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Abstract. We provide an explicit algorithm to solve the idem-
potent analogue of the discrete Monge–Kantorovich optimal mass
transportation problem with the usual real number field replaced
by the tropical (max-plus) semiring, in which addition is defined as
the maximum and product is defined as usual addition, with −∞
and 0 playing the roles of additive and multiplicative identities. Such
a problem may be naturally called tropical or “max-plus” optimal
transportation problem. We show that the solutions to the latter,
called the optimal tropical plans, may not correspond to perfect
matchings even if the data (max-plus probability measures) have all
weights equal to zero, in contrast with its classical discrete optimal
transportation analogue, where perfect matching optimal plans in
similar situations always exist. Nevertheless, in some randomized
situation the existence of perfect matching optimal tropical plans
may occur rather frequently. At last, we prove that the uniqueness
of solutions of the optimal tropical transportation problem is quite
rare.

Dedicated to N. N. Uraltseva
on the occasion of her 90th birthday

§1. Introduction

In this paper we consider a discrete optimization problem that looks
quite similar to the classical Monge–Kantorovich optimal mass transporta-
tion problem and in fact, as we argue later, is nothing else but the idempo-
tent version of the latter. We begin with a short motivational introduction.

1.1. Motivation of the problem. Suppose we have m signal sources
and n receivers regularly exchanging information between them. Each
source i ∈ {1, . . . ,m} may transmit an amount hi,j of information to
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j ∈ {1, . . . , n}. The maximum amount of information the source i may
send at one time is given by a number ki, that is,

max
j∈{1,...,n}

hi,j = ki. (1)

Analogously, the maximum amount of information the receiver j may get
at one time is given by a number lj , that is,

max
i∈{1,...,m}

hi,j = lj . (2)

Of course, (1) and (2) may only be simultaneously valid if

max
i∈{1,...,n}

ki = max
j∈{1,...,n}

lj . (3)

The cost Ci,j of transmitting between the source i and the receiver j
depends affinely on the amount of transmitted information and takes into
account the known fixed cost gi,j of using the communication channel
between them, that is,

Ci,j = gi,j + γhi,j

for some given coefficient γ > 0. The goal is to find the values hi,j ,
i = 1, . . . , n, j = 1, . . . ,m (the respective matrix being further called the
optimal tropical transportation plan, the explanation of the terminology
being given in the sequel) minimizing the maximum of Ci,j over all i and
j, that is, finding the

inf{max
i,j

(gi,j + γhi,j) : hi,j satisfying (1) and (2)}.

Denoting ci,j := gi,j/γ, this amounts to solving

inf{max
i,j

(ci,j + hi,j) : hi,j satisfying (1) and (2)}. (4)

1.2. Idempotent (max-plus or tropical) interpretation. Let us now
completely change the point of view and look at the above problem as a
version of the classical optimal mass transportation problem in the context
of idempotent analysis: more precisely, analysis over the tropical (max-
plus) semiring R̄− := R ∪ {−∞} endowed with the operations

a⊕ b := max {a, b}, a⊗ b := a+ b,

which substitute the usual addition and multiplication of real numbers
respectively. The value −∞ is an identity with respect to ⊕ and 0 is an
identity with respect to ⊗. Both operations are commutative, associative
and a⊗ (b⊕ c) = a⊗ b+ a⊗ c. Thus the roles of 0 and 1 on the usual real
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line are played here by −∞ and 0 respectively. For a general overview of
idempotent analysis we refer the reader to the classic book [5].

The classical discrete Monge–Kantorovich optimal mass transportation
problem (see, e.g. [6] for a comprehensive introduction to the subject) is
that of finding the optimal plan of transportation in the following sense:
solve the minimization problem

inf
{ m,n∑
i,j=1

ci,jπi,j : [πi,j ]
m,n
i,j=1

}
(5)

where the infimimum is performed over m-by-n matrices [πi,j ]
m,n
i,j=1 which

satisfy the constraints
n∑
j=1

πi,j = ki, (6)

m∑
i=1

πi,j = lj , (7)

with the numbers ki, lj , i = 1, . . . ,m, j = 1, . . . , n all fixed. This is usu-
ally interpreted as finding the way of optimally transporting the discrete
measure

µ :=

m∑
i=1

kiδxi

to another discrete measure

ν :=

n∑
j=1

ljδyi ,

for some xi ∈ X, yj ∈ Y , i = 1, . . . ,m, j = 1, . . . , n, with X and Y some
sets and δz standing for the Dirac point mass at z.

The value πi,j is, then, interpreted as the amount of mass transported
from xi to yj . The matrix [πi,j ]

m,n
i,j=1 is identified with the discrete measure

π =
m,n∑
i,j=1

πi,jδ(xi,yj) over X × Y ; constraints (6) and (7) now mean that

the marginals (or projections) of the measure π along X and Y are µ and

ν respectively. The quantity
m,n∑
i,j=1

ci,jπi,j is the total transportation cost,

targeted for minimization.
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In the idempotent max-plus setting the role of the Dirac measure δz
over an arbitrary set Z concentrated at a point z ∈ Z is played by the
characteristic function (for which we retain the same notation as for the
Dirac measure) δz defined by

δz(z
′) :=

{
0, z′ = z,

−∞, z′ 6= z.

The analogues of sums of Dirac masses on sets X and Y are the functions
on these sets respectively defined by

µ(x) := max
i=1,...,m

(ki + δxi(x)), ν(y) = max
j=1,...,n

(lj + δyj (y)), (8)

i.e. µ is the function taking the value ki at each xi and −∞ elsewhere,
and ν is the function taking the value lj at each yi and −∞ elsewhere; the
analogue of a discrete measure represented by a sum of Dirac masses with
weights hij at points (xi, yj) ∈ X × Y is the function

π(x, y) = max
i=1,...,m
j=1,...,n

(
hij + δ(xi,yj)(x, y)

)
. (9)

We will be referring to the coefficients ki as the weights of µ and to the
coefficients lj as the weights of ν. The total mass of a discrete measure,
which in the traditional setting is the sum of its weights, corresponds, in
the max-plus setting, to the maximum of its weights, i.e.

|µ| := max
i=1,...,m

ki, |ν| := max
j=1,...,n

lj .

We will assume, in complete analogy with the classical mass transportation
theory, that |µ| = |ν|, which is exactly the condition (3), and for purely
aesthetical reasons, which imply no loss of generality, we also assume that
both total masses are zero, i. e. |µ| = |ν| = 0, so that µ and ν can be
considered tropical versions of discrete probability measures. We will call,
therefore, functions such as µ, ν, π above discrete max-plus probability
measures, the set of such functions over a given set Z being denotedM(Z),
so that µ ∈M(X) and ν ∈M(Y ), π ∈M(X × Y ).

Suppose now that {xi}mi=1 ⊂ X, {yj}nj=1 ⊂ Y are given, and µ, ν are
defined by (8) and (9) respectively. The max-plus, or tropical, analogue
of a transport plan between µ and ν is a function π defined as in (9) and
satisfying the constraints

max
x∈X

π(x, y) = ν(y), max
y∈Y

π(x, y) = ν(x), (10)
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The Monge–Kantorovich optimal transportation problem (5) with the gi-
ven cost function c : X × Y → R̄ then becomes, in the max-plus setting,
the problem of solving

inf {max(c(x, y) + π(x, y)) : π ∈M(X × Y ) satisfies (10)} . (11)

It is worth mentioning that the problem just stated is not the unique
example of a meaningful idempotent (max-plus or tropical) version of a
classical optimization problem; similar tropical formulations have arisen
elsewhere in the literature. For instance, this is the case of the so-called
bottleneck traveling salesman problem (see e.g. section 8 of [4] or [3]), which
can be considered a max-plus version of the classical traveling salesman
problem.

We will further identify, whenever convenient, max-plus discrete prob-
ability measures with the sequences of their weights, and the transport
plan π (given by (9)) with the matrix of coefficients [hi,j ], and refer to this
object in either interpretation as a tropical transport plan for the discrete
max-plus probability measures µ and ν (or, equivalently, for the sequences
of their weights) whenever (10) holds, which in terms of the matrix [hi,j ]
amounts precisely to (1) and (2), namely, that maximum of the i-th row
of the matrix must be ki and the maximum of the j-th row of the matrix
must be lj . If we write ci,j := c(xi, yj), then, in view of (8) and (9), the
problem (11) becomes exactly (4), which is the reason why it may be con-
sidered as the max-plus version of the Monge–Kantorovich problem (5).
Such an identification of measures with weights, plans and cost functions
with matrices is quite natural in the discrete setting we are considering
here, especially when the points xi and yj themselves are of no practical
importance.

1.3. Our contribution. In this paper we provide an explicit algorithm
to solve the optimal tropical transportation problem (4) and find an ex-
plicit formula for the optimal tropical cost, i.e., the value of (4). As a
consequence, we obtain some curious results on the optimal tropical plans
and values. In particular:

• In the case m = n optimal tropical plans corresponding to perfect
matchings (those given by permutation matrices) may not exist
even if the max-plus probability measures µ and ν have all the
weights equal to zero (we henceforth call this case fundamental),
see Example 4.10 below. This is a stark contrast with classical opti-
mal mass transportation theory, where (again with m = n) perfect
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matching optimal transport plans between sums of Dirac masses
with equal weights always exist. Nevertheless, it turns out that, at
least in the fundamental case, the existence of perfect matching
optimal tropical plans occurs rather frequently as the number of
weights of both µ and ν becomes large, the respective statement
being made precise by introducing randomness in the cost. More
precisely, under a concrete randomization of the cost matrix, the
existence of a perfect matching optimal plan is “asymptotically al-
most sure” as the number of weights of the measures approaches
infinity. This is Theorem 5.5 below.

• In the fundamental case, under the same type of randomization of
the cost matrix, the optimal tropical cost is, asymptotically almost
surely, the lowest value among all the entries of the cost matrix.
This is the content of Theorem 5.1 and Remark 5.3 below.

• We also prove that uniqueness of an optimal tropical plan asymp-
totically almost surely fails to occur (in the fundamental case),
when the cost matrix entries are sampled uniformly. This is The-
orem 5.7 below.

§2. Notation and preliminaries

In complete analogy with the classical optimal transportation theory,
the matrix [hi,j [

m,n
i,j=1 with each hi,j ∈ [−∞, 0] satisfying (1) and (2) will

be called discrete max-plus (or tropical) plan (or just a plan for brevity)
for max-plus discrete probability measures µ ∈M(X), ν ∈M(Y ). Equiv-
alently, as remarked earlier, it can be seen as a max-plus discrete proba-
bility measure in the sense given by (9). We denote by Π(µ, ν) the set of
all such plans (which is always nonempty, since µ ⊗ ν ∈ Π(µ, ν), where
(µ⊗ ν)i,j := ki + lj).

For the given cost matrix [ci,j ]
m,n
i,j=1 we define

dc(µ, ν) := inf

 max
i=1,...,m
j=1,...,n

(ci,j + hi,j) : h ∈ Π(µ, ν)

 .

If we interpret h as an element of h ∈M(X×Y ), i.e. as in (9), then we may
write h(xi, yj) and c(xi, yj) instead of hi,j and ci,j respectively, since the
points xi and yj can be assumed fixed in every discussion. Again for purely
aesthetical reasons, and to allow for the interpretation of the numbers ci,j
as representing a cost, it is convenient to assume ci,j > 0, which can always
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be done without loss of generality. The minimizer h ∈ Π(µ, ν) in the above
problem will be called the minimizing (or optimal) tropical plan, the set
of such minimizing plans being denoted by Πc(µ, ν). The number dc(µ, ν)
will be called the optimal tropical cost between µ and ν. We must say that,
despite our choice of notation, the function dc(·, ·) is not a metric.

In the sequel we assume the sequences of weights kj and lj to be ordered
in decreasing order k1 = l1 = 0, i.e.

kn 6 kn−1 6 · · · 6 k1 = 0, ln 6 ln−1 6 · · · 6 l1 = 0. (12)

We denote by Λ(µ) and Λ(ν) the sets of weights of µ and ν respectively.
If we wish to retain the interpretation of µ and ν as elements of M(X)
andM(Y ) respectively, then (12) is achieved simply by a relabeling of the
fixed points xi and yj , i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

For any h ∈ Π(µ, ν), by the support of h, denoted supp(h), we will
mean the subset of X × Y of points (x, y) where h(x, y) > −∞, or (again,
equivalently, since any such point must be one of the pairs (xi, yj)) with
the set of pairs (i, j) ∈ {1, . . . ,m}×{1, . . . , n} such that hi,j > −∞. In the
latter case, we may also write h(i, j) rather than hij (for instance, if we
wish to free up the subindex place for another purpose, as in section 4.2
below).

For a set X we denote by #X its cardinality. We also write sometimes
a ∨ b for the maximum of the numbers a and b.

§3. Reduced transportation plans and existence of
minimizers

We start with the following definition.

Definition 3.1. Given fixed discrete max-plus probability measures µ
and ν, we will call a tropical plan h ∈ Π(µ, ν) reduced if for each i, j such
that hi,j > −∞, the element hi,j is a strict maximum in its row or in its
column, and denote by ΠR(µ, ν) the set of reduced plans for discrete µ
and ν.

Without loss of generality for the optimal tropical transportation prob-
lem, all the weights of µ and ν can be taken to be finite (i. e. > −∞). In
fact, if, say, ki = −∞ for some i ∈ {1, . . . ,m}, then the i-th row of h, for
any h ∈ Π(µ, ν) must consist only of −∞. In this case, in the expression
that defines dc(µ, ν), each of the elements over which the minimum is taken
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is

max
(i,j)

(hi,j + ci,j) = max{. . . , hi,1 + ci,1, hi,2 + ci,2, . . . , hi,n + ci,n, . . .}

= max{. . . ,−∞,−∞, . . .−∞, . . .},

but the maximum is non-negative, so the the numbers −∞ can be changed
to sufficiently small negative numbers (negative but with large absolute
value) without affecting the maximum and then the weight kj = −∞ can
be changed to maxi hi,j where hi,j are the new numbers just mentioned.

The following assertion holds true.

Lemma 3.2. For all discrete µ ∈M(X), ν ∈M(Y ) one has

dc(µ, ν) = inf{max
(i,j)

(hi,j + ci,j) : h ∈ ΠR(µ, ν)}.

Moreover, for every minimizing plan h there is a reduced minimizing plan
h̃ with supp h̃ ⊂ supph and h̃ = h on the support of h̃.

Proof. If hi,j is not a strict maximum neither in its column nor in its row
for some i, j ∈ {1, . . . , n}, then changing hi,j to −∞ (or to any number less
than hi,j) does not affect max(i,j)(hi,j + ci,j). Changing all such entries of
the matrix [hi,j ] will transform the plan to a reduced one, and thus

dc(µ, ν) = inf{max
(i,j)

(hi,j + ci,j) : h ∈ Π(µ, ν)}

= inf{max
(i,j)

(hi,j + ci,j) : h ∈ ΠR(µ, ν)}

as claimed. �

As a consequence, the following existence result holds.

Theorem 3.3. The discrete max-plus transportation problem admits a
solution, namely, inf is actually a min.

Proof. It is enough to refer to Lemma 3.2 and observe that the set of
reduced plans ΠR(µ, ν) has finitely many elements (indeed, each entry of
a reduced plan must be either −∞ or one of the weights of µ and ν). �
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§4. Algorithm to solve the discrete max-plus
transportation problem

4.1. Partition of the support of a plan. Given discrete µ and ν, for
each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, let

pi = max{j : lj > ki}, qj = max{i : ki > lj},
Si = {(i, 1), . . . , (i, pi)}, Tj = {(1, j), . . . , (qj , j)}.

The following statement gives some information on the general structure
of reduced plans, as long as we adhere to the convention that the weights
are sorted as in (12), which we agreed to hold throughout.

Lemma 4.1. Let µ ∈ M(X), ν ∈ M(Y ) be discrete max-plus probability
measures as in (8) and let h ∈ ΠR(µ, ν). Assume, without loss of general-
ity, that the weights of the measures satisfy (12). The following assertions
hold true.

(1) For each i ∈ {1, . . . ,m}, at least one of the numbers hi,1, . . . , hi,pi
must be ki, and the numbers hi,pi+1, . . . , hi,n are all strictly less
than ki. Likewise, for each j ∈ {1, . . . , n}, at least one of the num-
bers h1,j , . . . , hqi,j must be lj, and the numbers hqi+1,j , . . . , qn,j are
all strictly less than lj.

(2) If the weights ki and lj are all distinct, with the exception of k1 =
l1 = 0, then Si ∩ Tj = ∅ whenever (i, j) 6= (1, 1).

(3) One has ki = lj for some (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, if and
only if (i, j) ∈ Si ∩ Tj.

Proof. (1) Fix i ∈ {1, . . . ,m}. The maximum among hi,1, . . . , hi,n must be
ki. If hi,pi+m̄ = ki for some m̄ > 0, then the maximum among h1,pi+m̄, . . .,
hn,pi+m̄ is at least ki. The maximum among h1,pi+m, . . . , hn,pi+m̄ must
be lpi+m̄, which, by definition of pi is, strictly less than ki. This con-
tradiction proves that the maximum of hi,1, . . . , hi,n, equal to ki, occurs
among hi,1, . . . , hi,pi , and not among hi,pi+1, . . . , hn, which proves the first
part of the assertion. The second part, i.e. the claim about the numbers
h1,j , . . . , hn,j is proven completely symmetrically.

(2) Suppose (i, j) 6= (1, 1) and (q, p) ∈ Si ∩ Tj . Since the pair (q, p) is
in Si, its first component must be i, i.e. q = i. Similarly, since it is in Tj ,
we must have p = j. Thus (q, p) = (i, j). Moreover, the definition of pi
and qj now contains only strict inequalities because we are assuming all
the weights distinct with the exception of k1 = l1 = 0. Having (i, j) ∈ Si,
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then, implies that lj > ki, while having (i, j) ∈ Tj implies that ki > lj ,
and we have obtained a contradiction.

(3) Suppose ki = lj for some pair (i, j) ∈ {1, . . . ,m}× {1, . . . , n}. Since
lj > ki, we must have (i, j) ∈ Si. Likewise, since ki > lj , then (i, j) ∈ Tj ,
so that necessity is proven. Now suppose (i, j) ∈ Si ∩ Tj . Since (i, j) ∈ Si,
j 6 pi so lj > ki, and (i, j) ∈ Tj gives i ∈ Ti, so ki > lj . This completes
the proof. �

Given discrete max-plus probability measures µ, ν and a real number λ,
let

Rλ :=

( ⋃
{i : ki=λ}

Si

)
∪
( ⋃
{j : lj=λ}

Tj

)
, (13)

which is a subset of {1, . . . ,m}×{1, . . . , n}. We call Rλ a region or λ-region
to emphasize the dependence on λ. A region can look like an L written
backwards (like the one in pink in Figure 1 below), with the ends resting
on the top and left edges of the grid, or a rectangle with its left side lying
on the left edge of the grid, or a rectangle with its top side on the top edge
of the grid, or a rectangle with both its left and top sides lying on the left
and top sides of the grid, respectively. We remark that that our notion of
region exists only when the measures µ and ν have been fixed. Also, for
the description of our algorithm, it is essential that the weights of these
measures are labeled as in 12.

Example 4.2. For m = n = 6 and the max-plus probability measures

µ = max{0 + δx1 , 0 + δx2 ,−2 + δx3 ,−3 + δx4 ,−4 + δx5 ,−4 + δx6}

=


0, x ∈ {x1.x2},
−2, x = x3,
−3, x = x4,
−4, x ∈ {x5.x6}

and

ν = max{0 + δy1 , 0 + δy2 , 0 + δy3 ,−1 + δy4 ,−2 + δy5 ,−2 + δy6}

=

 0, y ∈ {y1.y2.y3},
−1, y = y4,
−2. y ∈ {y5.y6}

with xj , j = 1, . . . ,m as well as yi, i = 1, . . . , n all distinct, the regions
(each in a different color) and a plan are shown in Figure 1.
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0 0 0 -1 -2 -2
0 -∞ -∞ 0 -1 -∞ -2
0 0 0 -∞ -∞ -2 -∞
-2 -∞ -∞ -2 -∞ -∞ -∞
-3 -∞ -∞ -∞ -∞ -3 -∞
-4 -∞ -∞ -∞ -4 -∞ -∞
-4 -4 -∞ -∞ -∞ -∞ -∞

Fig. 1. Regions for the pair (µ, ν) of Example 4.2.

It is convenient to extend the notions of plan and reduced plan as fol-
lows. Fix discrete max-plus probability measures µ, ν, with their weights
arranged as in (12); suppose λ is one of these weights and consider the cor-
responding region Rλ. By a plan of Rλ we will mean a function h : Rλ →
[−∞, 0] such that the maximum of h on each row and on each column of
Rλ is λ. In Figure 1 we see plans of each of the five regions, determined
by the numbers in the cells.

Let Π(Rλ) be the set of plans of Rλ. Like above, a plan

h = {hi,j}(i,j)∈Rλ ∈ Π(Rλ)

is called reduced whenever hi,j is a strict maximum of its row or a strict
maximum of its column, as long as hi,j > −∞. Thus, a reduced plan of a
λ-region has no numbers other than −∞ and λ. The plans of the regions
in Figure 1 are all reduced. We will denote by ΠR(Rλ) the set of reduced
plans of Rλ.

Given discrete max-plus probability measures µ, ν, a region Rλ, and a
cost function c, we will use the notation dc to also mean the following:

dc(Rλ) := min
h∈Π(Rλ)

max
(i,j)∈Rλ

(hi,j + ci,j).

A plan h ∈ Π(Rλ) at which the min in the preceding formula is attained
will be called a minimizing (or optimal) plan for the region Rλ. The fol-
lowing assertion holds true.

Proposition 4.3. Let µ ∈ M(X), ν ∈ M(Y ) be arbitrary discrete max-
plus probability measures and a cost function c : X × Y → [0,∞) be given.
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Then
dc(µ, ν) = max

λ∈Λ(µ)∪Λ(ν)
dc(Rλ).

Proof. By definition,

dc(µ, ν) = min
h∈Π(µ,ν)

max
(i,j)

(hi,j + c(xi, yj)).

Let us look at

M = max
λ

min
h∈Π(Rλ)

max
(i,j)∈Rλ

(hi,j + c(xi, yj)),

which is the right hand side of the inequality we wish to prove. For each one
of the distinct λ’s, we pick hλ ∈ Rλ for which max(i,j)∈Rλ(hi,j + c(xi, yj))

takes the least possible value, i.e. we pick an optimal plan hλ of the region
Rλ for each λ. Further, let λ̄ be the value of λ at which M is attained. Let
h∗ be the element of Π(µ, ν) such that its restriction to Rλ is hλ, for each
λ ∈ Λ(µ) ∪ Λ(ν). We claim that h∗ is optimal for dc(µ, ν). In fact, if it is
not, then there is another h0 ∈ Π(µ, ν) such that

max
(i,j)

(h0
i,j + c(xi, yj)) 6 max

(i,j)
(hi,j + c(xi, yj)) ∀h ∈ Π(µ, ν).

In particular, if h = h∗, then, by the assumption just made, the inequality
must be strict, and

max
(i,j)∈Rh∗

(h0
i,j + c(xi, yj)) 6 max

(i,j)
(h0
i,j + c(xi, yj)) < max

(i,j)
(h∗i,j + c(xi, yj)).

But the maximum value of the function λ 7→ max(i,j)∈Rλ(h∗i,j + c(xi, yj))
is M and is attained at λ = h∗. Thus, it follows that

max
(i,j)∈Rλ?

(h0
i,j + c(xi, yj)) < max

(i,j)∈Rλ?
(λ?i,j + c(xi, yj))

= max
(i,j)∈Rλ?

(hλ̄i,j + c(xi, yj)),

which contradicts the definition of hλ̄. Therefore, λ? is optimal for dc(µ, ν),
so dc(µ, ν) = M . �

4.2. Finding the optimal cost on a region. By Proposition 4.3, to
solve the original problem, it is enough to find the optimal plan for each
λ-region Rλ, hence also finding the respective optimal costs dc(Rλ); the
optimal plan for the original problem will then coincide over each Rλ with
the optimal plan for this region.

To find the optimal plan for the given region Rλ, suppose the cost
function c be given; let us number the values that c takes over Rλ in an
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increasing order. Namely, suppose that s ∈ Z+ be the number of distinct
values that c takes on over the region Rλ and denote these values, in
increasing order, by

β1 < · · · < βs. (14)

For each m ∈ {1, 2, . . . , s} we define the function hmc : Rλ → {−∞, λ} by
the formula

hmc (i, j) :=

{
λ if c(xi, yj) 6 βm,

−∞, otherwise.

That is, hmc is a plan for the region Rλ such that λ appears in the cells that
host one of the smallest m values of c on the region, while −∞ appears
in all the other cells. In particular, for m = s, hsc fills all the cells in the
region Rλ with λ, and hence is a plan for Rλ, that is, hsc ∈ Π(Rλ). This
motivates the following definition.

Definition 4.4. Given λ, a λ-region Rλ, and a cost function c, let m be
the smallest integer for which the function hmc on the region Rλ constitutes
a plan for Rλ, i. e.

mc(λ) = min{m : hmc ∈ Π(Rλ)}.

It is convenient to assign to each (i, j) ∈ Rλ the number (from 1 to
s) that the value c(xi, yj) occupies in the list (14). Such an assignment is
given by the function f : Rλ → {1, 2, . . . , s} determined by the condition:

f(i1, j1) < f(i2, j2) if and only if c(xi1 , yj1)

< c(xi2 , yj2) for (i1, j1), (i2, j2) ∈ Rλ. (15)

We illustrate the above definitions with the following example.

Example 4.5. Suppose the region is {1, 2, 3}2 and the cost function (re-
stricted to this region) is, in matrix form,

[c(xi, yj)]
3
i,j=1 =

2 4 8
8 2 0
2 0 5

 .
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Then f(2, 3) = f(3, 2) = 1, f(1, 1) = f(2, 2) = f(3, 1) = 2, f(1, 2) = 3,
f(1, 3) = f(2, 1) = 4, and

h1
c =

−∞ −∞ −∞
−∞ −∞ λ
−∞ λ −∞

 , h2
c =

 λ −∞ −∞
−∞ λ λ
λ λ −∞

 ,

h3
c =

 λ −∞ −∞
−∞ λ λ
λ λ λ

 , h4
c =

λ λ λ
λ λ λ
λ λ λ

 .

Here mc(λ) = 2, hmc(λ)
c = h2

c .

Lemma 4.6. Let Rλ be a λ-region, c be a cost function. Let h ∈ Π(Rλ) be
a minimizer for dc(Rλ). Then the support of h is included in the support
of hmc(λ)

c and, with the notation of (14),

dc(Rλ) = λ+ βmc(λ).

Moreover, hmc(λ)
c is itself a minimizing plan.

Proof. Let {(xi1 , yj1), . . . , (xip , yjp)} be the support of h. Then

dc(Rλ) = max
16k6p

{c(xik , yjk) + λ}.

With the notation of (14), let βm be the largest of the c(xik , yjk); then
dc(Rλ) = λ+ βm. But then the function hmc , by definition, must place a λ
in every cell (i, j) such that c(xi, yj) ∈ {β1, . . . , βm}. Thus, the support of
h is included in the support of hmc , and hmc is a plan, so mc(λ) 6 m and

dc(Rλ) = λ+ βmc(λ) 6 λ+ βm = dc(Rλ).

On the other hand, since hmc(λ)
c is a plan, we must have

dc(Rλ) 6 λ+ βmc(λ).

Combining the last two inequalities, we obtain that dc(Rλ) = λ+βmc(λ), as
desired, and m = mc(λ), so the support of h is included in the support of
h
mc(λ)
c . This means hmc(λ)

c is itself a minimizing plan, and the last assertion
follows. �

We collect the preceding conclusions in the following:

Theorem 4.7. Let µ ∈M(X), ν ∈M(Y ), that is, discrete max-plus prob-
ability measures on X and Y respectively, namely: µ = maxmi=1(ki + δxi),
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ν = maxnj=1(kj + δyj ), and let c : X × Y → [0,∞) be a given cost func-
tion. To obtain an optimal tropical plan h between µ and ν, one considers
for every λ ∈ Λ(µ) ∪ Λ(ν) (i. e. for each distinct weight of either µ and
ν) the respective region Rλ and a minimizing plan hλ for each Rλ (e.g.
hλ := h

mc(λ)
c ), setting then h ∈ Π(µ, ν) to be the plan whose restriction

over each Rλ coincides with hλ. Furthermore,

dc(µ, ν) = max
λ∈Λ(µ)∪Λ(ν)

(λ+ c(xiλ , yjλ)),

where each (iλ, jλ) ∈ f−1(mc(λ)), f standing for the numbering function
defined by condition (15). In particular, if all the weights ki and lj are
distinct, except k1 = l1 = 0, then

dc(µ, ν) = max
16i6m

min
j6pi

(ki + c(xi, yj)) ∨ max
16j6n

min
i6qj

(lj + c(xi, yj)).

Proof. It is a direct consequence of combining Lemma 4.6 with Proposi-
tion 4.3. �

4.3. Remarks on uniqueness of plans on a region. As we see fom
Example 4.5„ the function hmc(λ)

c (i.e. the first function on Rλ, as we go
from m = 1 to m = s, that happens to be a plan) is not necessarily a
reduced plan. Another, simpler, example of such a situation is

[c(xi, yj)]
2
i,j=1 =

(
1 3
3 3

)
;

indeed, supposing {(1, 1), (1, 2), (2, 1), (2, 2)} is a region Rλ, then, here,
mc(λ) = 2, and hmc(λ) is the 2× 2 matrix with λ in every entry.

We can state the following about reduced minimized plans and unique-
ness of minimizing plans of a region.

Proposition 4.8. Let Rλ be a λ-region (corresponding to some discrete
max-plus probability measures µ and ν), c : X×Y → [0,∞) be a cost func-
tion. If hmc(λ)

c is a reduced plan, then it is the unique reduced minimizing
plan for dc(Rλ). Vice versa, if a minimizing plan for dc(Rλ) contains only
−∞ and λ and is unique among minimizing plans with this property, then
it is reduced and must coincide with hmc(λ)

c .

Proof. To prove the first assertion, suppose that hmc(λ)
c is a reduced plan

for dc(Rλ). It is minimizing by Lemma 4.6. If there is another reduced
minimizing plan h for dc(Rλ), then by Lemma 4.6 its support is a subset
of the support of hmc(λ)

c . Hence if h 6= h
mc(λ)
c , then, for some (xi, yj) one
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has h(xi, yj) = −∞ and hmc(λ)
c (xi, yj) = λ. But, hmc(λ)

c being a reduced
plan (by assumption), either the i-th row of the matrix [h

mc(λ)
c (xk, yl)]k,l,

or its j-th column, contain only −∞, except at (i, j) where λ is. Therefore,
the matrix [h(xk, yl)]k,l has either all the i-th column or all the j-th row
full of −∞, contradicting the fact that h is a plan for Rλ, hence proving
the assertion.

To prove the second assertion, let h be the unique minimizing plan for
dc(Rλ) among minimizing plans containing only −∞ and λ. It has to be
reduced by Lemma 3.2. On the other hand, also hmc(λ)

c contains only −∞
and λ and is a minimizing plan for dc(Rλ), by Lemma 4.6. Thus h = h

mc(λ)
c

as claimed. �

We remark that the latter Proposition 4.8 asserts that having a unique
plan (among all plans containing only −∞ and λ) is equivalent to hmc(λ)

c

being reduced, but this is not equivalent to the existence of a unique
reduced minimizing plan as the following example shows.

Example 4.9. Suppose λ = 0.
(1) If the cost function is

[c(xi, yj)]
2
i,j=1 =

(
1 2
4 3

)
,

then hmc(λ)
c is not reduced; there are two minimizing plans (con-

taining only 0 and −∞), with one of them the only reduced mini-
mizing plan:

hmc(λ)
c =

(
0 0
−∞ 0

)
, h1 =

(
0 −∞
−∞ 0

)
.

(2) If the cost function is

[c(xi, yj)]
3
i,j=1 =

1 4 2
6 7 8
5 9 3

 ,

then h
mc(λ)
c is not reduced, and there are at least two reduced

minimizing plans:

hmc(λ)c =

0 0 0
0 −∞ −∞
0 −∞ 0

 , h1 =

−∞ 0 0
0 −∞ −∞
0 −∞ −∞

 ,
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h2 =

−∞ 0 −∞
0 −∞ −∞
−∞ −∞ 0

 .

4.4. A remark on perfect matchings. Of particular interest, as in the
classical mass transportation problem, are minimizing plans supported on
subsets of the type {(x1, yσ(1)), . . . , (xn, yσ(n))}, where σ : {1. . . . , n} →
{1. . . . , n}. We will call them perfect matching plans. The plan h1 in Ex-
ample 4.9(1) and the plan h3 in Example 4.9(2) are perfect matchings,
while the other plans in these examples are not. The example below shows
that for some data one might have no perfect matching minimizing plans.

Example 4.10. Consider the cost matrix

[c(xi, yj)]
3
i,j=1 =

5 1 5
5 2 5
3 5 4

 .

If k3 = k2 = k1 = l3 = l2 = l1 = 0, then

h =

−∞ 0 −∞
−∞ 0 −∞

0 −∞ 0


is the unique minimizing plan (among plans containing only 0 and −∞),
but is not a perfect matching.

We stress that the nonexistence of the optimal tropical plans even when
the max-plus probability measures µ and ν have all the weights equal to
zero (as we said earlier, we call this case fundamental) is in striking contrast
with the classical optimal mass transportation. The latter always admits
an optimal transport plan corresponding to a perfect matching (i. e. a
permutation matrix) between discrete measures which are sums of Dirac
masses with equal weights, by virtue of the Birkhoff-von Neumann theorem
which states that the set of extreme points of the Birkhoff polytope of
bistochastic matrices in Rn2

is exactly the set of permutation matrices
(and hence a linear functional on this polytope always attains its minimum
on a permutation matrix).

The following assertion holds true.

Proposition 4.11. Let µ = maxnj=1(kj + δxj ), ν = maxnj=1(lj + δyj ), with
the elements arranged as in (12) as usual. If there is j ∈ {1, . . . , n} such
that kj 6= lj, then there can be no plan that would correspond to a perfect
matching.
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Proof. If h ∈ Π(µ, ν) is not reduced, then it does not correspond to a
perfect matching, so assume that h ∈ ΠR(µ, ν). Recall the definition 13
and consider the disjoint regions Rλk , k = 1, . . . , r determined by the plan
h, where λk, k = 1, . . . , r are all the distinct weights of the max-plus
probability measures µ and ν. Suppose that the set {i : ki = λk} has mk,1

elements, and the set {j : lj = λk} has mk,2 elements; at least one of these
two numbers must be positive. Observe that the plan h must have at least
max{mk,1,mk,2} finite (i.e. different from −∞) entries on the region Rλk .
Thus, the plan h has at least

m = max{m1,1,m1,2}+ · · ·+ max{mr,1,mr,2}

finite entries in total. Keep in mind that
r∑

k=1

mk,1 =
r∑

k=1

mk,2 = n.

The plan will correspond to a perfect matching only if there are n finite
entries in total. The only way to have m = n is if mk,1 = mk,2 for every
k = 1, . . . , r. Given that the weights are arranged as in (12) as usual, the
conclusion follows. �

§5. Uniqueness of solution and perfect matchings for
random costs

In this section, we will try to elucidate some questions regarding the
optimal cost, perfect matchings and uniqueness when we introduce some
randomness in the cost function. We will limit ourselves to the fundamental
case (i.e. when all the weights of the discrete max-plus probability measures
are zero) and with m = n, i. e.:

µn0 = max{0 + δx1
, . . . 0 + δxm},

νn0 = max{0 + δy1 , . . . , 0 + δyn}.

with xj , j = 1, . . . , n as well as yi, i = 1, . . . ,m all distinct. In what follows
the sequences of max-plus probability measures µn0 and νn0 as above are
fixed, while the cost function is random, i. e. is represented by a Bernoulli
random matrix, i. e. each entry in the n × n cost matrix is independent
from the others and takes the value β1 with probability p and β2 with
probability q = 1− p, where β1 < β2.
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5.1. Optimal tropical cost for random cost matrices. The following
statement holds true.

Theorem 5.1. Let β1, β2 be nonnegative numbers, with β1 < β2, and sup-
pose that for each n, µn0 and νn0 are discrete max-plus probability measures
with all their weights equal to zero, and cn is a Bernoulli cost matrix:
P(cn(xi, yj) = β1) = p, P(cn(xi, yj) = β2) = q = 1−p for i, j ∈ {1, . . . , n},
where x1, . . . , xn and y1, . . . , yn are the points of the support of µn0 and νn0 .
If q < 1, then

P(dcn(µn0 , ν
n
0 ) = β1)→ 1 as n→∞.

Proof. Even though a very short argument can be provided, we will de-
rive a formula for the probability under question. Referring to Lemma 4.6
(and recall definition 4.4) the optimal tropical cost dcn between µn0 =
maxni=1(0 + δxi) and νn0 = maxnj=1(0 + δyj ) will be β1 or β2 depending on
whether mcn(0) is 1 or 2 respectively. It is 1 if and only if in the matrix
for cn there is at least one β1 in every row and in every column. Denote
by Fi the event that there is at least one β1 in the i-th row of the matrix,
and by Cj the event that there is at least one β1 in the j-th column of the
matrix. In the calculation that follows we retain, for the sake of clarity,
the notation m for the number of rows and n for the number of columns in
the cost matrix, although one really has m = n. Therefore for the indices
i and j one has i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Thus

P(dcn(µn0 , ν
n
0 ) = β1) = P((∩mi=1Fi) ∩ (∩j=1Cj))

= 1− P((∪mi=1F
c
i ) ∪ (∪j=1C

c
j )),

where the upper index c denotes the complement of the event. We have

P((∪mi=1F
c
i ) ∪ (∪nj=1C

c
j ))

=

m+n∑
s=1

(−1)s+1
∑
a+b=s

(a,b) 6=(0,0)

(
m

a

)(
n

b

)
P(F c1 ∩ · · · ∩ F ca ∩ Cc1 ∩ · · · ∩ Ccb )

=

m+n∑
s=1

(−1)s+1
∑
a+b=s

(
m

a

)(
n

b

)
qmn−(m−a)(m−b)

= − qmn
∑

06a6m
06b6n

(a,b)6=(0,0)

(−1)a+b

(
m

a

)(
n

b

)
q−(m−a)(m−b).
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Assuming that p < 1 (otherwise P(dc(µ0, ν0) = β1) = 1 for any n so that
there is nothing to prove). Then

P((∪mi=1F
c
i ) ∪ (∪nj=1C

c
j ))

= − qmn
( ∑

06a6m
06b6n

(−1)a+b

(
m

a

)(
n

b

)
q−(m−a)(m−b) − q−mn

)

= − qmn(−1)n
m∑
a=0

(
m

a

)
(−1)a

n∑
b=0

(−1)n−b
(
n

b

)
(q−(m−a))n−b + 1

= − qmn(−1)m+n
b∑

a=0

(
m

a

)
(−1)m−a(1− q−(m−a))n + 1.

Recalling that m = n, we get

P(dcn(µn0 , ν
n
0 ) = β1) = qn

2
n∑
j=0

(−1)j
(
n

j

)
(1− q−j)n. (16)

Thus,
P(dnc (µn0 , ν

n
0 ) = β1)→ 1 as n→∞,

if q < 1, proving the claim. �

For the following remark, let us introduce a special notation for the
expression in the right hand side of (16), namely, set

s(n; p) :=

(1− p)n2
n∑
j=0

(−1)j
(
n
j

)
(1− (1− p)−j)n. if p ∈ [0, 1),

1, if p = 1.

Remark 5.2. The relationship (16) reads

lim
n

s(n; p) = 1, 0 < p 6 1.

It is also easy to show that

lim
p→0

s(n; p) = 0, lim
p→1

s(n; p) = 1, n ∈ N,

so that p 7→ s(n; p) is continuous over [0, 1]. The asymptotics of s, hence
that of the probability of the optimal tropical cost equaling the minimum
value of the cost function, may be interesting also for the more general
cases when p is not constant but depends on n. For instance, one has
limn→∞ s(n, 1/nγ) = 0 for all γ > 1 and limn→∞ s

(
n, 1/n1/2

)
= 1.
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Remark 5.3. A quite similar situation occurs not only when the cost
is given not by a Bernoulli random matrix, but, say, by a binomial one.
Namely, suppose now that s ∈ N is fixed, and each entry in the cost
matrix cn can take one of the values β1 < · · · < βs (as in (14)), with β1

appearing with probability p1. Let q := 1− p1. Then the lower bound for
P(dcn(µn0 , ν

n
0 ) = β1) can be obtained in the same way as in the proof of

the Theorem 5.1. Therefore

lim
n→∞

P(dc(µ
n
0 , ν

n
0 ) = β1) = 1.

Thus, even if the available choices for the entries of the cost matrix for
cn is a large but fixed number, the optimal tropical cost between µn0 and
νn0 is equal to the the smallest value β1 of the cost with large probability
for large n (with probability of this event tending to one as n → ∞).
Moreover, if pj is the probability of βj appearing in any given entry of the
cost matrix, then it follows from the calculation above that

P (dcn(µn0 , ν
n
0 ) = βj) = s

(
n,

j∑
p=1

pk

)
− s

(
n,

j−1∑
p=1

pk

)
, (17)

which tends to zero as n → ∞, the above equality (17) giving the rate of
convergence.

5.2. Presence of perfect matching optimal plans. We consider the
following definition.

Definition 5.4. Let µ and ν be discrete max-plus probability measures
and let h be a plan for a square region Rλ. We will say that h contains a
perfect matching, if there is a perfect matching plan h̃ for the same region
with support contained in the support of h.

In other words, h is a perfect matching plan for a region Rλ if it can be
“simplified” by substituting some of its λ entries by −∞ to get a perfect
matching plan for a Rλ. We will again discuss the case of a random cost
provided by a Bernoulli cost matrix, and restrict ourselves to the funda-
mental case. To simplify the discussion, let β1 = 0 and β2 = 1. If there is
a zero in every row and every column of the matrix, then, as we know, the
optimal tropical cost is 0, but if we look at the corresponding plan (rep-
resented by the matrix h), it may be impossible to “simplify” it (change
some of the entries equal to 0 to −∞) so as to produce a perfect matching
plan (see Example 4.10), that is, it does not contain a perfect matching. In
the opposite direction, if the corresponding optimal plan contains a perfect
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matching, then the optimal tropical cost is 0. Summing up, there are the
following possibilities.

• The optimal tropical cost is 1. This occurs exactly when some row
or column of the cost matrix fails to have a 0. Then there is always
a perfect matching plan. In fact, the absence of a 0 in some row
or column of the cost matrix means that hmc(0)

c is the matrix with
1 in all the entries, which contains any perfect matching plan. For
instance, if the cost matrix is

[ci,j ]
2
i,j=1 =

(
0 1
1 1

)
,

then a possible perfect matching minimizing plan is

[hi,j ]
2
i,j=1 =

(
0 −∞
−∞ 0

)
.

• The optimal tropical cost is 0, but the optimal plan does not con-
tain a perfect matching.

• The optimal tropical cost is 0, and the optimal plan contains a
perfect matching.

For the following theorem we give here a random graph argument based
on the strong and remarkable result of Bollobás and Thomason (see [2,
Theorem 7.11]) that will also be used in the proof of Theorem 5.7 below.

Theorem 5.5. Let β1 < β2, and suppose that for each natural number n,
µn0 and νn0 are discrete max-plus probability measures with all their weights
equal to zero, and cn is a Bernoulli cost matrix: P(cn(xi, yj) = β1) = pn,
P(cn(xi, yj) = β2) = qn = 1−pn for i, j ∈ {1, . . . , n}, where x1, . . . , xn and
y1, . . . , yn are the points of the support of µn0 and νn0 . If pn > (log n)/n for
all but finitely many n, then

lim
n→∞

P(∃h ∈ Πcn(µn0 , ν
n
0 ) : h contains a perfect matching) = 1.

Proof. We associate cn with one and only one random bipartite (undi-
rected) graph, denoted byGn(cn), with the sets {x1, ..., xn} and {y1, ..., yn}
as the two disjoint sets of vertices in the following way: cn(xi, yj) = β1 if
xiyj is an edge, and cn(xi, yj) = β2 otherwise. The plan h

mcn (0)
cn (recall

the definitions of Section 4.2) contains a perfect matching plan if and only
if the bipartite graph Gn(cn) contains a perfect matching. In the proof
of [2, Theorem 7.11], it is shown that the probability that the random bi-
partite graph contains a perfect matching approaches 1 as n→∞. Thus,
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the probability that hmcn (0)
cn contains a perfect matching also approaches 1

as n→∞. Since hmcn (0)
cn is always an optimal plan, the result follows. �

Remark 5.6. An alternative proof of Theorem 5.5 can be offered as fol-
lows. Regardless of whether the optimal tropical cost is β1 or β2, for the
plan hmc(0)

c (which is always minimizing), the property of containing a per-
fect matching plan is characterized by the fact that, for some permutation
σ ∈ Sn, the product

Πn
j=1|β2 − c(xj , yσ(j))|

is different from zero (necessarily then it is equal to (β2 − β1)n). The
latter is guaranteed, for instance, when the matrix [β2 − c(xi, yj)]ni,j=1 is
not singular (i.e. has nonzero determinant). By a theorem of Basak and
Rudelson [1], this probability approaches 1, for every 0 < p < 1.

5.3. Uniqueness of minimizing plans. We show now that in the fun-
damental case (when all the weights of the discrete max-plus masure are
zero), when the uniform probability is put on the space of the cost matri-
ces, the uniqueness of a minimizing plan containing only 0 and −∞ is an
asymptotically rare event in the sense that its probability tends to zero as
the number of weights approaches infinity. Namely, the following result is
valid.

Theorem 5.7. Fix any positive real number M > 0 and let {Xn}∞n=1 and
{Yn}∞n=1 be sequences of subsets of X and Y respectively, with #Xn =
#Yn = n for all n. For each n ∈ N, let
µn0 := max{0 + δx1

, . . . , 0 + δxn}, νn0 := max{0 + δy1 , . . . , 0 + δyn},
where x1, . . . , xn are the elements of Xn and y1, . . . , yn those of Yn. For
each n let Pn be the uniform probability measure over [0,M ]Xn×Yn . Define
Cn ⊂ [0,M ]Xn×Yn as the set of functions c such that there is a unique,
among plans containing only 0 and −∞, minimizing plan for dc(µn, νn).
Then

lim
n→∞

Pn(Cn) = 0.

Proof. In order to apply the theory from [2], let us introduce the notion
of bipartite graph process, specifically, on the set of vertices Xn ∪ Yn. Any
given bijective function f : {1, . . . , n2} → {1, . . . , n}2 we define determines
a sequence of n2 + 1 graphs in the following way: at time step t = 0 there
are no edges and at step t ∈ {1, . . . , n2} the edge (i, j) := f(t) is added.
At the n2-th time step we obtain the complete bipartite graph. Note that
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the set of bijective functions f : {1, . . . , n2} → {1, . . . , n}2 is in one-to-one
correspondence with the set of permutations of {1, . . . , n2}, i. e. with the
symmetric group Sn2 of order n2; in fact, each f−1 is an enumeration of
the cells of an n×n matrix. If the function f (or equivalently the respective
permutation σ ∈ Sn2) is chosen randomly, with uniform probability, then
we have a random bipartite graph process, which coincides with the one
described in [2] (see pp. 42 and 171 therein). Let

Ωn := {ω : Xn × Yn → [0,M ] : ω takes n2 distinct values },

and for each ω ∈ Ωn define the mapping fω : {1, . . . , n2} → {1, . . . , n}2 by
setting fω(t) := (i, j), where (i, j) is the unique pair of indices such that
ω(xi, yj) is the t-th largest value among the n2 distinct values ω(x1, y1), . . .,
ω(xn, yn). Thus, each ω ∈ Ωn determines an ordering of the matrix cells
fω which, in turn, gives the above described graph process with f := fω.

Since Pn is the uniform measure on [0,M ]Xn×Yn , we have Pn(Ωn) = 1.
Moreover, since Pn is uniform, for each bijective g : {1, ..., n2}→{1, ..., n}2,
the set {ω ∈ Ωn : fω = g} has the same Pn-measure, namely, 1/(n2)!.
Hence, these sets form a partition of the probability space

([0,M ]Xn×Yn ,B([0,M ]Xn×Yn), Pn)

into (n2)! equiprobable events, where B([0,M ]Xn×Yn) stands for the Borel
σ-algebra of [0,M ]Xn×Yn . Thus, the bipartite random graph process can
be equivalently sampled from this probability space, rather than directly
from the set of bijective g : {1, ..., n2} → {1, ..., n}2 (or equivalently, from
Sn2) endowed with the uniform probability. Let us denote by {Gt}n

2

t=0 a
generic realization of our bipartite random graph process on Xn ∪Yn, and
let τ be the stopping time τ := min{t : Gt has degree 1}. That is, τ is
the first instance t such that every xi belongs to an edge and also every
yj belongs to an edge. Recalling now Definition 4.4 and the algorithm of
Section 4.2, we have:

τ(ω) = mω(0) (18)

for Pn-a.e. ω ∈ Ωn. Denote by Dn the event that Gτ contains a perfect
matching. By [2, theorem. 7.11],

lim
n→∞

Pn(Dn) = 1, (19)

which means, in words, that by the time the bipartite graph achieves de-
gree 1 (this is exactly the time when the minimizing plan hmω(0)

ω is formed,
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by (18)), the graph contains a perfect matching. Let

Hn := {ω ∈ Ωn : hmω(0)
ω is not reduced}.

By Proposition 4.8, we will be done if we show that Pn(Hn)→ 1 as n→∞.
Now, the event Dn is the disjoint union of Fn and En, where Fn is the
event that Gτ is exactly a perfect matching, and En is the event that
Gτ has a perfect matching and at least one more edge. As can easily be
argued, Pn(Fn)→ 0 as n→∞ (in fact, for Fn to hold, at the last step of
forming Gτ only one possibility of forming an edge, or equivalently only
one way of placing a zero in the respective row of the matrix, results in a
perfect matching). Thus, by (19), Pn(En) → 1 as n → ∞. On the other
hand, the event En is included in Hn: indeed, a graph in En corresponds
to a plan in the support of which there is triple of indices, two of which
are in the same column and two of which are in the same row, thereby
violating Definition 3.1. Therefore, limn→∞ Pn(Hn) = 1 hence concluding
the proof. �
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