic equations with the nonlinearity of the general convex-concave
type. The main result justi�es the variational formula for the de-
tection of the maximal saddle-node type bifurcation point of stable
positive solutions. As a consequence, a precise threshold value sep-
arating the interval of the existence of stable positive solutions is
established.
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with respect and honor

�1. Introduction

This paper develops a method of detecting bifurcation introduced in
[20, 25], which provides a direct way of �nding bifurcations by identifying
saddle points of the corresponding extended Rayleigh quotient. We develop
the method by �nding saddle-node bifurcation point for the following sys-
tem of equations:

−∆ui = ai(x)uqii + λgi(x, u), x ∈ Ω,

ui > 0, x ∈ Ω,

ui|∂Ω = 0, i = 1, . . . ,m.

(1.1)

Here qi ∈ (0, 1), i = 1, . . . ,m, Ω is a bounded domain in Rd with ∂Ω ∈ C2,
d > 1, λ ∈ R, u := (u1, . . . , um). For i = 1, . . . ,m, ai ∈ L∞(Ω), ai > 0
in Ω, ai(·), gi(·, u), ∀u ∈ Rm are H�older continuous functions in Ω, and
gi(x, ·) ∈ C1(Rm,R). Furthermore,

Key words and phrases: system of equations, non-variational problem, saddle-node
bifurcation point, Rayleigh quotient, stable solutions.
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(g1) : ∃c0, c1 > 0 and ∃γ ∈ (1,+∞) such that

0 6 gi(x, u) 6 c0|u|+ c1|u|γ , gi(x, u) 6≡ 0, x ∈ Ω, u ∈ Rm+ , i = 1, . . . ,m;

(g2) : ∃c2, c3 > 0 and ∃γ0 ∈ (1, γ] such that

(gi,ui(x, u)u2
i − gi(x, u)ui) > c2|u|γ0+1 + c3|u|γ+1, x ∈ Ω, u ∈ Rm+ ;

(g3) : ∃c4, c5 > 0 such that

|gi,ui(x, u)| 6 c4 + c5|u|γ−1, x ∈ Ω, u ∈ Rm+ .
Throughout this paper the summation convention is in place: we sum
over any index that appears twice. A particular example of functions gi,
i = 1, . . . ,m that meet condition (g1) − (g3) is as follows: gi = bi(x)ui +
b(x)

∑m
j=1 u

γ
j , x ∈ Ω, u ∈ Rm+ , i = 1, . . . ,m with γ0 = γ > m, and

b, bi ∈ L∞(Ω), bi(x) > 0, i = 1, . . . ,m, b(x) > c in Ω for some constant
c > 0.

Hereafter, we denote W := (
◦
W 1

2 (Ω) ∩ Lγ+1(Ω))m, Fi(u, λ) := −∆ui −
ai|ui|qi−1ui − λgi(x, u), i = 1, . . . ,m, F (u, λ) = (F1(u, λ), . . . , Fm(u, λ))T ,
u ∈ W, λ ∈ R. (W)∗ means the dual space of W. A point (u, λ) ∈ W ×R,
ui > 0 in Ω, i = 1, . . . ,m is called a weak solution of (1.1) if F (u, λ) = 0
holds true in (W)∗.

De�ne

S := {u ∈ C1(Ω) | ∃c(u) > 0, u > c(u) dist(x, ∂Ω) in Ω, u|∂Ω = 0}.
We show below that the map F (·, λ) :W →W∗ is Fr�echet di�erentiable on
Sm, ∀λ ∈ R (see Proposition 2.1 below). We denote by Fu(u, λ) the Fr�echet
derivative of F (u, λ) at u ∈ Sm. A solution uλ ∈ Sm of (1.1) is said to be
stable if λ1(Fu(uλ, λ)) > 0, and asymptotically stable if λ1(Fu(uλ, λ)) > 0,
cf. [8, 11]. Hereafter, λ1(Fu(u, λ)), u ∈ Sm denotes the �rst eigenvalue of
the operator Fu(u, λ)(·), that is,

λ1(Fu(u, λ)) := inf
φ∈W

∫
|∇φ|2 − qi

∫
ai(ui)

qi−1|φi|2 − λ
∫
gi,uj (x, u)φjφi∫

|φ|2
.

Introduce

Ws := {u ∈ W ∩ Sm : λ1(Fu(u, τ)) > 0, τ = R(u, u)}.
For a de�nition of the functional R(u, u) see below (1.4). We call a solu-

tion (û, λ̂) ∈ Ws × R of (1.1) the saddle-node bifurcation point in Ws (or,
equivalently, fold, turning point) (cf. [26, 27]) if the following is ful�lled:

(i) the nullspace N(Fu(û, λ̂)) of the Fr�echet derivative Fu(û, λ̂) is not
empty; (ii) there exists ε > 0 and a neighborhood U1 ⊂ W of û such
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that for any λ ∈ (λ̂, λ̂ + ε) equation (1.1) has no solutions in Ws ∩ U ;
(iii) for each λ ∈ (λ̂−ε, λ̂), the equation has precisely two distinct solutions
inWs∩U . This de�nition corresponds to the solution's curve turning back

at the bifurcation value λ̂. The solution's curve turning forward is de�ned

similar. In the case only (i)�(ii) are satis�ed, we call (û, λ̂) the quasi-saddle-
node bifurcation point (or saddle-node type bifurcation point, cf. [25]) of
(1.1) in Ws. A quasi-saddle-node bifurcation point (u∗, λ∗) is said to be

maximal inWs if λ̂ 6 λ∗ for any other quasi-saddle-node bifurcation point

(û, λ̂) of (1.1) in Ws.
A model example for (1.1) in the scalar case, i.e., m = 1, is the Ambro-

setti�Brezis�Cerami problem [2] with concaveâ��convex nonlinearity

−∆u = uq + λuγ , u > 0 in Ω, u|∂Ω = 0, (1.2)

where 0 < q < 1 < γ. It is why the nonlinearity in (1.1) can be considered
to be of the convex-concave type. From [2] it follows that there exists an
extremal value λ∗ > 0 such that for any λ ∈ (0, λ∗], (1.2) has a stable
positive solution uλ, while for λ > λ∗, (1.2) does not admit weak positive
solutions. According to [2], the solution uλ for λ ∈ (0, λ∗) is obtained by
super-subsolution methods, while uλ∗ is shown to exist as a limit point
of (uλ). Unfortunately, this method is not easily adaptable to systems of
equations like (1.1). Indeed, the super-sub solution method for a system of
equations di�ers considerably from that which is used for a scalar equation.

In general cases, system (1.1) is not a variational or Hamiltonian. It
should be noted that in contrast to the extensive literature concerning
the existence of solutions for variational and Hamiltonian systems (see the
survey [15]), relatively little research is devoted to nonvariational and non-
Hamiltonian systems of equations (see, e.g., [1,5,7,10,35,36] and references
therein).

The �nding of bifurcations of solutions to equations poses a more com-
plex challenge, requiring a comprehensive approach that considers both
the �nding of solutions themselves and the analysis of the structure of
the family of solutions. This problem is still quite challenging even when
dealing with scalar equations. The complete answer to the question on
the existence of the saddle-node bifurcation point and the exact shape of
the positive solution curves for instance of the scalar equation (1.2) was
obtained only in radially symmetric solutions [28, 31, 34]. An additional
obstacle encountered when studying problems (1.1) and (1.2) is the pres-
ence of singular derivatives of the right-hand sides. Speci�cally, standard
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methods (see [8,9,26,27]) are not readily applicable for verifying that the

solution's curve turns back at (û, λ̂), due to the di�culties in testing con-
ditions for the second derivative of F (u, λ).

The existence of positive solutions and multiplicity results were stud-
ied only in some special cases of system (1.1) in the variational form (see,
e.g., [18, 19, 25, 36] and references therein). A recent study [25] answered
the question of whether positive solutions of system (1.1) in the variational
form have a quasi-saddle-node bifurcation point. However, in the general
cases of system (1.1), to the best of our knowledge, no studies have been
conducted on the existence of non-negative solutions and saddle-node bi-
furcation points.

Let us state our main results. Observe that by the de�nition the quasi-
saddle-node bifurcation point (u, λ) ∈ Ws × R of (1.1) should satisfy the
system of equations {

F (u, λ) = 0,

Fu(u, λ)(v) = 0,
(1.3)

with some v ∈ N(Fu(u, v)). To analyze this system, following [25] we
introduce the extended Rayleigh quotient (extended quotient for short) as-
sociated with (1.1)

R(u, v) :=

∫
(∇ui,∇vi) −

∫
aiu

qi
i vi∫

gi(x, u)vi
, u ∈ Ws, v ∈ Σ(u). (1.4)

Here Σ(u) := {v ∈ W :
∫
gi(x, u)vi 6= 0} for u ∈ Ws. Clearly, (g1) entails

Sm ⊂ Σ(u), and thus, Ws ⊂ Σ(u). Hence, R(u, u) is well-de�ned for
u ∈ Ws. Observe, for u ∈ Ws, v ∈ Σ(u),

λ = R(u, v),

Rv(u, v) = 0,

Ru(u, v) = 0

⇔

{
F (u, λ) = 0,

Fu(u, λ)(v) = 0,

that is, the set of quasi-saddle-node bifurcation points of (1.1) is contained
in the set of critical points of R(u, v) on Ws × Σ(u).

In our approach, the following minimax formula plays a major role
(cf. [25])

λ∗s := sup
u∈Ws

inf
v∈Σ(u)

R(u, v). (1.5)

The main result of the work is as follows

Theorem 1.1. Assume (g1)�(g2), qi ∈ (0, 1), i = 1, . . . ,m.
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(1o): Then 0 6 λ∗s < +∞.

(a) : For λ = λ∗s, there exists a weak positive solution u∗s ∈
(C1,α(Ω))m ∩W of system (1.1).

(b) : For any λ > λ∗s, system (1.1) has no stable weak positive

solutions.

(2o): Assume in addition that (g3) is satis�ed, γ < 2∗ − 1, and qi <
(d+2)
2(d−2) , i = 1, . . . ,m if d > 6.

Then 0 < λ∗s < +∞, (u∗s, λ
∗
s) is a maximal quasi-saddle-node

bifurcation point of (1.1) in Ws. Moreover, u∗s is a stable solution

of (1.1).

Here 2∗ = 2d/(d− 2) if d > 3, and 2∗ = +∞ if d = 1, 2.

Remark 1.1. Statement (1o) can be supplemented as follows. There
exists λ ∈ [0, λ∗s] such that (1.1) has a stable positive weak solution
uλ ∈ (C1,α(Ω))m ∩ W. Indeed, we will see below that (1.1) has a stable
positive weak solution at least for λ = 0.

The following can also be considered in conjunction with the value (1.5)

λ∗as := sup
u∈Was

inf
v∈Σ(u)

R(u, v). (1.6)

Here Was := {u ∈ W ∩Sm : λ1(Fu(u, τ)) > 0, τ = R(u, u)}. It easily see
that λ∗as 6 λ∗s. For (1.6), it can be obtained a result similar to Theorem
1.1. In particular, we have the following

Theorem 1.2. Assume (g1)�(g3), qi ∈ (0, 1), i = 1, . . . ,m, and qi <
(d+2)
2(d−2) , i = 1, . . . ,m if d > 6. Then 0 < λ∗as < +∞, and

(1) : For λ = λ∗as, system (1.1) has a stable weak positive solution

u∗as ∈ (C1,α(Ω))m∩W. Furthermore, (u∗as, λ
∗
as) is a maximal quasi-

saddle-node bifurcation point of (1.1) in Was.

(2) : For any λ > λ∗as, (1.1) has no asymptotically stable weak posi-

tive solutions.

(3): There exists a sequence of asymptotically stable weak positive

solutions uλn ∈ (C1,α(Ω))m ∩W of (1.1) with λ = λn ∈ (0, λ∗as),
n = 1, . . . such that uλn → u∗as in W and λn → λ∗as as n→ +∞.

Remark 1.2. It is natural to expect that u∗s = u∗as, λ
∗
s = λ∗as and (u∗s, λ

∗
s)

is indeed a saddle-node bifurcation point of (1.1) inWs. It should be noted
that assertions (1o), (b) and (2) of Theorems 1.1 and 1.2 do not necessarily
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mean that (1.1) has no positive solutions for λ > λ∗s. Furthermore, such a
behavior is possible if (1.1) has an S-shaped bifurcation curve (see [4,6,17]).

Remark 1.3. The literature on the existence of bifurcations usually deals
with �nding saddle-node bifurcation points for equations rather than quasi-
saddle-node bifurcations (see, e.g., [26,27]). However, in numerical methods
and applications, bifurcations are typically detected by �nding a point on
the solutions curve where operator Fu(uλ, λ) is singular, thus �nding actual
quasi-saddle-node bifurcation (see, e.g., [29]).

Remark 1.4. We believe that the variational formula (1.5) has a potential
to provide a useful tool in further analysis of saddle-node bifurcation points
and in construction of numerical methods for �nding them (cf. [21�24,32]).

The rest of the paper is organised as follows. Section 2 presents prelim-
inaries. In Section 3, we prove Theorems 1.1, 1.2. In Appendix, we present
a proof of a version of Ekeland's principal for smooth functional.

�2. Preliminaries

We use the standard notation Lp := Lp(Ω) for the Lebesgue spaces,

1 6 p 6 +∞, and denote by ‖ · ‖p the associated norm. By
◦
W 1

2 :=
◦
W 1

2 (Ω)
we denote the standard Sobolev space, endowed with the norm ‖u‖1,2 =

(
∫
|∇u|2)1/2. Hereafter, we denote W :=

◦
W 1

2 ∩ Lγ+1, d(x) := dist(x, ∂Ω).
For δ > 0, de�ne S(δ) := {u ∈ S | u(x) > δd(x) in Ω}, S(0) := S.

Clearly, S(δ), ∀δ > 0 is an open subset in C1 := C1(Ω). Let Y be a
topological space such that Sm(δ) ⊂ Y . The set Sm(δ) endowed with
topology of Y we denote by SmY (δ). L(W,W∗) denotes the Banach space
of bounded linear operators from W into W∗.

Proposition 2.1. Assume (g1)�(g3). Let λ ∈ R, 0 < qi < 1, i = 1, . . . ,m.

Then Fi( · , λ) : W → W∗ is Fr�echet di�erentiable at any u ∈ Sm, and

Fi( · , λ) ∈ C1(SmC1 ,L(W,W∗)). Furthermore, if in addition qi 6 (γ̄−1)/2,
where γ̄ = max{γ, 2∗−1}, then Fi,u( · , λ) ∈ C(SmW(δ),L(W,W∗)), ∀δ > 0.

Proof. We develop an approach proposed in [2]. First, we verify the asser-
tion for the map Q(u) := aiu

qi , u ∈ S. Using the estimate u(x) > c(u)d(x)
in Ω and H�older's inequalities we derive∣∣∣ ∫ aiuqi−1φψ dx

∣∣∣= ∣∣∣ ∫ aiuqi (φ
u

)
ψ dx

∣∣∣6 ‖ai‖∞
c(u)

‖u‖qp · ‖
φ

d(·)
‖2 · ‖ψ‖γ+1,

u ∈ S, ∀φ, ψ ∈ C∞0 (Ω),
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where p = 2qi(γ+1)/(γ−1). By the Hardy inequality, ‖φ/d(·)‖2 6 C‖φ‖1,2,
∀φ ∈ C∞0 (Ω), and thus, we derive∣∣∣ ∫ aiu

qi−1φψ dx
∣∣∣ 6 C‖ai‖∞

c(u)
‖u‖qp‖φ‖1,2‖ψ‖γ+1,

u ∈ S, ∀φ, ψ ∈ C∞0 (Ω),

(2.1)

where C ∈ (0,+∞) does not depend on u, φ, ψ. This implies that Q( · ) :
W → W ∗ is Fr�echet di�erentiable at any u ∈ S. In the same manner we
can see that Qu(·) ∈ C(SC1 ,L(W,W ∗)).

Let us prove the second part for Q(·). For simplicity we assume that
γ̄ = γ. Let δ > 0. Suppose un, u ∈ S(δ), n = 1, . . ., un → u in Lγ+1 as
n→ +∞. This implies that there is ū ∈ Lγ+1 and a subsequence (unk)∞k=1

such that |unk |, |u| 6 ū in Ω. Indeed, since ‖un − u‖γ+1 → 0, for every
k ∈ N, there exists nk ∈ N such that ‖unk − u‖γ+1 6 1

2k
. Consider the

pointwise limit ū := |u|+
∑∞
k=1 |unk−u|. By Beppo Levi's lemma ū ∈ Lγ+1,

and thus, Minnowski's inequality yields

‖ū‖γ+1 6 ‖u‖γ+1 +

∞∑
k=1

‖unk − u‖γ+1 6 ‖u‖γ+1 + 1.

Moreover, ū > |u|+ |unk − u| > |unk |, ∀k ∈ N.
Hence, uqi−1

nk
d(x) 6 δ−1ūqi in Ω, k = 1, . . ., and therefore, Lebesgue's

dominated convergence theorem yields uqi−1
nk

d(x)→ uqi−1d(x) in L(γ+1)/qi

as k → +∞. Similar to (2.1) we have∣∣∣ ∫ ai(u
qi−1
nk
−uqi−1)φψ dx

∣∣∣6C‖(uqi−1
nk
−uqi−1)d(·)‖qip/qi‖φ‖1,2‖ψ‖γ+1,

∀φ, ψ ∈W, (2.2)

for some C < +∞ which does not depend on u, unk ∈ S, φ, ψ ∈ (W )∗.
Observe, the assumption qi 6 (γ − 1)/2 implies p 6 γ + 1. Hence,

‖(uqi−1
nk
− uqi−1)d( · )‖p/qi → 0

as k → +∞, and thus, Qu( · ) ∈ C(SW (δ),L(W,W ∗)).
The proof of the assertions of the proposition for the remaining terms

in Fi( · , λ) is similar. The only remark we wish to make is that condition
(g3) must be considered when proving the assertions for Gi(u) := gi(x, u),
u ∈ Sm. �

Proposition 2.2. If u ∈ W is a weak solution to (1.1), then u ∈ Sm.
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Proof. Note that (1.1) implies that −∆ui > 0, i = 1, . . . ,m, and thus, by
the maximum principles for the elliptic problems, ui > 0 in Ω, i = 1, . . . ,m.
The standard bootstrap argument and Sobolev's embedding theorem entail
that ui ∈ L∞(Ω), i = 1, . . . ,m. This by the regularity results for elliptic
problems [16,30] implies that ui ∈ C1,α(Ω) for any α ∈ (0, 1), i = 1, . . . ,m.
Moreover, since ai(·) and gi(x, uλ(x)), i = 1, . . . ,m are H�older continuous
functions in Ω, the Schauder estimates and the Hopf boundary maximum
principle [16] imply that uλ ∈ (C2(Ω))m and min

x′∈∂Ω
|∂ui(x′)/∂ν(x′)|>0,

i = 1, . . . ,m. Hence we get that u > c(u) dist(x, ∂Ω) in Ω for some
c(u) > 0, and thus, u ∈ Sm. �

Let i = 1, . . . ,m. By Brezis�Oswald's result [3] there exists a unique

solution wi ∈
◦
W 1

2 (Ω) ∩ C1,α(Ω), α ∈ (0, 1) of{
−∆w =aiw

qi in Ω,

w|∂Ω = 0.
(2.3)

By the assumption ai(·) is a H�older continuous function in Ω, and hence,
by the Schauder estimates (see, e.g., [16]), wi ∈ C1(Ω) ∩ C2(Ω). Further-
more, the strong maximum principles for the elliptic problems imply that

min
x′∈∂Ω

∂wi(x
′)

∂ν(x′)
> 0, where ν(x′) denotes the interior unit normal at x′ ∈ ∂Ω,

see, e.g., Lemma 3.4 in [16]. Thus, wi ∈ S.
Moreover, w := (w1, . . . , wm) is a stable solution of (1.1) with λ =

0, i.e., w ∈ Ws. Indeed, from Proposition 2.1 it follows that F (w, 0) ∈
C1(SmC1 ;L(W,W∗)), and therefore, λ1(Fu(w, 0)) is well de�ned. It is not
hard to show that w is a minimizer of

E(v) :=

(
1

2

m∑
i=1

∫
|∇vi|2 −

1

q + 1

∫
ai|vi|q+1

)
on (

◦
W 1

2 )m,

that is, E(w) = inf
v∈(

◦
W 1

2 )m
E(v). In view of that E(v) is a strong convex

functional, this means that

λ1(Fu(w, 0)) > 0. (2.4)

Lemma 2.1. Assume that u0 ∈ Ws is such that

−∞ < λ0 := inf
v∈Σ(u0)

R(u0, v) < +∞.

Then u0 is a weak solution of (1.1) for λ = λ0.
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Proof. Let vk ∈ Σ(u0), k = 1, . . ., and

λk ≡ R(u0, vk)→ inf
v∈Σ(u0)

R(u0, v) ≡ λ0 as k → +∞.

Since R(u, v) = R(u, sv), ∀s ∈ R \ 0, ∀v ∈ Σ(u), ∀u ∈ Ws, we may assume
that ∫

gi(x, u
0)vki = 1, k = 1, . . . . (2.5)

Calculate

Rv(u0, vk)(ξ) =

∫
(∇u0

i ,∇ξi)−
∫
ai(u

0
i )
qiξi −R(u0, vk)

∫
gi(x, u

0)ξi∫
gi(x, u0)vki

,

Rvv(u0, vk)(ξ, ζ) =

−
(∫

(∇u0
i ,∇ξi)−

∫
ai(u

0
i )
qiξi − λk

∫
gi(x, u

0)ξi
)
·
∫
gi(x, u

0)ζi

(
∫
gi(x, u0)vki )2(∫

(∇u0
i ,∇ζi)−

∫
ai(u

0
i )
qiζi−λk

∫
gi(x, u

0)ζi
)
·
∫
gi(x, u

0)ξi

(
∫
gi(x, u0)vki )2

, ζ, ξ∈W.

Let φ ∈ W, ‖φ‖W = 1. Using (2.5) and the H�older and Sobolev inequalities
one can see that∣∣∣ ∫ (gi(x, u

0)(vki + τφi)
∣∣∣ =
∣∣∣1 + τ

∫
gi(x, u

0)φi

∣∣∣ > 1− a0|τ |, (2.6)

where a0 ∈ (0,∞) does not depend on φ and k = 1, . . . . Hence vk + τφ ∈
Σ(u0) for any k = 1, . . . and τ such that |τ | < τ0 := 1/a0.

By (2.6) and (g1), we have

‖Rvv(u0, vk + τφ)‖(W×W)∗ =
2

|
∫
gi(x, u0)(vki + τφi)|2

(2.7)

× sup
ξ,ζ∈W

|
(∫

(∇u0
i ,∇ξi)−

∫
ai(u

0
i )
qiξi−λ̃k

∫
gi(x, u

0)ξi

)
·
∫
gi(x, u

0)ζi|

‖ξ‖W‖ζ‖W

6
2

(1−a0|τ |)2

(
m∑
i=1

‖ −∆u0
i−ai(u0

i )
qi−λ̃kgi(x, u0)‖W∗

)
‖u0‖W

6
C0

(1− a0|τ |)2
,
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where C0∈(0,∞) does not depend on k=1, . . .. Here λ̃k :=R(u0, vk+τφ),
k = 1, . . . which as it is easy to see are bounded. We thus may apply
Theorem 4.1 to the functional G(v) := R(u0, v) de�ned in the open set
V := Σ(u0) ⊂ W. Indeed, it is easily seen that G ∈ C2(Σ(u0)), and (2.7)
implies (4.2), while by (2.6) there holds (4.3). Thus, we have

εk := ‖Rv(u0, vk)‖W∗ → 0 as k → +∞,

which by (2.5) yields:∣∣∣ ∫ (∇u0
i ,∇ξ)−

∫
ai(u

0
i )
qiξ − λk

∫
gi(x, u

0)ξ
∣∣∣ 6 εk‖ξ‖W , ∀ξ ∈W.

i = 1, . . . ,m. Now passing to the limit as k → +∞ we obtain (1.1). �

�3. Proof of main results

Proof of Theorem 1.1. Let us prove (1o). Let w := (w1, . . . , wm), where
wi, i = 1, . . . ,m be a solution of (2.3). By the above w ∈ Ws, and thus,
we have

λ∗s := sup
u∈Ws

inf
v∈Σ(u)

R(u, v) > inf
v∈Σ(w)

∫
(∇wi,∇vi) −

∫
aiw

qi
i vi∫

gi(x,w)vi
= 0.

Since 0 6 λ∗s 6 +∞, there exists a maximizing sequence un ∈ Ws, n =
1, . . ., such that

λn := λ(un) := inf
v∈Σ(un)

R(un, v)→ λ∗s as n→ +∞.

By Lemma 2.1,{−∆uni = ai(u
n
i )qi + λngi(x, u

n), x ∈ Ω,

uni |∂Ω = 0, i = 1, . . . ,m.
(3.1)

Testing (3.1) by ui, i = 1, . . . ,m and integrating by parts we derive

‖un‖21,2 =

∫
ai|uni |qi+1 + λn

∫
gi(x, u

n)uni , n = 1, . . . . (3.2)

Since un ∈ Ws, n = 1, . . .,

λ1(Fu(un, λn))

:= inf
φ∈W

∫
|∇φ|2 − qi

∫
ai(u

n
i )qi−1|φi|2 − λn

∫
gi,uj (x, u

n)φjφi∫
|φ|2

> 0. (3.3)
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Hence, taking φ = un in (3.3) we obtain

‖un‖21,2 > qi
∫
ai|uni |qi+1 + λn

∫
gi,ui(x, u

n)(uni )2 n = 1, . . . . (3.4)

Subtracting (3.2) from (3.4), and using (g2) we obtain

(1− qi)
∫
ai|uni |qi+1 > λn

∫ (
gi,ui(x, u

n)(uni )2 − gi(x, un)uni
)

> λn(c2‖un‖γ0+1
γ0+1 + c3‖un‖γ+1

γ+1), n = 1, . . . .

Applying H�older's inequality we derive

C1 > λn(c2‖un‖γ0−qγ0+1 + c3‖un‖γ−qγ+1), n = 1, . . . . (3.5)

Let us show that there exists C2 ∈ (0,+∞) which does not depends on
n = 1, . . . , such that

‖un‖γ0+1, ‖un‖γ+1 > C2, n = 1, . . . , . (3.6)

We need the following assertion that is derived by the same method as
Lemma 3.3 in [2]

Lemma 3.1. Assume that f(t) is a function such that t−1f(t) is decreas-

ing for t > 0, a ∈ L∞, a > 0 in Ω. Let v and w satisfy: u > 0, w > 0 in

Ω, v = w = 0 on ∂Ω, and

−∆w 6 af(w), −∆u > af(u), in Ω.

Then u > w.

By the assumption gi(x, u) > 0, x ∈ Ω, i = 1, . . . ,m, u ∈ Rm+ , and
therefore,

−∆uni > ai(u
n
i )qi in Ω, i = 1, . . . ,m, n = 1 . . . .

Hence, (2.3) and Lemma 3.1 yield

uni > wi, i = 1, . . . ,m, n = 1 . . . , (3.7)

and as a result, we get (3.6). Clearly, (3.5), (3.6) imply that λ∗s < +∞.
From this it is easily follows by (3.2), (g1), and Sobolev's inequalities that
‖un‖1,2 6 C2, n = 1, . . ., where C2 ∈ (0,+∞) does not depend on n =
1, . . .. Thus, (un) is bounded in W, and therefore, by the Banach�Alaoglu
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and the Sobolev theorems there exists a subsequence (again denoted by
(un)) such that

un ⇁ u∗s weakly in W, (3.8)

un → u∗s strongly in (Lr)m, 1 6 r < 2∗, (3.9)

as n → +∞ for some u∗s ∈ W. From (3.7) it follows tha u∗s,i > wi > 0,
i = 1, . . . ,m, n = 1 . . ..

Passing to the limit in (3.1) as n→ +∞ we obtain

−∆u∗s,i = ai(u
∗
i )
qi + λ∗sgi(x, u

∗
s), x ∈ Ω, i = 1, . . . ,m. (3.10)

Using Proposition 2.2 we conclude that u∗s∈Sm. Thus, we obtain (1o), (a).
To show (1o), (b), suppose conversely that for λ > λ∗s there exists a

stable weak non-negative solution uλ of (1.1). Then by Proposition 2.2,
uλ ∈ Ws, and consequently, (1.5) yields infv∈Σ(uλ)R(uλ, v) < λ. Hence,

there exists v∈Σ(uλ) such thatR(uλ, v)<λ. Assume that
∫
gi(x, uλ)vi>0.

Then ∫
(∇uλ,i,∇vi)−

∫
aiu

qi
λ,ivi − λ

∫
gi(x, uλ)vi < 0,

which contradicts (1.1), and as a result we get (1o), (b).
Let us prove (2o). For simplicity we assume that d > 6. Using γ < 2∗−1,

it is not hard to show that (3.8), (3.9), (3.10), and the condition u∗s 6= 0
imply

un → u∗s strongly in W as n→ +∞. (3.11)

Clearly, by the maximum principle wi ∈ S(δ), i = 1, . . . ,m with some
δ > 0. Hence, (3.7) imply that un ∈ Sm(δ), n = 1, . . .. The assumption

qi <
(d+2)
2(d−2) , i = 1, . . . ,m and γ < 2∗ − 1 implies by Proposition 2.1 that

Fu(u, λ) ∈ C(SmW(δ);L(W,W∗)). Hence,

〈Fu(un, λn)(φ), ψ〉 → 〈Fu(u∗s, λ
∗
s)(φ), ψ〉 as n→ +∞,

∀φ, ψ ∈ W,
(3.12)

and consequently, λ1(Fu(un, λn)) → λ1(Fu(u∗s, λ
∗
s)) > 0 as n → +∞.

Thus, we get that u∗s ∈ Ws.
Let us show that λ1(Fu(u∗s, λ

∗
s)) = 0. Suppose, contrary to our claim,

that λ1(Fu(u∗s, λ
∗
s)) > 0. Then Fu(u∗s, λ

∗
s)(·) :W →W∗ is nonsingular lin-

ear operator. From Proposition 2.1 we have F (·, λ) ∈ C1(SmC1 ;L(W,W∗)).
Hence, by the Implicit Functional Theorem (see, e.g., Theorem 10.2.1
in [12]) there is a neighbourhood V ×U ⊂ R×SmC1 of (λ∗s, u

∗
s) and a mapping
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V 3 λ 7→ uλ ∈ U such that uλ|λ=λ∗s
= u∗s and F (uλ, λ) = 0, ∀λ ∈ V . Fur-

thermore, the map u(·) : V → U is continuous. Since λ1(Fu(u∗s, λ
∗
s)) > 0,

there exists a neighbourhood V1 ⊂ V of λ∗s such that λ1(Fu(uλ, λ)) > 0 for
every λ ∈ V1. However, this contradicts assertion (1o), (b) of the theorem.
Thus, λ1(Fu(u∗s, λ

∗
s)) = 0, and (u∗s, λ

∗
s) is a quasi-saddle-node bifurcation

point of (1.1) in Ws. Since (1o), (b), (u∗s, λ
∗
s) is a maximal quasi-saddle-

node bifurcation point of (1.1) in Ws.
Finally, let us show that 0 < λ∗s. Suppose the converse λ∗s = 0. Then

by the above 0 = λ1(Fu(u∗s, λ
∗
s)) = λ1(−∆ − q|u∗s|q−1). However, this

contradicts (2.4). �

Proof of Theorem 1.2. is similar to the proof of Theorem 1.1. We only
need to show assertion (3) of Theorem. Indeed, by the construction there
are sequences λn, u

n
as ∈ Was, n = 1, . . . such that Fu(unas, λn) = 0, n =

1, . . ., λn → λ∗as, and unas → u∗as strongly in W as n → +∞. Moreover,
u∗as ∈ Was, and λ1(Fu(u∗as, λ

∗
as)) = 0. Thus, u∗as ∈ Was \ Was. On the

other hand, unas ∈ Was, n = 1, . . .. Hence, unas 6= u∗as, n = 1, . . ., and we
thus obtain the proof of (3). �

�4. Appendix A

Let X be a Banach space and V ⊂ X be an open set. Denote Br :=
{φ ∈ X : ‖φ‖X 6 r}, r > 0. Assume that G : V → R, G ∈ C2(V ).
Consider

Ĝ = inf
v∈V

G(v). (4.1)

Theorem 4.1. Assume that |Ĝ| < +∞. Suppose that there exist τ0, a0,

C0 ∈ (0,+∞), and a minimizing sequence (vk) ⊂ V of (4.1) such that

‖Gvv(vk + τφ)‖(X×X)∗ <
C0

(1− |τ |a0)2
< +∞, (4.2)

vk + τφ ∈ V, ∀τ ∈ (−τ0, τ0), ∀φ ∈ B1, ∀k = 1, . . . . (4.3)

Then

‖Gv(vk)‖X∗ := sup
ξ∈X\0

|Gv(vk)(ξ)|
‖ξ‖X

→ 0 as k → +∞.

Proof. Suppose, contrary to our claim, that there exists α > 0 such that

‖Gv(vk)‖X∗ > α, ∀k = 1, . . . .
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This means that for every k = 1, . . ., there exists φk ∈ V , ‖φk‖X = 1 such
that |Gv(vk)(φk)| > α. By the Taylor expansion

G(vk + τφk) = G(vk) + τGv(vk)(φk) +
τ2

2
Gvv(vk + θkτφk)(φk, φk),

for su�ciently small |τ |, and some θk ∈ (0, 1), k = 1, . . .. Suppose, for
de�niteness, that Gv(vk)(φk) > α. Then for τ ∈ (−τ0, 0), by (4.2), we
have

G(vk + τφk) 6 G(vk) + τα+
τ2

2

C0

(1 + τa0)2
, k = 1, . . . .

It is easily seen that there exists τ1 ∈ (0, τ0) such that

κ(τ) := τ

(
α+

τ

2

C0

(1 + τa0)2

)
< 0, ∀τ ∈ (−τ1, 0).

Since (vk) is a minimizing sequence, for any ε > 0 there exists k(ε) such
that

G(vk) < Ĝ+ ε, ∀k > k(ε).

Take τ ∈ (−τ1, 0) and ε0 = −κ(τ)/2. Then by the above

G(vk + τφk) < Ĝ+ ε0 + κ(τ) = Ĝ+ κ(τ)/2 < Ĝ, ∀k > k(ε0),

and thus, in view of (4.3) we get a contradiction. �
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