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Abstract. Let u be either a second eigenfunction of the frac-
tional p-Laplacian or a least energy nodal solution of the equation
(−∆)sp u = f(u) with superhomogeneous and subcritical nonlinear-
ity f , in a bounded open set Ω and under the nonlocal zero Dirichlet
conditions. Assuming only that Ω is Steiner symmetric, we show that
the supports of positive and negative parts of u touch ∂Ω. As a con-
sequence, the nodal set of u has the same property whenever Ω is
connected. The proof is based on the analysis of equality cases in cer-
tain polarization inequalities involving positive and negative parts
of u, and on alternative characterizations of second eigenfunctions
and least energy nodal solutions.

Dedicated to 90th birthday of Nina Nikolaevna Uraltseva,
with deep respect and admiration

1. Introduction

Let s ∈ (0, 1), p ∈ (1,+∞), and Ω be a bounded open set in RN , N > 1.
Consider the problem{

(−∆)sp u = f(u) in Ω,

u = 0 in RN \ Ω,
(D)

where (−∆)sp is the fractional p-Laplacian which can be defined for suffi-
ciently regular functions as

(−∆)spu(x) = 2 lim
ε→0+

∫
RN\B(x,ε)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy,

and the nonlinearity f : R→ R will be discussed below. We understand the
problem (D) in the following weak sense. Consider the fractional Sobolev
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space
W s,p(RN ) = {u ∈ Lp(RN ) : [u]p < +∞},

where [ · ]p stands for the Gagliardo seminorm:

[u]p =

 ∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps

dxdy

1/p

,

and we will also use ‖ · ‖p for the standard norm in Lp(RN ). We denote by
W̃ s,p

0 (Ω) the completion of C∞0 (Ω) with respect to the norm ‖ · ‖p + [ · ]p
of W s,p(RN ). This space is uniformly convex, separable, Banach space
with the norm [ · ]p, and the embedding W̃ s,p

0 (Ω) ↪→ Lp(Ω) is compact,
see [13]. Weak solutions of (D) are critical points of the energy functional
E : W̃ s,p

0 (Ω)→ R defined as

E(u) =
1

p
[u]pp −

∫
Ω

F (u) dx,

where F (z) =
z∫
0

f(t) dt. In other words, a function u ∈ W̃ s,p
0 (Ω) is a (weak)

solution of (D) if

〈DE(u), ξ〉 ≡ 1

p
〈D[u]pp, ξ〉 −

∫
Ω

f(u)ξ dx = 0 for any ξ ∈ W̃ s,p
0 (Ω). (1.1)

For convenience, we note explicitly that

〈D[u]pp, ξ〉=p

∫
RN

∫
RN

|u(x)−u(y)|p−2(u(x)−u(y))(ξ(x)−ξ(y))

|x−y|N+ps
dxdy. (1.2)

We assume that the nonlinearity f is either of the following two types:
(Fr) The resonant case f(z) = λ2|z|p−2z, where λ2 is the second eigen-

value of the fractional Dirichlet p-Laplacian in Ω. This eigenvalue
can be characterized as

λ2 = inf
A⊂G2

sup
u∈A

[u]pp, (1.3)

see, e.g., [14, 24], where we denote

G2 ={A⊂S : there exists a continuous odd surjection h : S1→A}, (1.4)

S = {u ∈ W̃ s,p
0 (Ω) : ‖u‖p = 1}, (1.5)
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and S1 stands for a circle in R2.
(Fs) The subcritical and superhomogeneous case characterized by the

following assumptions:
(a) f ∈ C(R) ∩ C1(R \ {0}) and there exist constants C > 0 and

q ∈ (p, p∗s), where p∗s = Np
N−ps when N > ps and p∗s = +∞

when N 6 ps, such that

|f(z)| 6 C (1 + |z|q−1) for any z ∈ R.

(b) The function z 7→ f(z)
|z|p−2z is decreasing in (−∞, 0) and in-

creasing in (0,+∞) (both monotonicities are strict), and

lim
|z|→0

f(z)

|z|p−2z
= 0 and lim

|z|→+∞

f(z)

|z|p−2z
= +∞.

The model case of such nonlinearity is f(z) = |z|q−2z with q ∈
(p, p∗s), and the inequality q > p motivates the word “superhomo-
geneous” (”superlinear” in the case p = 2). The assumptions (a)
and (b) are not minimal and can be weakened to some extent, see
Remark 3.6.

Under the resonance assumption (Fr), the problem (D) has a solution
which is naturally called second eigenfunction, see, e.g., [48, Section 3] for
the case p = 2 and [14] for the case p > 1, and we refer to [13, 30, 36, 42]
for further results on the spectrum of the fractional p-Laplacian. Let us
explicitly note that any second eigenfunction changes sign in Ω, see [14].

Under the superhomogeneous assumption (Fs), the problem (D) ad-
mits nodal solutions (i.e., sign-changing solutions), among which we will
be interested only in solutions having minimal value of the functional E
among all other nodal solutions. Solutions with this property are called
least energy nodal solutions (LENS, for brevity). We briefly mention that,
in the local case s = 1, the existence of LENS was established in [5, 16],
see also [10, Appendix A]. As for the nonlocal case s ∈ (0, 1), the exis-
tence of LENS was proved in the linear case p = 2 in [33] for the model
nonlinearity f(z) = |z|q−2z and in [32, 35, 43, 49] for more general nonlin-
earities satisfying assumptions similar to (Fs). In the nonlinear case p > 1,
corresponding existence results were obtained in [17, 50], and (Fs) comes
from [17]1. Least energy nodal solutions and tightly connected with second
eigenfunctions and can be seen as objects of the same nature, see [33] for

1Note that [17, Theorem 1.2] additionally requires Ω to be a smooth domain, 1 < p <

N/s, N > 2, and f ∈ C1(R). However, thanks to the properties of the space W̃ s,p
0 (Ω),
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some asymptotic results. An important property of LENS in the superho-
mogeneous case (Fs), which will be heavily employed in our arguments,
is the fact that such solutions can be characterized as minimizers of E
over the so-called nodal Nehari set, see Section 3. Analogous constructive
variational characterization does not hold in the subhomogeneous regime
(cf. [11]), that is why we do not cover it.

Throughout the text, we decompose a function w ∈W s,p(RN ) as

w = w+ + w−, where w+ = max{w, 0} and w− = min{w, 0}. (1.6)

In particular, w± ∈W s,p(RN ) (see [12, Théorème 2]) and w+ > 0, w− 6 0
a.e. in RN .

It is known that any second eigenfunction or LENS u is continuous in Ω,
see, e.g., the combination of an L∞-bound [36, Theorem 4.1] with a local
Hölder estimate [38, Corollary 5.5], see also [14, 41]. With this regularity
in hand, we define the nodal set of u as

Z(u) = {x ∈ Ω : u(x) = 0}.
Note that Z(u) might be empty if Ω is not connected. For instance, this is
a likely behavior when Ω is a disjoint union of two equimeasurable balls,
cf. [14]. At the same time, if Ω is connected (i.e., Ω is a domain), then
Z(u) 6= ∅.

We are interested in properties of the nodal set and supports of positive
and negative parts of second eigenfunctions and LENS, and establish the
following result.

Theorem 1.1. Assume that Ω is Steiner symmetric with respect to the
hyperplane

H0 = {(x1, . . . , xN ) ∈ RN : x1 = 0}.
Let u be either a second eigenfunction or a least energy nodal solution of
(D). Then

dist(suppu−, ∂Ω) = 0 and dist(suppu+, ∂Ω) = 0. (1.7)

Consequently, if Ω is connected, then

dist(Z(u), ∂Ω) = 0. (1.8)

inspection of proofs from [17] shows that all the results from [17, Section 4] and hence
[17, Theorem 1.2] remain valid under the present weaker assumptions.
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Remark 1.2. The assumption that Ω is Steiner symmetric with respect to
the hyperplane H0 is equivalent to saying that Ω is symmetric with respect
toH0 and convex with respect to the x1-axis. The convexity with respect to
the x1-axis means that any segment parallel to the first coordinate vector
e1 with endpoints in Ω is fully contained in Ω, see, e.g., Fig. 2.

In the local linear case s = 1, p = 2, in which (−∆)sp corresponds to the
standard Laplace operator, the assertion (1.8) for any second eigenfunction
u in a domain Ω is the content of the famous Payne nodal set conjecture
[46]. It is known that, in general, Payne’s conjecture is not true, since there
exist domains whose second eigenfunction u satisfies dist(Z(u), ∂Ω) > 0,
see [29, 37] and references to these works. Nevertheless, the conjecture is
valid on certain classes of domains. This was established in [20, 46] for
Steiner symmetric domains as in Theorem 1.1 (by different methods), and
we also refer to [1, 31, 34, 39, 44] for some other classes of domains, as well
as for the superlinear case (Fr).

In the local nonlinear case s = 1, p > 1, the validity of Payne’s con-
jecture for second eigenfunctions and LENS was proved in [9] for Steiner
symmetric domains under certain additional regularity assumptions on the
boundary. We are not aware of other results on Payne’s conjecture in local
nonlinear settings, but we refer to [2, 5, 8, 10, 18] for some related results.

In the nonlocal linear case s ∈ (0, 1), p = 2, it was shown in [4, 7, 25,
26, 27] that any second eigenfunction in the ball is anti-symmetric with
respect to some central section of the ball. As a consequence, Payne’s con-
jecture holds. Thanks to these references, [33] guarantees that LENS share
the same symmetry in the model superlinear case f(z) = |z|q−2z when
q > 2 and q is sufficiently close to 2, and hence they also satisfy Payne’s
conjecture in the ball. Up to our knowledge, such results are unknown for
other domains, even for spherical shells (cf. [23], where the nonradiality of
second eigenfunctions is shown for sufficiently thin spherical shells).

In the nonlocal nonlinear case s ∈ (0, 1), p > 1, the results obtained in
the present work seem to be the first on the Payne conjecture. It makes
sense to mention, however, that Theorem 1.1 does not imply, at least di-
rectly, that second eigenfunctions in the ball are nonradial. Instead, The-
orem 1.1 only yields that if a second eigenfunction is radial, then it has to
oscillate near the boundary. In [7], the Pohozaev identity from [47] was used
to show that such an unlikely behavior is indeed impossible, which resulted
in the nonradiality of second eigenfunctions. Perhaps, similar strategy is
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applicable in the present nonlocal nonlinear settings, but the proper ver-
sion of the Pohozaev identity is unknown to us. Also, we note that (1.7) is
a priori a stronger result than (1.8).

The proof of Theorem 1.1 is based on two main ingredients - the po-
larization of functions (also known as the two-point rearrangement), and
convenient characterizations of second eigenfunctions and LENS. Both of
these auxiliary results might be interesting in their own. On the funda-
mental level, the idea of the proof of Theorem 1.1 is analogous to that
in [9], where a related result was established in the local nonlinear case.
Later, this idea was developed in [7] for the nonlocal linear case when Ω
is a ball, in which it has its own features and difficulties. In the present
work, we further develop the approach from [7, 9] to the nonlocal nonlinear
case in Steiner symmetric sets, and note that, apart from the very general
strategy, our proofs are different than those in [7, 9]. In particular, us-
ing Proposition 2.1, the proof of [7, Theorem 1.1] concerning the resonant
linear case f(z) = λ2z can be given in a simpler and more universal way.

The rest of the article is organized as follows. In Section 2, we establish
certain inequalities for polarizations of functions with explicit information
on equality cases, and in Section 3 we provide alternative characterizations
of second eigenfunctions and LENS. Section 4 contains the proof of our
main result, Theorem 1.1. Finally, Appendix A contains a few technical
lemmas needed for the proofs from Sections 2 and 3.

2. Polarization inequalities

In this section, we deal with the classical symmetrization method called
polarization (or, equivalently, two-point rearrangement) of functions, see,
e.g., [3, 5, 6, 9, 15, 40]. Consider a hyperplane Ha = {x ∈ RN : x1 = a}
where x = (x1, x2, . . . , xN ), a ∈ R, and let σa(x) = (2a − x1, x2, . . . , xN )
be the reflection of a point x with respect to Ha. Denote the corresponding
open half-spaces as

Σ+
a = {x ∈ RN : x1 > a} and Σ−a = {x ∈ RN : x1 < a}. (2.1)

Let u : R→ R be a given measurable function. The polarization of u with
respect to Ha is a function Pau : R→ R defined as

Pau(x) =


min{u(x), u(σa(x))}, x ∈ Σ+

a ,

u(x), x ∈ Ha,

max{u(x), u(σa(x))}, x ∈ Σ−a .

(2.2)
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It is known that (Pau)± = Pa(u±) in RN , see [5, Lemma 2.1], so hereinafter
will write Pau±, for short. As a consequence, we have

Pa(u+ + u−) = Pau = (Pau)+ + (Pau)− = Pau
+ + Pau

−. (2.3)

Moreover, it is not hard to see that

Pau = u if and only if Pau
+ = u+ and Pau− = u−.

For convenience, we define an “opposite” polarization P̃au of u as

P̃au(x) =


max{u(x), u(σa(x))}, x ∈ Σ+

a ,

u(x), x ∈ Ha,

min{u(x), u(σa(x))}, x ∈ Σ−a .

(2.4)

We observe that Pau− = −P̃a(−u−) and hence (2.3) yields

Pau = Pau
+ − P̃a(−u−). (2.5)

The polarization can be also used to polarize sets, by polarizing their
characteristic functions. Effectively, for a measurable set Ω, PaΩ and P̃aΩ
are defined as

PaΩ =


Ω ∩ σa(Ω) in Σ+

a ,

Ω on Ha,

Ω ∪ σa(Ω) in Σ−a ,

and P̃aΩ =


Ω ∪ σa(Ω) in Σ+

a ,

Ω on Ha,

Ω ∩ σa(Ω) in Σ−a .

(2.6)

Note that P̃aΩ = RN \ (Pa(RN \Ω)). We refer to [40, Proposition 2.2] and
[9, Section 2] for an overview of main properties of PaΩ, see also [15].

The polarization has the following useful properties which will be im-
portant for us. First, [5, Lemma 2.2] (see also [15, Eq. (3.7)]) yields∫
RN

f(Pau
±)Pau

± dx=

∫
RN

f(u±)u± dx and
∫
RN

F (Pau
±) dx=

∫
RN

F (u±) dx.

(2.7)
Second, if u ∈W s,p(RN ), then Pau ∈W s,p(RN ), and we have

[Pau]p 6 [u]p, (2.8)

see, e.g., [3, 6, 15, 40]. In fact, equality holds in (2.8) if and only if either
u(x) = Pau(x) for a.e. x ∈ RN or u(σa(x)) = Pau(x) for a.e. x ∈ RN , see,
e.g., [3, Theorem 2.9], [6, Corollary, p. 4819], and Remark 2.2.

The main aim of the present section is to provide a certain strengthening
of the inequality (2.8) with an explicit discussion of equality cases, thereby
extending and improving [7, Lemma 2.3].
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Proposition 2.1. Let a ∈ R and u ∈W s,p(RN ). Then

〈D[Pau]pp, Pau
+〉 6 〈D[u]pp, u

+〉, (2.9)

〈D[Pau]pp, Pau
−〉 6 〈D[u]pp, u

−〉. (2.10)

Moreover, equality takes place in (2.9) (respectively, in (2.10)) if and only
if either of the following cases holds:

(i) u(x) = Pau(x) for a.e. x ∈ RN ;
(ii) u(σa(x)) = Pau(x) for a.e. x ∈ RN ;
(iii) u+(x)=u+(σa(x)) for a.e. x∈RN (respectively, u−(x)=u−(σa(x))

for a.e. x ∈ RN ).

Proof. Let us start with the inequality (2.9) and assume that u+ 6≡ 0 in
Ω. Throughout the proof, we denote, for brevity,

v = Pau and J(α, β) = |α− β|p−2(α− β)(α+ − β+). (2.11)

We get from (2.3) that v± = Pau
±, so that (2.9) is equivalent to∫

RN

∫
RN

J(v(x), v(y))

|x− y|N+sp
dxdy 6

∫
RN

∫
RN

J(u(x), u(y))

|x− y|N+sp
dxdy, (2.12)

cf. (1.2). Decomposing RN = Σ+
a ∪Ha ∪ Σ−a and noting that Ha has zero

N -measure, we get∫
RN

∫
RN

J(v(x), v(y))

|x− y|N+sp
dxdy

=

∫
Σ+

a

∫
Σ+

a

J(v(x), v(y))

|x− y|N+sp
dxdy +

∫
Σ+

a

∫
Σ+

a

J(v(σa(x)), v(y))

|σa(x)− y|N+sp
dxdy (2.13)

+

∫
Σ+

a

∫
Σ+

a

J(v(x), v(σa(y)))

|x− σa(y)|N+sp
dxdy +

∫
Σ+

a

∫
Σ+

a

J(v(σa(x)), v(σa(y)))

|σa(x)− σa(y)|N+sp
dxdy,

and an analogous representation holds for the right-hand side of (2.12).
Thus, in order to prove (2.12), it is sufficient to establish the inequality

J(v(x), v(y))

|x− y|N+sp
+
J(v(σa(x)), v(y))

|σa(x)− y|N+sp

+
J(v(x), v(σa(y)))

|x− σa(y)|N+sp
+
J(v(σa(x)), v(σa(y)))

|σa(x)− σa(y)|N+sp
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6
J(u(x), u(y))

|x− y|N+sp
+
J(u(σa(x)), u(y))

|σa(x)− y|N+sp
+
J(u(x), u(σa(y)))

|x− σa(y)|N+sp

+
J(u(σa(x)), u(σa(y)))

|σa(x)− σa(y)|N+sp
(2.14)

for a.e. x, y ∈ Σ+
a , and characterize equality cases. Hereinafter in the proof,

under u and v we understand some fixed representatives of corresponding
equivalence classes from W s,p(RN ), so that (2.14) makes sense for every
x, y ∈ Σ+

a at which u, v, and their reflections are defined, and we will be
interested only in such x, y, while the N -measure of other points x, y is
zero anyway.

It is not hard to observe that
1

|x− y|N+sp
=

1

|σa(x)− σa(y)|N+sp

>
1

|σa(x)− y|N+sp
=

1

|x− σa(y)|N+sp

(2.15)

for every x, y ∈ Σ+
a , since Σ+

a is defined by the strict inequality “>”, see
(2.1). In other words, the inequality in (2.15) turns to equality if and only
if x ∈ Ha or y ∈ Ha. We will also need the following consequence of (2.15):

1

|x− y|N+sp
− 1

|x− σa(y)|N+sp

=
1

|σa(x)− σa(y)|N+sp
− 1

|σa(x)− y|N+sp
> 0.

(2.16)

Let us represent Σ+
a ×Σ+

a as a (nondisjoint) union of the following four
subsets:

A++ ={(x, y)∈Σ+
a ×Σ+

a : u(σa(x))>u(x) and u(σa(y))>u(y)}, (2.17)

A−−={(x, y)∈Σ+
a ×Σ+

a : u(σa(x))6u(x) and u(σa(y))6u(y)}, (2.18)

A+−={(x, y)∈Σ+
a ×Σ+

a : u(σa(x))>u(x) and u(σa(y))<u(y)}, (2.19)

A−+ ={(x, y)∈Σ+
a ×Σ+

a : u(σa(x))<u(x) and u(σa(y))>u(y)}, (2.20)

and investigate the inequality (2.14) in each subset separately.
• Take any (x, y) ∈ A++. By the definition (2.2), the polarization does

not exchange values of u, so that

v(x)=u(x), v(σa(x))=u(σa(x)), and v(y)=u(y), v(σa(y))=u(σa(y)),
(2.21)

and hence the inequality (2.14) holds as equality for (x, y) ∈ A++.
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• Take any (x, y) ∈ A−−. We see from (2.2) that the polarization ex-
changes values of u, i.e.,

v(x)=u(σa(x)), v(σa(x))=u(x), and v(y)=u(σa(y)), v(σa(y))=u(y).
(2.22)

Thus, using the equalities from (2.15), we rewrite the left-hand side of
(2.14) as

J(u(σa(x)), u(σa(y)))

|σa(x)− σa(y)|N+sp
+
J(u(x), u(σa(y)))

|x− σa(y)|N+sp
+
J(u(σa(x)), u(y))

|σa(x)− y|N+sp

+
J(u(x), u(y))

|x− y|N+sp
. (2.23)

This expression coincides with the right-hand side of (2.14), i.e., (2.14)
holds as equality for (x, y) ∈ A−−.
• Take any (x, y) ∈ A+−. In this case, (2.2) implies that

v(x)=u(x), v(σa(x))=u(σa(x)), and v(y)=u(σa(y)), v(σa(y))=u(y),

and we rewrite (2.14) as

J(u(x), u(σa(y)))

|x− y|N+sp
+
J(u(σa(x)), u(σa(y)))

|σa(x)− y|N+sp

+
J(u(x), u(y))

|x− σa(y)|N+sp
+

J(u(σa(x)), u(y))

|σa(x)− σa(y)|N+sp

6
J(u(x), u(y))

|x− y|N+sp
+
J(u(σa(x)), u(y))

|σa(x)− y|N+sp
+
J(u(x), u(σa(y)))

|x− σa(y)|N+sp

+
J(u(σa(x)), u(σa(y)))

|σa(x)− σa(y)|N+sp
. (2.24)

By rearranging the terms in (2.24), we have

J(u(x), u(y))

(
1

|x− y|N+sp
− 1

|x− σa(y)|N+sp

)
(2.25)

− J(u(σa(x)), u(y))

(
1

|σa(x)− σa(y)|N+sp
− 1

|σa(x)− y|N+sp

)
(2.26)

− J(u(x), u(σa(y)))

(
1

|x− y|N+sp
− 1

|x− σa(y)|N+sp

)
(2.27)

+ J(u(σa(x)), u(σa(y)))

(
1

|σa(x)− σa(y)|N+sp
− 1

|σa(x)− y|N+sp

)
> 0.

(2.28)
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Applying the equality in (2.16), we rewrite (2.28) as[
J(u(x), u(y))− J(u(σa(x)), u(y))− J(u(x), u(σa(y)))

+ J(u(σa(x)), u(σa(y)))
]

×
(

1

|x− y|N+sp
− 1

|x− σa(y)|N+sp

)
> 0. (2.29)

Thanks to the inequality in (2.16), we conclude that (2.29) (and hence
(2.14)) is equivalent to the following four-point inequality :

J(u(x), u(y))− J(u(σa(x)), u(y))− J(u(x), u(σa(y)))

+ J(u(σa(x)), u(σa(y))) > 0. (2.30)

This inequality is proved in Lemma A.1 by taking a = u(x), A = u(σa(x)),
b = u(σa(y)), B = u(y). Moreover, Lemma A.1 implies that (2.30) is strict
if and only if u(σa(x)) > 0 or u(y) > 0. Consequently, if (x, y) ∈ A+− is
such that u(σa(x)) > 0 or u(y) > 0, then the inequality (2.14) holds with
the strict sign. We denote the set of such points as A∗+−, i.e.,

A∗+− = {(x, y) ∈ A+− : u(σa(x)) > 0 or u(y) > 0}.
For all (x, y) ∈ A+− \A∗+−, (2.14) holds with the equality sign.
• Take any (x, y) ∈ A−+. Switching the notation x↔ y, we arrive at the

previous case, and hence deduce that if (x, y) ∈ A−+ is such that u(x) > 0
or u(σa(y)) > 0, then the inequality (2.14) holds with the strict sign, while
for all other (x, y) ∈ A−+, (2.14) holds with the equality sign. We denote

A∗−+ = {(x, y) ∈ A−+ : u(x) > 0 or u(σa(y)) > 0}.
Combining all four cases, we conclude that (2.14) is satisfied for all

x, y ∈ Σ+
a , which proves (2.9). It remains to describe the occurrence of

equality in (2.9). We distinguish two cases:
1) Let |A+−|2N = 0, where | · |2N stands for the 2N -measure. (Equiv-

alently, one can assume |A−+|2N = 0, since the sets A+− and A−+ are
symmetric.) Consequently, we have either u(σa(x)) > u(x) for a.e. x ∈ Σ+

a ,
or u(σa(x)) 6 u(x) for a.e. x ∈ Σ+

a . This is the same as the alternative:
either (2.21) holds for a.e. x, y ∈ Σ+

a , or (2.22) holds for a.e. x, y ∈ Σ+
a . In

either case, we have equality in (2.14) for a.e. x, y ∈ Σ+
a , which results in

the equality in (2.9), and (i) or (ii) holds.
2) Let |A+−|2N > 0. For convenience, denote the left- and right-hand

sides of (2.14) as I(v) and I(u), respectively. With these notation, the
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inequality (2.9) (via (2.12) and (2.13)) reads as∫
Σ+

a

∫
Σ+

a

(I(v)− I(u)) dxdy 6 0.

Using the properties of the sets A++, A−−, A+−, A−+ provided above, we
have∫

Σ+
a

∫
Σ+

a

(I(v)− I(u)) dxdy

=

∫∫
A∗

+−

(I(v)− I(u)) dxdy +

∫∫
A∗

−+

(I(v)− I(u)) dxdy 6 0,

where equality takes place if and only if |A∗+−|2N = 0 (and, equivalently,
|A∗−+|2N = 0). Assuming |A∗+−|2N = 0, we get

0>u(σa(x))>u(x) and u(σa(y))<u(y)60 for a.e. (x, y)∈A+−. (2.31)

Suppose now that there exists x ∈ Σ+
a such that

u(σa(x)) > 0 and u(σa(x)) > u(x). (2.32)

If there exists a point y ∈ Σ+
a such that u(σa(y)) < u(y), then (x, y) ∈

A+−, and hence the 2N -measure of such points (x, y) is zero in view of
(2.31). Thus, if (2.32) holds on a subset of Σ+

a of positive N -measure,
then u(σa(y)) > u(y) for a.e. y ∈ Σ+

a , which contradicts the assumption
|A+−|2N > 0. Analogously, we get a contradiction if

u(y) > 0 and u(σa(y)) < u(y) (2.33)

hold on a subset of Σ+
a of positive N -measure. Therefore, combining these

two facts, we conclude that for a.e. x ∈ Σ+
a such that u(σa(x)) > 0, we

have 0 < u(σa(x)) 6 u(x), and for a.e. y ∈ Σ+
a such that u(y) > 0,

we have 0 < u(y) 6 u(σa(y)). Consequently, by redenoting y to x, we
deduce that for a.e. x ∈ Σ+

a such that u(x) > 0 or u(σa(x)) > 0, we have
u(σa(x)) = u(x). This is exactly the case (iii).

The inequality (2.10) with equality cases can be established by noting
that u− = −(−u)+. �

In Fig. 1, we depict a function u : R→ R and its polarization P0u which
deliver equality in (2.9) under the assumption (iii) of Proposition 2.1, while
neither the assumption (i) nor (ii) holds.
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x

u(x)

0 x

P0u(x)

0

Fig. 1. A function u : R→ R and its polarization P0u for
which (2.9) is an equality under the assumption (iii) of
Proposition 2.1, but the assumptions (i) and (ii) are not
satisfied.

As a simple complementary fact to Proposition 2.1, we note that

〈D[u]pp, u
±〉 > 0 for any u ∈W s,p(RN ),

as it follows from the pointwise estimate (cf. [30, Eq. (14)])

|u(x)−u(y)|p−2(u(x)−u(y))(u±(x)−u±(y))> |u±(x)−u±(y)|p, x, y∈RN .
Remark 2.2. Summing (2.9) and (2.10), we obtain (2.8) and see that
equality holds in [Pau]p 6 [u]p if and only either u(x) = Pau(x) for a.e.
x ∈ RN or u(σa(x)) = Pau(x) for a.e. x ∈ RN . In particular, when both
(2.9) and (2.10) are equalities, we have the same alternative.

Remark 2.3. Using Lemma A.1, one can explicitly estimate the deficit
in (2.9) and (2.10). We also note that Proposition 2.1 evidently holds for
the polarization P̃a.

Remark 2.4. Since the proof of Proposition 2.1 is largely based on the
pointwise analysis, the particular choice of the kernel |x − y|−(N+sp) can
be generalized to any kernel K(x, y) satisfying the following counterpart
of (2.15):

K(x, y)=K(σa(x), σa(y))>K(σa(x), y)=K(x, σa(y)) for every x, y∈Σ+
a .

The following results are useful for the application of Proposition 2.1 to
functions from W̃ s,p

0 (Ω), cf. [15, Corollary 5.1].

Lemma 2.5. Let a ∈ R and u ∈ W̃ s,p
0 (Ω) be a nonnegative function. Then

Pau ∈ W̃ s,p
0 (PaΩ).



PAYNE NODAL SET CONJECTURE 109

Proof. Since u is nonnegative, Lemma A.2 gives a sequence {un} ⊂
C∞0 (Ω) of nonnegative functions converging to u in W̃ s,p

0 (Ω). It follows
from [15, Theorem 3.3 and Lemma 5.1] that each Paun is a nonnega-
tive Lipschitz function with compact support in PaΩ. Therefore, Paun ∈
W̃ s,p

0 (PaΩ), cf. Remark A.3. By (2.8) and the convergence of {un} in
W̃ s,p

0 (Ω), we have [Paun]p 6 [un]p 6 C for some C > 0 and all n. Thus,
the compactness result [13, Theorem 2.7] implies that {Paun} converges in
Lp(PaΩ) to a function v ∈ W̃ s,p

0 (PaΩ), up to a subsequence. On the other
hand, [15, Theorem 3.1] yields Paun → Pau in Lp(PaΩ). It is then clear
that v = Pau ∈ W̃ s,p

0 (PaΩ). �

It is not hard to see that Lemma 2.5 is also valid for the polarization
P̃a. In particular, recalling that u± ∈ W s,p(RN ) whenever u ∈ W s,p(RN )
(see [12, Théorème 2]), applying Lemma 2.5 to u+ (with Pa) and to −u−
(with P̃a), and using (2.5), we get the following result.

Corollary 2.6. Let a ∈ R and u ∈ W̃ s,p
0 (Ω). Then

Pau ∈ W̃ s,p
0 (PaΩ ∪ P̃aΩ) = W̃ s,p

0 (Ω ∪ σa(Ω)).

Lemma 2.7. Let {an} ⊂ R be a sequence converging to a ∈ R. Let u ∈
W̃ s,p

0 (Ω)∩C(Ω) be a nonnegative function such that each Pan(suppu+) is
contained in Ω. Then Panu ∈ W̃ s,p

0 (Ω) for all n, and Pau ∈ W̃ s,p
0 (Ω).

Proof. In view of (2.7) and (2.8), we have Panu ∈ W s,p(RN ) for any n.
Since the closed set Pan(suppu+) is a subset of Ω and u is nonnegative,
we apply mollification arguments (see, e.g., [28, Lemma 11]) to conclude
that each Panu can be approximated by C∞0 (Ω)-functions in the norm
of W s,p(RN ). That is, Panu ∈ W̃ s,p

0 (Ω) for any n. The inequality (2.8)
shows that the sequence {Panu} is bounded in W̃ s,p

0 (Ω), and hence it
converges in Lp(Ω) to some v ∈ W̃ s,p

0 (Ω), up to a subsequence (see [13,
Theorem 2.7]). On the other hand, [15, Lemma 5.2-1] gives Panu → Pau

in Lp(Ω). Therefore, we conclude that v = Pau ∈ W̃ s,p
0 (Ω). �

As above, it is not hard to observe that Lemma 2.7 remains valid for
the polarization P̃a.



110 V. BOBKOV, S. KOLONITSKII

3. Characterization of second eigenfunctions and LENS

In this section, we characterize second eigenfunctions and least energy
nodal solutions (LENS) of (D) by certain integral inequalities. These re-
sults will be needed for the application of Proposition 2.1 in the proof of
Theorem 1.1.

3.1. Second eigenfunctions. We state three closely related results.
These results extend [7, Lemma 2.1], but the present arguments are dif-
ferent due to the general nonlinear settings; see also [21, 22] for related
results.

Let us explicitly note that any second eigenfunction u satisfies the fol-
lowing equalities:

λ2

∫
Ω

|u+|p dx=
1

p
〈D[u]pp, u

+〉 and λ2

∫
Ω

|u−|p dx=
1

p
〈D[u]pp, u

−〉. (3.1)

Proposition 3.1. Assume that there exists a function v ∈ W̃ s,p
0 (Ω) such

that v± 6≡ 0 in Ω and

λ2

∫
Ω

|v+|p dx> 1

p
〈D[v]pp, v

+〉 and λ2

∫
Ω

|v−|p dx> 1

p
〈D[v]pp, v

−〉. (3.2)

Then v is a second eigenfunction and equalities hold in (3.2).

Proof. The first part of our arguments is reminiscent of the proof of [14,
Proposition 4.2], where the authors establish that there is no eigenvalue
between λ1 and λ2. Taking any (α, β) ∈ S1, multiplying the inequalities
in (3.2) by |α|p and |β|p, respectively, and then adding them, we get

λ2 >
1
p 〈D[v]pp, |α|pv+ + |β|pv−〉

|α|p
∫
Ω

|v+|p dx+ |β|p
∫
Ω

|v−|p dx. (3.3)

Denoting

U(x, y) = v+(x)− v+(y) and V (x, y) = −(v−(x)− v−(y)), (3.4)

we observe that

v(x)−v(y) = (v+(x)−v+(y))+(v−(x)−v−(y)) = U(x, y)−V (x, y), (3.5)
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and hence

1

p
〈D[v]pp, |α|pv++ |β|pv−〉=

∫
RN

∫
RN

|U−V |p−2(U−V )(|α|pU−|β|pV )

|x− y|N+ps
dxdy,

(3.6)
cf. (1.2). It is not hard to see that UV 6 0 a.e. in RN × RN . Using the
pointwise inequality (A.10) from Lemma A.4, we obtain∫
RN

∫
RN

|U − V |p−2(U − V )(|α|pU − |β|pV )

|x− y|N+ps
dxdy >

∫
RN

∫
RN

|αU − βV |p
|x− y|N+ps

dxdy

= [αv+ + βv−]pp. (3.7)

Thus, we deduce from (3.3), (3.6), and (3.7) that

λ2 >
[αv+ + βv−]pp

|α|p
∫
Ω

|v+|p dx+ |β|p
∫
Ω

|v−|p dx for any (α, β) ∈ S1. (3.8)

Consider a continuous odd function h : S1 7→ W̃ s,p
0 (Ω) defined as

h(α, β) =
αv+ + βv−

(|α|p
∫
Ω

|v+|p dx+ |β|p
∫
Ω

|v−|p dx)
1
p

.

Clearly, we have ‖h(α, β)‖p = 1, that is, h : S1 7→ S, where S is the unit
Lp(Ω)-sphere in W̃ s,p

0 (Ω) (see (1.5)), and the estimate (3.8) reads as

[αv+ + βv−]pp
|α|p

∫
Ω

|v+|p dx+ |β|p
∫
Ω

|v−|p dx ≡ [h(α, β)]pp 6 λ2 for any (α, β) ∈ S1.

(3.9)
At the same time, the definition (1.3) of λ2 implies that

λ2 6 max
(α,β)∈S1

[h(α, β)]pp.

Thus, λ2 = [h(α, β)]pp for some (α, β) ∈ S1. Applying [19, Proposition 2.8],
we obtain the existence of (α0, β0) ∈ S1 such that h(α0, β0) is a second
eigenfunction, and hence so is α0v

++β0v
−. Since any second eigenfunction

is sign-changing (see [14, Theorem 2.8 (iii)]), we have α0β0 > 0.
It remains to show that α0 = β0. Since λ2 = [h(α0, β0)]pp, we have

equality in (3.7) for (α, β) = (α0, β0). According to Lemma A.4, this can
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happen if and only if either α0 = β0 or the set

K = {(x, y) ∈ RN × RN : U(x, y) · V (x, y) < 0}
has zero 2N -measure. Since v± 6≡ 0 in Ω by the assumption, there exist
sets K± of positive N -measure such that v+ > 0 in K+ and v− < 0 in
K−. Consequently,

U(x, y) · V (x, y) = v+(x) · v−(y) < 0 for any (x, y) ∈ K+ ×K−,
and henceK+×K− ⊂ K, which yields |K|2N > 0. Therefore, we must have
α0 = β0, that is, v = v+ + v− is a second eigenfunction. As a consequence,
a posteriori, equalities must hold in (3.2), cf. (3.1). �

Proposition 3.1 implies the following result which will be convenient in
applications.

Proposition 3.2. Let u ∈ W̃ s,p
0 (Ω) be a second eigenfunction. Assume

that there exists a function v ∈ W̃ s,p
0 (Ω) such that v± 6≡ 0 in Ω and∫

Ω

|v±|p dx >
∫
Ω

|u±|p dx and 〈D[v]pp, v
±〉 6 〈D[u]pp, u

±〉. (3.10)

Then v is a second eigenfunction and equalities hold in (3.10).

Proof. Since any second eigenfunction u satisfies (3.1), the assumptions
(3.10) give

λ2

∫
Ω

|v±|p dx > λ2

∫
Ω

|u±|p dx =
1

p
〈D[u]pp, u

±〉 > 1

p
〈D[v]pp, v

±〉.

That is, v satisfies the assumptions of Proposition 3.1, and the conclusion
follows. �

Another corollary of Proposition 3.1 is the following characterization of
λ2, cf. [7, Remark 2.2] for the linear case p = 2. We also refer to [14, 48]
for other characterizations of λ2.

Lemma 3.3. Let

µ2 =inf

max


1
p 〈D[v]pp, v

+〉∫
Ω

|v+|p dx ,

1
p 〈D[v]pp, v

−〉∫
Ω

|v−|pdx

 : v∈W̃ s,p
0 (Ω), v± 6≡0 in Ω

.
(3.11)

Then λ2 = µ2 and any minimizer of µ2 is a second eigenfunction.
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Proof. Since any second eigenfunction u satisfies (3.1), we get µ2 6 λ2.
Suppose now, by contradiction, that µ2 < λ2. That is, there exists v ∈
W̃ s,p

0 (Ω) such that v± 6≡ 0 in Ω and

µ2 6 max


1
p 〈D[v]pp, v

+〉∫
Ω

|v+|p dx ,

1
p 〈D[v]pp, v

−〉∫
Ω

|v−|p dx

 < λ2. (3.12)

The second inequality in (3.12) implies

λ2

∫
Ω

|v+|p dx> 1

p
〈D[v]pp, v

+〉 and λ2

∫
Ω

|v−|p dx> 1

p
〈D[v]pp, v

−〉, (3.13)

at least one inequality being strict. However, this contradicts Proposi-
tion 3.1. That is, we have µ2 = λ2. In a similar way, any minimizer v of
µ2 satisfies the inequalities (3.13), and hence Proposition 3.1 shows that v
is a second eigenfunction. �

3.2. LENS. In this section, we provide a result on the characterization of
LENS, which has the same nature as Proposition 3.2. Consider the Nehari
manifold associated with the problem (D),

N = {u ∈ W̃ s,p
0 (Ω) \ {0} : 〈DE(u), u〉 = 0},

and the following subset of N (a nodal Nehari set) which contains all nodal
solutions of (D):
M = {u ∈ W̃ s,p

0 (Ω) : u± 6≡ 0 in Ω, 〈DE(u), u+〉 = 〈DE(u), u−〉 = 0},
cf. (1.1). It is known that, under the assumption (Fs), any minimizer of
the problem

m = inf{E(u) : u ∈M} (3.14)
is a LENS, see [17, Lemma 4.7] and also comments and references provided
in Section 1.

Proposition 3.4. Let u ∈ W̃ s,p
0 (Ω) be a LENS. Assume that there exists

a function v ∈ W̃ s,p
0 (Ω) such that v± 6≡ 0 in Ω and∫

Ω

F (v) dx >
∫
Ω

F (u) dx,

∫
Ω

f(v±)v± dx =

∫
Ω

f(u±)u± dx, 〈D[v]pp, v
±〉 6 〈D[u]pp, u

±〉.
(3.15)
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Then v is a LENS and equalities hold in (3.15).

Proof. Some parts of our arguments are reminiscent of those from the
proof of [17, Lemma 4.5], where the authors obtain the attainability of m
defined in (3.14). By [17, Lemma 4.4], there exists a unique pair of positive
numbers t+, t− such that t+v+ + t−v

− ∈M, which reads as

1

p
〈D[t+v

+ + t−v
−]pp, t+v

+〉 =

∫
Ω

f(t+v
+ + t−v

−)t+v
+ dx

≡
∫
Ω

f(t+v
+)t+v

+ dx,

(3.16)

1

p
〈D[t+v

+ + t−v
−]pp, t−v

−〉 =

∫
Ω

f(t+v
+ + t−v

−)t−v
− dx

≡
∫
Ω

f(t−v
−)t−v

− dx.

(3.17)

Let us show that t± ∈ (0, 1]. Assume, without loss of generality, that
t− 6 t+. In view of the homogeneity of the left-hand side of (3.16), we
rewrite it as

1

p
〈D
[
v+ +

t−
t+
v−
]p
p
, v+〉 =

∫
Ω

f(t+v
+) t1−p+ v+ dx. (3.18)

Denoting, as in (3.4),

U(x, y) = v+(x)− v+(y) and V (x, y) = −(v−(x)− v−(y)),

and observing, similarly to (3.5), that

(v+(x) + sv−(x))− (v+(y) + sv−(y)) = U(x, y)− sV (x, y) for any s ∈ R,

and UV 6 0 a.e. in RN×RN , we apply Lemma A.5 with s = t−/t+ ∈ (0, 1]
and get〈

D
[
v+ +

t−
t+
v−
]p
p
, v+

〉
6 〈D[v+ + v−]pp, v

+〉 ≡ 〈D[v]pp, v
+〉. (3.19)
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On the other hand, since u is a solution of (D), we use the second and
third assumptions from (3.15) to obtain

1

p
〈D[v]pp, v

+〉 6 1

p
〈D[u]pp, u

+〉 =

∫
Ω

f(u)u+ dx

≡
∫
Ω

f(u+)u+ dx =

∫
Ω

f(v+)v+ dx.

(3.20)

Combining (3.18), (3.19), and (3.20), we derive∫
Ω

(
f(v+)

(v+)p−1
− f(t+v

+)

(t+v+)p−1

)
(v+)p dx > 0.

Since z 7→ f(z)/zp−1 is increasing in (0,+∞) by the assumption (b) in
(Fs), we conclude that t+ 6 1, and hence t− 6 t+ 6 1.

Consider now a function G defined as G(z) = f(z)z − pF (z) and note
that G(0) = 0. Since t+v+ + t−v

− ∈M, we have

m 6 E(t+v
+ + t−v

−)

= E(t+v
+ + t−v

−)− 1

p
〈DE(t+v

+ + t−v
−), t+v

+ + t−v
−〉 (3.21)

=
1

p

∫
Ω

G(t+v
+ + t−v

−) dx =
1

p

∫
Ω

G(t+v
+) dx+

1

p

∫
Ω

G(t−v
−) dx.

The assumption (b) in (Fs) implies that G is decreasing in (−∞, 0), in-
creasing in (0,+∞), and nonnegative in R. Therefore, since t± ∈ (0, 1], we
get

m 6
1

p

∫
Ω

G(t+v
+) dx+

1

p

∫
Ω

G(t−v
−) dx

6
1

p

∫
Ω

G(v+) dx+
1

p

∫
Ω

G(v−) dx =
1

p

∫
Ω

G(v) dx.

(3.22)

In view of the first and second assumptions from (3.15), we obtain

m6
1

p

∫
Ω

G(v) dx6
1

p

∫
Ω

G(u) dx=E(u)− 1

p
〈DE(u), u〉=E(u)=m. (3.23)

That is, equalities hold in (3.21), (3.22), (3.23), which yields t± = 1 and
v ∈ M is a minimizer of E over M. Moreover, equalities take place in
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(3.15). Consequently, by [17, Lemma 4.7], v is a least energy nodal solution
of (D). �

Remark 3.5. Let us note that, in general, the equalities
∫
Ω

f(v±)v± dx =∫
Ω

f(u±)u± dx in (3.15) do not imply that
∫
Ω

F (v) dx =
∫
Ω

F (u) dx. This can

be seen by considering the model case f(z) = |z|α−2z + |z|β−2z for p <
α < β < p∗s and with sign-changing functions u, v ∈ W̃ s,p

0 (Ω) satisfying,
e.g.,∫

Ω

|v±|α dx = 1,

∫
Ω

|v±|β dx = 2,

∫
Ω

|u±|α dx = 2,

∫
Ω

|u±|β dx = 1.

Consequently, in general, the first two assumptions in (3.15) are indepen-
dent from each other.

Remark 3.6. The proof of Proposition 3.4 relies on the results from [17,
Section 4]. If these results are valid under weaker (or just different) as-
sumptions on f than (Fs) (see, e.g., the assumptions in [32, 35, 43, 49] for
the case p = 2 and [50] for the case p > 1), then so does Proposition 3.4,
and hence (Fs) can be changed accordingly.

4. Proof of Theorem 1.1

Let u ∈ W̃ s,p
0 (Ω) be either a second eigenfunction or LENS of (D).

Suppose, contrary to the statement of Theorem 1.1, that u does not change
sign in a neighborhood of ∂Ω. Without loss of generality, let suppu− ⊂ Ω,
so that u > 0 in this neighborhood.

Since Ω is symmetric with respect to the hyperplaneH0 (see Remark 1.2),
we have P0Ω = Ω and P̃0Ω = Ω. Therefore, Corollary 2.6 gives P0u ∈
W̃ s,p

0 (Ω). Combining the inequalities from Proposition 2.1 and equali-
ties (2.7) with either Proposition 3.2 (when u is a second eigenfunction)
or Proposition 3.4 (when u is a LENS), we deduce that P0u is also ei-
ther a second eigenfunction or LENS. In particular, equalities hold in
(2.9), (2.10), which implies that either P0u(x) = u(x) for all x ∈ RN
or P0u(x) = u(σ0(x)) for all x ∈ RN , see Remark 2.2. Assume, without
loss of generality, that P0u = u in RN . In particular, this yields

u(x) 6 u(σ0(x)) for any x ∈ Σ+
0 . (4.1)
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Let us now define

d1 = sup{t > 0 : suppu− + te1 ⊂ Ω}. (4.2)

Our assumption suppu− ⊂ Ω gives d1 > 0. We fix a = d1/2 and consider
the polarization Pau. We see that suppPanu

− = P̃an(suppu−) ⊂ Ω for
any sequence an ↗ a, and a is the supremum among polarization param-
eters with this set inclusion property, see Figure 2. Therefore, applying
Lemma 2.7 to −u− (with P̃a), we get Pau− ≡ −P̃a(−u−) ∈ W̃ s,p

0 (Ω). On
the other hand, since Ω is Steiner symmetric and a > 0, it is not hard to
see from (2.6) that PaΩ = Ω, and hence Lemma 2.5 applied to u+ gives
Pau

+ ∈ W̃ s,p
0 (Ω). Thus, we conclude that Pau ∈ W̃ s,p

0 (Ω) and suppPau
−

touches ∂Ω ∩ Σ+
a .

x1

Pau ≥ 0

H0 Ha

x σa(x)σ0(σa(x)) · · ·

Fig. 2. The gray oval is suppPau
−, and the dashed oval

is the boundary of suppu−.

As above, a combination of Proposition 2.1, equalities (2.7), and either
Proposition 3.2 or Proposition 3.4 guarantees that Pau must be either a
second eigenfunction or LENS, and equalities hold in (2.9), (2.10). Since
u > 0 in a neighborhood of ∂Ω but suppPau

− touches ∂Ω ∩ Σ+
a , we

conclude that Pau(x) 6= u(x) for some x ∈ Σ+
a . Therefore, Proposition 2.1

implies that Pau(x) = u(σa(x)) for all x ∈ RN , see Remark 2.2. (This is the
main place where the characterization of equality cases in Proposition 2.1
is used.) In particular, this yields

u(x) 6 u(σa(x)) for any x ∈ Σ−a . (4.3)

Let us now obtain a contradiction from (4.1) and (4.3). Take any x∈Σ−a
such that u(x)>0. Then (4.3) gives u(σa(x))>0, where σa(x)∈Σ+

a . We al-
ways have Σ+

a⊂Σ+
0 . Therefore, (4.1) applied to σa(x) gives u(σ0(σa(x)))>

0, where σ0(σa(x)) ∈ Σ−0 . We always have Σ−0 ⊂ Σ−a . Hence, we again
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apply (4.3), etc. The consecutive application of (4.1) and (4.3) leads to
the infinite chain of inequalities

0<u(x)6u(σa(x))6u(σ0(σa(x)))6 . . .6u(σa(σ0(. . . σa(σ0(x)))))6 . . .
(4.4)

In particular, recalling that u ∈ W̃ s,p
0 (Ω), we see that σa(σ0(. . . σa(σ0(x))))

∈ Ω for any number of iterations. However, it is not hard to observe that
the point σa(σ0(. . . σa(σ0(x)))) moves to infinity along the x1-axis as the
number of iterations grows. Since Ω is bounded and u = 0 in RN \ Ω, we
get a contradiction.

Notice that the initial choice x ∈ Σ−0 for the assumption u(x) > 0 is
not restrictive. Indeed, if x ∈ Σ+

0 is such that u(x) > 0, then (4.1) gives
u(σ0(x)) > 0 and σ0(x) ∈ Σ−0 and we can redenote σ0(x) by x, while if
x ∈ H0 is such that u(x) > 0, then we can shift x it to the left due to the
continuity of u. This finishes the proof. �

Remark 4.1. The polarization arguments in the proof of Theorem 1.1
do not involve the boundary point lemma and require no regularity of ∂Ω
(unlike the proof of [9, Theorem 1.2] about the local nonlinear case), and
they do not use a careful analysis of the structure of Pau (unlike the proof
of [7, Theorem 1.1] about the nonlocal linear case in the ball). The addi-
tional constructions from [7, 9] are “substituted” by the characterization
of equality cases in Proposition 2.1.

However, it is hard to adapt a similar idea to the local case (e.g., with
the aim of weakening regularity assumptions on ∂Ω imposed in [9, Theo-
rem 1.2]), since local counterparts of the inequalities (2.9) and (2.10) from
Proposition 2.1 are always equalities, see [5, Lemma 2.3]. In particular, in
the local case, we cannot guarantee that Pau(x) = u(σa(x)) for all x ∈ RN .

Remark 4.2. In the proof of Theorem 1.1, the boundedness of Ω can be
substituted by the boundedness of N -measure of Ω, by noting that the
process of consecutive reflections with respect to H0 and Ha (see (4.1) and
(4.3)) “pushes” any set to infinity along the x1-axis.

Remark 4.3. Theorem 1.1 and all the results of Sections 2, 3 remain valid
if we substitute the space W̃ s,p

0 (Ω) by

Xs,p
0 (Ω) = {u ∈W s,p(RN ) : u = 0 a.e. in RN \ Ω}, (4.5)

provided Ω supports the compactness of the embedding Xs,p
0 (Ω) ↪→ Lp(Ω).

(Lemmas 2.5 and 2.7 follow directly from the definition of Xs,p
0 (Ω).) It is
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not hard to see that W̃ s,p
0 (Ω) ⊂ Xs,p

0 (Ω). Moreover, equality holds if ∂Ω is
sufficiently regular, see, e.g., [28]. But, in general, the space Xs,p

0 (Ω) can
be strictly bigger than W̃ s,p

0 (Ω) since it is not sensitive to perturbations of
Ω by sets of zero N -measure (e.g., “cuts” in Ω are invisible for Xs,p

0 (Ω)).

x1

u ≥ 0

RL

C
H0

(a)

x1

Pau ≥ 0

C
H0 Ha

L R

(b)

Fig. 3. (a): u is positive in the white part and negative in
the gray part (and hence u = 0 on the boundary of the
gray part), that is, suppu−∩(L∪R) = ∅. (b): polarization
of u with respect to Ha for a maximal value of a, such that
suppPau

− touches R at two bold dots.

Remark 4.4. The proof of Theorem 1.1 justifies a stronger assertion than
Theorem 1.1. Assume, for simplicity, that Ω is a bounded open set with
continuous boundary in the sense of [28, Definition 4]. Let us naturally
decompose ∂Ω in three parts - the left “lid” L, right “lid” R, and cylindrical
part C parallel to the x1-axis. (More precisely, we take any open segment
l ⊂ Ω parallel to the x1-axis, symmetric with respect to H0, and such that
end-points of l lie on ∂Ω. The sets L and R are the unions of left and
right end-points of such segments, respectively, and C = ∂Ω \ (L ∪R), cf.
Figure 3.) Let u ∈ W̃ s,p

0 (Ω) be a second eigenfunction or LENS of (D).
Then u necessarily satisfies at least one of the following two properties:

1) suppu+ ∩ L 6= ∅ and suppu− ∩R 6= ∅,
2) suppu+ ∩R 6= ∅ and suppu− ∩ L 6= ∅.

To establish this assertion, the proof of Theorem 1.1 is repeated almost
verbatim. Notice that, under the current assumptions on Ω, the result of
Lemma 2.7 remains valid if we allow Pan(suppu+) ⊂ Ω, as it follows from
the equality W̃ s,p

0 (Ω) = Xs,p
0 (Ω), see [28, Theorem 6]. We omit further

details.
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In Figure 3a we depict a hypothetical behavior of u which is ruled out
by this assertion and not by Theorem 1.1.

Appendix A. Auxiliary results

In this section, we collect a few technical results used in the proofs
above. We start with a four-point inequality needed for Proposition 2.1.
Let a function J : R2 7→ R be defined as in (2.11), i.e.,

J(α, β) = |α− β|p−2(α− β)(α+ − β+).

Recall that α+ = max{α, 0}. Also, we denote by θ : R 7→ R the Heaviside
function and we assume θ(0) = 0, for definiteness. Rewriting J in terms of
θ, we have

J(α, β) = |α− β|p−2(α− β)(θ(α)α− θ(β)β).

Lemma A.1. Let p > 1. Assume that a < A and b < B. Then

− (p− 1) max{1, p− 1}J 6 J(A,B)− J(a,B)− J(A, b) + J(a, b)

6 −(p− 1) min{1, p− 1}J , (A.1)

where

J =

A∫
a

B∫
b

|α− β|p−2
(
θ(α) + θ(β)

)
dβdα. (A.2)

In particular,

J(A,B)− J(a,B)− J(A, b) + J(a, b) 6 0, (A.3)

and equality takes place in (A.3) if and only if A 6 0 and B 6 0.

Proof. We start with formal computations, assuming that all operations
are allowed. Observe that

J(A,B)− J(a,B)− J(A, b) + J(a, b) =

A∫
a

B∫
b

∂2J

∂α∂β
(α, β) dβdα. (A.4)

Differentiating J , we obtain
∂J

∂α
(α, β) = (p−1)|α−β|p−2(θ(α)α−θ(β)β)+|α−β|p−2(α−β)θ(α) (A.5)

and
∂2J

∂α∂β
(α, β) = −(p− 1)(p− 2)|α− β|p−4(α− β)(θ(α)α− θ(β)β)
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− (p− 1)|α− β|p−2θ(β)− (p− 1)|α− β|p−2θ(α) (A.6)

= −(p− 1)|α− β|p−2

[
(p− 2)

θ(α)α− θ(β)β

α− β + θ(α) + θ(β)

]
.

For α 6= β, we have

0 6
θ(α)α− θ(β)β

α− β 6 max{θ(α), θ(β)} 6 θ(α) + θ(β), (A.7)

and therefore the expression in the square brackets in (A.6) can be esti-
mated as follows:

(θ(α) + θ(β)) 6 (p−2)
θ(α)α− θ(β)β

α− β + θ(α) + θ(β) 6 (p−1)(θ(α) + θ(β))

(A.8)
for p > 2, and

(p−1)(θ(α) + θ(β)) 6 (p−2)
θ(α)α− θ(β)β

α− β + θ(α) + θ(β) 6 (θ(α) + θ(β))

(A.9)
for p ∈ (1, 2). This formally yields the desired inequalities (A.1). Observing
that α 7→ J(α, β) and β 7→ ∂J

∂α (α, β) are absolutely continuous mappings,
we substantiate the formal calculations. �

Let us now provide a simple fact which we use in the proof of Lemma 2.5.

Lemma A.2. Let u ∈ W̃ s,p
0 (Ω) be a nonnegative function. Then there

exists a sequence {un} ⊂ C∞0 (Ω) of nonnegative functions converging to u
in W̃ s,p

0 (Ω).

Proof. It follows from the definition of W̃ s,p
0 (Ω) that there exists a se-

quence {vn} ⊂ C∞0 (Ω) converging to u in W̃ s,p
0 (Ω). The continuity of the

embedding W̃ s,p
0 (Ω) ↪→ Lp(Ω) (see [13, Lemma 2.4]) implies that vn → u

in Lp(Ω). Let us consider the sequence of positive parts {v+
n }. It is not

hard to see that each v+
n is a Lipschitz functions with compact support

in Ω, that is, {v+
n } ⊂ C0,1

0 (Ω). Since |a+ − b+| 6 |a − b| for any a, b ∈ R,
we get v+

n → u+ ≡ u in Lp(Ω) and [v+
n ]p 6 [vn]p for any n (cf. [12, 45]

for elaboration). Consequently, {v+
n } is bounded in W̃ s,p

0 (Ω) and hence
converges weakly in W̃ s,p

0 (Ω) to a function v ∈ W̃ s,p
0 (Ω), up to a subse-

quence. We deduce from the compactness result [13, Theorem 2.7] that
v+
n → v in Lp(Ω), up to a subsequence, which yields v = u. If v+

n → u

in W̃ s,p
0 (Ω), then, recalling that v+

n ∈ C0,1
0 (Ω), we can approximate v+

n by
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nonnegative C∞0 (Ω)-functions in the norm of W s,p(RN ) via mollification.
Taking a diagonal sequence, we obtain the desired claim. If v+

n → u only
weakly in W̃ s,p

0 (Ω) (and not strongly), then we apply Mazur’s lemma to
obtain a sequence {wn} consisting of finite convex combinations of v+

n ’s
which converge to u in W̃ s,p

0 (Ω). In particular, any wn is nonnegative and
belongs to C0,1

0 (Ω). Arguing as above, we finish the proof. �

Remark A.3. Since W̃ s,p
0 (Ω) is the completion of C∞0 (Ω) with respect to

the norm [ · ]p (see [13, Remark 2.5]), it is not hard to see that W̃ s,p
0 (Ω) can

be equivalently defined as the completion of the space C0,1
0 (Ω) of Lipschitz

functions with compact support in Ω with respect to [ · ]p.

Finally, we provide two auxiliary lemmas needed to prove Proposi-
tions 3.1 and 3.4, respectively. The first lemma is essentially obtained
in [14], see, more precisely, [14, Eq. (4.7), pp. 346-347] and inspect the
corresponding arguments.

Lemma A.4 ([14]). Let U, V ∈ R be such that UV 6 0. Then

|U − V |p−2(U − V )(|α|pU − |β|pV ) > |αU − βV |p (A.10)

for any (α, β) ∈ S1. Moreover, equality holds in (A.10) if and only if
UV = 0 or α = β.

Lemma A.5. Let U, V ∈ R be such that UV 6 0. Then

|U − V |p−2(U − V )U > |U − sV |p−2(U − sV )U, (A.11)

|U − V |p−2(U − V )(−V ) > |sU − V |p−2(sU − V )(−V ), (A.12)

for any s ∈ [0, 1].

Proof. Define a continuous function h : [0, 1] → R as h(s) = |U −
sV |p−2(U −sV )U . We see that h′(s) = −(p−1)|U −sV |p−2UV 6 0 when-
ever U−sV 6= 0, i.e., h is nondecreasing. Since h(1) > h(0) by Lemma A.4
with (α, β) = (1, 0), we conclude that h(1) > h(s) for all s ∈ [0, 1], which
is exactly (A.11). In the same way, one can establish (A.12). �
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