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Abstract. We consider a conormal problem for a class of quasilin-
ear divergence form elliptic equations modeled on the m-Laplacian.
The nonlinearities support controlled growths in the solution and
its gradient, while their behaviour with respect to the independent
variable is restrained in terms of Morrey spaces.

We show global essential boundedness for the weak solutions,
generalizing this way the classical Lp-result of Ladyzhenskaya and
Ural’tseva to the settings of the Morrey spaces.

To Nina N. Ural’tseva with profound respect and
all the best wishes on the occasion of her 90th anniversary

§1. Introduction

Our goal in the present paper is to derive essential boundedness of
the weak solutions u belonging to the Sobolev space W 1,m(Ω) with m ∈
(1, n], of the conormal derivative problem for second-order, divergence form
elliptic equations{

diva(x, u,Du) = b(x, u,Du) x ∈ Ω,

a(x, u,Du) · ν(x) = ψ(x, u) x ∈ ∂Ω,
(1.1)

where Ω ∈ Rn, n > 2, is a bounded domain with Lipschitz continuous
boundary, and ν(x) =

(
ν1(x), . . . , νn(x)

)
stands for the unit outward nor-

mal to ∂Ω.
The nonlinear terms a(x, z, ξ) =

(
a1(x, z, ξ), . . . , an(x, z, ξ)

)
, b(x, z, ξ)

and ψ(x, z) are Carathéodory functions, i.e., these are measurable in x ∈ Ω
(x ∈ ∂Ω in the case of ψ) for all z ∈ R, ξ ∈ Rn and continuous in (z, ξ) for
almost all x ∈ Ω.

Key words and phrases: nonlinear elliptic equations, divergence form, weak solution,
conormal problem, coercivity, controlled growths, boundedness, Morrey spaces.
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The divergence form nonlinear operator in (1.1) is modeled on the m-
Laplacian with arbitrary m ∈ (1, n], that means we suppose hereafter
the validity of the following coercivity condition of order m: There exist
constants γ,Λ > 0 such that

a(x, z, ξ) · ξ > γ|ξ|m − Λ|z|m
∗
− Λϕ1(x)

m
m−1 (1.2)

for a.a. x ∈ Ω, all (z, ξ) ∈ R × Rn, ϕ1 ∈ L
m
m−1 (Ω), and where m∗ stands

for the Sobolev conjugate of m,

m∗ =

{
nm
n−m if m < n,

any exponent > n if n = m.

Apart from the coercivity condition (1.2), we suppose that the nonlin-
earities in (1.1) support controlled growths with respect to the unknown
function and its gradient. Namely, we assume

|a(x, z, ξ)| 6 Λ
(
ϕ1(x) + |z|

m∗(m−1)
m + |ξ|m−1

)
(1.3)

with ϕ1 as in (1.2);

|b(x, z, ξ)| 6 Λ
(
ϕ2(x) + |z|m

∗−1 + |ξ|
m(m∗−1)

m∗
)

(1.4)

with ϕ2 ∈ L
mn

mn+m−n (Ω) and

|ψ(x, z)| 6 ψ1(x) + ψ2(x)|z|β , (1.5)

where β ∈
[
0, n(m−1)

n−m

)
, ψ1 ∈ L

m(n−1)
n(m−1)

+κ(∂Ω), ψ2 ∈ L
m(n−1)

n(m−1)−β(n−m)
+κ(∂Ω)

with a κ > 0 and n(m−1)
n−m to be intended as +∞ when m = n.

As usual, fixed a real number m ∈ (1, n], a function u ∈ W 1,m(Ω)
is called a weak solution to (1.1) when it satisfies the standard integral
identity∫

Ω

a
(
x, u(x), Du(x)

)
·Dv(x) dx+

∫
Ω

b
(
x, u(x), Du(x)

)
v(x) dx

=

∫
∂Ω

ψ
(
x, u

)
v(x) dΓx

(1.6)

for each v ∈W 1,m(Ω). Indeed, the convergence of all the integrals above is
ensured by the controlled growths assumptions (1.3), (1.4) and (1.5) and
the required integrabilities of the functions governing the x-behaviours
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therein. It is worth to note that the controlled growths conditions are the
minimal ones that guarantee the concept of weak solution makes sense.

In what follows, only for the sake to avoid unessential technicalities in
managing the surface integral in (1.6), we will suppose additionally that

ψ(x, z)z 6 0 for a.a. x ∈ ∂Ω, z ∈ R. (1.7)

Boundedness of the classical solutions (u ∈ C1(Ω∩C2(Ω)) to quasilinear
conormal problems has been studied by Lieberman in [8, 9] (see also [10])
in the sub-controlled case when a(x, z, ξ) and b(x, z, ξ) grow as |z|m−1 and
|ξ|m−1. In the same situation, Winkert proved in [14] boundedness also of
the weak solutions to (1.1). Regarding the case of controlled growths of
the nonlinearities, we dispose of the classical result of Ladyzhenskaya and
Ural’tseva [7, Chapter X, §2] where boundedness and Hölder continuity of
the weak solutions have been proved when the behaviour in x of nonlinear-
ities in (1.1) is controlled in terms of suitable Lebesgue spaces (see also [6]
in the particular case when m = 2). We have to note also the deep papers
of Arkhipova [2, 3], where reverse Hölder inequalities have been derived
for solutions of quasilinear conormal problems. As consequence, improving
of gradient integrability follows as well as various regularity results.

Since the controlled growths are sharp for what concerns boundedness
of the weak solutions (see the counterexamples in [7, Chapter I, §2]), our
aim here is to weaken the hypotheses on the functions ϕ1 and ϕ2 that
govern the behaviour of the nonlinear terms of (1.1) with respect to the
independent variable x. Precisely, we will suppose these belong to Morrey
spaces with suitable exponents. For readers convenience, recall that the
Morrey space Ls,θ(Ω), s ∈ [1,∞) and θ ∈ [0, n], is the collection of all
functions v ∈ Ls(Ω) such that

‖v‖Ls,θ(Ω) := sup
x0∈Ω, ρ>0

ρ−θ ∫
Bρ(x0)∩Ω

|v(x)|s dx


1/s

<∞.

The last quantity defines a norm, under which Ls,θ(Ω) becomes a Banach
space, and the limit cases θ = 0 and θ = n give rise, respectively, to Ls(Ω)
and L∞(Ω).

Turning back to our problem (1.1), regarding the behaviour of the non-
linear terms with respect to x, we suppose
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
ϕ1∈Lp,λ(Ω), p>

m

m− 1
, λ∈(0, n), (m−1)p+λ>n;

ϕ2∈Lq,µ(Ω), q>
mn

mn− n+m
, µ∈(0, n), mq+µ>n.

(1.8)

Let us recall that ϕ1 ∈ L
m
m−1 (Ω) and ϕ2 ∈ L

mn
mn+m−n (Ω) are necessary

conditions, ensuring convergence of the integrals involved in (1.6). We need
here the slightly stronger hypotheses p > m

m−1 and q > mn
mn−n+m in order

to get better integrability of the gradient through the results of Arkhi-
pova [2, 3].

Under the above assumptions, our main result Theorem 3.1 asserts that
each W 1,m(Ω)-weak solution of the conormal problem (1.1) is essentially
bounded in terms of known quantities, of ‖Du‖Lm(Ω) and of the uniform
integrability of |Du|m in Ω. Similar result has been proved in [4] for the
weak solutions to quasilinear Dirichlet problems. It is worth noting also
the deep paper of Nazarov and Ural’tseva [12] where local properties as
strong maximum principle, Harnack inequality and Hölder continuity have
been obtained for weak solutions to linear divergence form equations with
Morrey lower-order coefficients.

Let us note that, taking λ = µ = 0 in (1.8), we recover the boundedness
result of Ladyzhenskaya and Ural’tseva ([7, Chapter X, §2]). On the other
hand, the restrictions (m−1)p > n and mq > n are sharp when working in
the framework of the Lebesgue spaces as known by the counterexamples in
[7, Chapter I, §2]. Our boundedness result show that, taking ϕ1 and ϕ2 in
Morrey spaces, the values of p and q could be even decreased at the expense
of increase λ and µ, still maintaining the restrictions (m−1)p+λ > n and
mq + µ > n, respectively.

The technique used is the proof of Theorem 3.1 is that of [4], and it relies
on the De Giorgi approach to the boundedness as adapted by Ladyzhen-
skaya and Ural’tseva (cf. [7, Chapter IV]) to quasilinear equations. Namely,
using the controlled growth assumptions, we derive decay estimates for the
total mass of the weak solution taken over its level sets. However, unlike
the Lp-approach of Ladyzhenskaya and Ural’tseva, the mass we have to
do with is taken with respect to a positive Radon measure m which de-
pends not only on the Lebesgue measure, but also on ϕ

m
m−1

1 , ϕ2 and a
suitable power of the solution itself. Thanks to the Morrey hypotheses
(1.8), the measure m allows to apply a precise inequality of trace type due
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to D. R. Adams [1], and this leads to a bound of the m-mass of u in terms
of the m-energy of u. At this point we combine the controlled growths
with the better-gradient-integrability results of Arkhipova ([2, 3]) in order
to estimate the m-energy of u in terms of a small multiplier of the same
quantity plus a suitable power of the m-measure of the solution level set.
The global boundedness of the weak solution then follows by a classical
result known as Hartman–Stampacchia maximum principle.

Throughout the paper the phrase “known quantities” means that a given
constant depends on the data in the above hypotheses, which include n,
m, γ, Λ, p, q, λ, µ, β, κ, ‖ϕ1‖Lp,λ(Ω), ‖ϕ2‖Lq,µ(Ω), ‖ψ1‖

L
m(n−1)
n(m−1)

+κ
(∂Ω)

,

‖ψ2‖
L

m(n−1)
n(m−1)−β(n−m)

+κ
(∂Ω)

, diam Ω and the Lipschitz regularity of ∂Ω. We

will denote by C a generic constant, depending on known quantities, which
may vary within the same formula.

§2. Auxiliary results

We list here some auxiliary results to be used in the proof of our main
result.

Lemma 2.1. (Embeddings between Morrey spaces, see [13]) For arbitrary
s′, s′′ ∈ [1,∞) and θ′, θ′′ ∈ [0, n), one has

Ls
′,θ′(Ω) ⊆ Ls

′′,θ′′(Ω)

if and only if

s′ > s′′ > 1 and
s′

n− θ′
>

s′′

n− θ′′
.

In what follows, we will use a fine integral inequality, known as Adams
trace inequality (see [1]), which regards functions in W 1,r

0 (Ω). Precisely,
given a positive Radon measure m, supported in Ω, assume that

m(Bρ(x)) 6 Kρα0 ∀ x ∈ Rn, ∀ρ > 0, (2.1)

where Bρ(x) is the ball centered at x and of radius ρ, K is an absolute
constant, and

α0 =
s

r
(n− r), 1 < r < s <∞, r < n. (2.2)
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Then∫
Ω

|v(x)|s dm

1/s

6 C(n, s, r)K1/s

∫
Ω

|Dv(x)|r dx

1/r

∀v ∈W 1,r
0 (Ω).

We will need a variant of the this inequality, valid for functions v ∈W 1,r(Ω)
with non necessarily zero boundary trace, where Ω is a bounded and
Lipschitz domain. To get the desired result, it suffices to extend v to
V ∈ W 1,r(Rn) in a way that ‖V ‖W 1,r(Rn) 6 C(∂Ω)‖v‖W 1,r(Ω) and then
multiply by a suitable cut-off function ζ such that ζ ≡ 1 over Ω. Assum-
ing that the measure m is extended as zero outside Ω, application of the
original Adams trace inequality to ζV yields∫

Ω

|v(x)|s dm

1/s

6 C(n, s, r,K, ∂Ω)

∫
Ω

(
|Dv(x)|r + |v(x)|r

)
dx

1/r

for all v ∈ W 1,r(Ω). At this point, interpolating
∫
Ω

|v(x)|r dx on the right-

hand side by means of the Gagliardo–Nirenberg multiplicative inequality
(e.g. [11, Theorem 1.4.8/1]) implies

Lemma 2.2. Let m be a positive Radon measure supported in Ω satisfying
(2.1) and suppose (2.2).

Then there exists a constant C = C(n, s, r, σ,K, ∂Ω) such that∫
Ω

|v(x)|s dm

1/s

6 C


∫

Ω

|Dv(x)|r dx

1/r

+

∫
Ω

|v(x)|σ dx

1/σ


for all v ∈W 1,r(Ω) and all σ ∈ (0, r].
If, in particular, dm = c(x) dx with c ∈ L1,n−r+ε0(Ω) and ε0 > 0, then

there is a constant C = C
(
n, ε0, r, σ, ‖c‖L1,n−r+ε0 (Ω), ∂Ω

)
such that∫

Ω

|v(x)|sc(x) dx

1/s

6 C


∫

Ω

|Dv(x)|r dx

1/r

+

∫
Ω

|v(x)|σ dx

1/σ


for all v ∈W 1,r(Ω) and all σ ∈ (0, r], where s is the unique solution of the
equation n− r + ε0 = s

r (n− r).
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In the particular case when m is the Lebesgue measure supported in Ω,
we have α0 = n whence s = r∗ and Lemma 2.2 implies the next version
of the Sobolev embedding theorem, valid for functions with non necessary
zero boundary trace.

Lemma 2.3. (Sobolev inequality, see also [7, Chapter II, §2]) Let Ω ⊂ Rn
be a bounded domain with Lipschitz continuous boundary and r < n.

Then there exists a constant C depending on n, r, diamΩ and the Lip-
schitz norm of ∂Ω, such that

‖v‖Lr∗ (Ω) 6 C


∫

Ω

|Dv(x)|r dx

1/r

+

∫
Ω

|v(x)|σ dx

1/σ


for all v ∈W 1,r(Ω) and all σ ∈ (0, r].

The next result asserts an improving of integrability property of the
weak solutions to (1.1) and it requires only coercivity and controlled
growths of the nonlinear terms, together with some more integrability of
the functions ϕ1 and ϕ2 than L

m
m−1 (Ω) and L

mn
mn+m−n (Ω), respectively. We

refer the reader to [3, Theorem 4] and the subsequent remarks, and also
to [6, Section 8] in the particular case m = 2.

Lemma 2.4. Assume (1.2)–(1.5) together with ϕ1 ∈ Lp(Ω), p > m
m−1 and

ϕ2 ∈ Lq(Ω), p > mn
mn−n+m . Let u ∈ W 1,m(Ω) be a weak solution of the

conormal problem (1.1).
Then there exists an exponent m0 > m such that u ∈ W 1,m0(Ω) with

the estimate

‖Du‖Lm0 (Ω) 6 C,

where the constant C depends on known quantities, on ‖Du‖Lm(Ω) and on
the uniform integrability of |Du|m in Ω.

Lemma 2.5. (Hartman–Stampacchia maximum principle, see [5] and [7,
Chapter II, Lemma 5.1]) Let τ : R → [0,∞) be a non-increasing function
and suppose there exist constants C > 0, k0 > 0, δ > 0 and α ∈ [0, 1 + δ]
such that

∞∫
k

τ(t) dt 6 Ckα
(
τ(k)

)1+δ ∀k > k0.
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Then τ supports the finite time extinction property, that is, there is a

number kmax, depending on C, k0, δ, α and
∞∫
k0

τ(t) dt, such that

τ(k) = 0 ∀k > kmax.

§3. Global essential boundedness of the weak solutions
to (1.1)

Our main result is the next

Theorem 3.1. Let Ω ∈ Rn be a bounded domain with Lipschitz continuous
boundary ∂Ω and suppose the hypotheses (1.2)–(1.5) and (1.7) are satisfied.

Then each W 1,m(Ω) weak solution to the conormal problem (1.1) is
globally essentially bounded. Precisely, there exists a constantM depending
on known quantities, on ‖u‖Lm(Ω) and ‖Du‖Lm(Ω) and on the uniform
integrability of |Du|m, such that

‖u‖L∞(Ω) 6M. (3.1)

Proof. Let us concentrate to the case m < n firstly, and for this goal
consider the measure

dm :=
(
χ(x) + ϕ1(x)

m
m−1 + ϕ2(x) + |u(x)|

m2

n−m

)
dx,

where χ(x) is the characteristic function of Ω, dx is the Lebesgue measure
and, without loss of generality, the functions ϕ1 and ϕ2 are supposed to
be extended as zero outside Ω.

Setting Bρ for any ball of radius ρ, and using the assumptions (1.8), we
have∫
Bρ

ϕ1(x)
m
m−1 dx 6 ‖ϕ1‖

m
m−1

Lp,λ(Ω)
ρn−

m(n−λ)
p(m−1) = ‖ϕ1‖

m
m−1

Lp,λ(Ω)ρ
n−m+(m−m(n−λ)

p(m−1) )

∫
Bρ

ϕ2(x) dx 6 ‖ϕ2‖Lq,µ(Ω)ρ
n−n−µq = ‖ϕ2‖Lq,µ(Ω)ρ

n−m+(m−n−µq )

where m− m(n−λ)
p(m−1) > 0 and m− n−µ

q > 0 because of (m− 1)p+λ > n and
mq + µ > n. Moreover, u ∈ Lm∗0 (Ω) as consequence of Lemmas 2.4 and
2.3, whence the Hölder inequality yields∫

Bρ

|u(x)|
m2

n−m dx 6 ‖u‖
m2

n−m

Lm
∗
0 (Ω)

ρ
n−m+

mm∗0(n−m)−nm2

m∗0(n−m) (3.2)
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with mm∗0(n−m)−nm2

m∗0(n−m) > 0 since m∗0 > m∗ = nm
n−m .

At this point, defining

ε0 := min

{
m− m(n− λ)

p(m− 1)
,m− n− µ

q
,
mm∗0(n−m)− nm2

m∗0(n−m)

}
> 0,

we have
m(Bρ) 6 Kρ

n−m+ε0

with a constant K depending on known quantities, and this means that m
is a measure for which the Adams trace inequality Lemma 2.2 holds.

Take now any positive constant k > 1 and set

uk(x) = max{u(x)− k, 0}

for the truncated function, and

Ak = {x ∈ Ω: u(x) > k}

for the corresponding upper zero-level set.
Let us note that m(Ak) = 0 for large enough values of k would ensure

the desired boundedness from above for the weak solution, and we will
reach that by means of the Hartman–Stampacchia maximum principle,
Lemma 2.5. For, noting that uk ∈ W 1,m(Ω) and uk ≡ 0 on Ω \ Ak, we
employ first the Hölder inequality to get∫

Ω

uk(x) dm =

∫
Ak

uk(x) dm 6

∫
Ak

dm

1−1/s∫
Ak

|uk(x)|s dm

1/s

.

After that application of the Adams trace inequality (Lemma 2.2) with

α0 = n−m+ ε0, s =
m(n−m+ ε0)

n−m
, r = m, (3.3)

and arbitrary σ ∈ (0,m] yields

∫
Ω

uk(x) dm 6 C(m(Ak))
1− n−m

m(n−m+ε0)


∫
Ak

|Duk(x)|m dx

1/m

+

∫
Ak

|uk(x)|σ dx

1/σ
 . (3.4)
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To estimate them-energy of uk above, we remember that uk ∈W 1,m(Ω),
uk ≡ 0 on Ω \ Ak, Du = Duk a.e. Ak, and use uk as a test function in
(1.6) in order to obtain∫
Ak

a
(
x, u(x), Du(x)

)
·Duk(x) dx+

∫
Ak

b
(
x, u(x), Du(x)

)
uk(x) dx

=

∫
∂Ω∩Ak

ψ
(
x, u(x)

)
uk(x) dΓx.

(3.5)

Now, (1.2) yields∫
Ak

a
(
x, u(x), Du(x)

)
·Duk(x) dx

> γ
∫
Ak

|Duk(x)|m dx− Λ

∫
Ak

|u(x)|m
∗
dx− Λ

∫
Ak

ϕ1(x)
m
m−1 dx. (3.6)

Further on,

0 <
u(x)− k
u(x)

< 1 in Ak,

whence, for a.a. x ∈ Ak one has∣∣b(x, u(x),Du(x))uk(x)
∣∣ =

∣∣b(x, u(x), Duk(x))u(x)
∣∣u(x)− k

u(x)

6 Λ
(
ϕ2(x)|u(x)|+ |u(x)|m

∗
+ |Duk(x)|

m(m∗−1)
m∗ |u(x)|

)
6 Λ

(
ε|Duk(x)|m + C(ε)|u(x)|m

∗
+ ϕ2(x)|u(x)|

)
with arbitrary ε > 0 as consequence of (1.4) and the Young inequality

|Duk(x)|
m(m∗−1)

m∗ |u(x)| 6 ε|Duk(x)|m + C(ε)|u(x)|m
∗
.

Therefore,∫
Ak

b
(
x, u(x), Du(x)

)
uk(x) dx 6 Λε

∫
Ak

|Duk(x)|m dx

+ ΛC(ε)

∫
Ak

|u(x)|m
∗
dx+ Λ

∫
Ak

ϕ2(x)|u(x)| dx. (3.7)
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As for the surface integral in (3.5), we use the hypothesis (1.7) to get

ψ
(
x, u(x)

)
uk(x) = ψ

(
x, u(x)

)
u(x)

u(x)− k
u(x)

6 0 for a.a. x ∈ ∂Ω ∩Ak

whence ∫
∂Ω∩Ak

ψ
(
x, u(x)

)
uk(x) dΓx 6 0. (3.8)

Employing (3.6), (3.7) and (3.8) into (3.5), and choosing ε > 0 small
enough, we obtain the basic energy inequality∫
Ak

|Duk(x)|m dx

6 C

(∫
Ak

ϕ1(x)
m
m−1 dx

︸ ︷︷ ︸
I1

+

∫
Ak

|u(x)|ϕ2(x) dx

︸ ︷︷ ︸
I2

+

∫
Ak

|u(x)|
nm
n−m dx

︸ ︷︷ ︸
I3

)
. (3.9)

The definition of the measure m gives immediately

I1 6 m(Ak) 6 kmm(Ak) (3.10)

since k > 1, while

I2 =

∫
Ak

|u(x)− k + k|ϕ2(x) dx 6
∫
Ak

|uk(x)|ϕ2(x) dx+ k

∫
Ak

ϕ2(x) dx

6
∫
Ak

|uk(x)| dm + km(Ak).

To proceed further, we use (3.4) with (3.3) and the Young inequality to
get∫
Ak

|uk(x)|dm 6 C
(
m(Ak)

) s−1
s

×


∫
Ak

|Duk(x)|m dx

1/m

+

∫
Ak

|uk(x)|σ dx

1/σ
 6 ε ∫

Ak

|Duk(x)|m dx
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+ C(ε)

∫
Ak

|uk(x)|σ dx

m/σ

+ C
(
m(Ak)

) s−1
s

m
m−1

with arbitrary ε > 0 and σ ∈ (0,m].
Noting that s−1

s
m
m−1 = 1 + ε0

(m−1)(n−m+ε0) and

m(Ak) 6 m(Ω) =

∫
Ω

(
1 + ϕ1(x)

m
m−1 + ϕ2(x) + |u(x)|

m2

n−m

)
dx

6 |Ω|+ C

(
‖ϕ1‖

m
m−1

Lp,λ(Ω)
+ ‖ϕ2‖Lq,µ(Ω) + ‖u‖

m2

n−m

Lm
∗
0 (Ω)

)
,

(3.11)

we have(
m(Ak)

) s−1
s

m
m−1 = m(Ak)

(
m(Ak)

) s−1
s

m
m−1−1

= m(Ak)
(
m(Ω)

) s−1
s

m
m−1−1

.

This, together with k > 1 yields

I2 6 ε
∫
Ak

|Duk(x)|m dx+Ckmm(Ak)+C(ε)

∫
Ak

|uk(x)|σ dx

m/σ

, (3.12)

with arbitrary ε > 0 and σ ∈ (0,m].
Regarding I3 in (3.9), we have

I3 =

∫
Ak

|u(x)|
nm
n−m dx =

∫
Ak

|u(x)− k + k|m|u(x)|
m2

n−m dx

6 2m−1

∫
Ak

|uk(x)|m|u(x)|
m2

n−m dx+ km
∫
Ak

|u(x)|
m2

n−m dx


6 2m−1

∫
Ak

|uk(x)|m|u(x)|
m2

n−m dx+ 2m−1kmm(Ak).

The first term above will be estimated by means of the Adams trace in-
equality, observing that |u|

m2

n−m ∈ L1,θ(Ω) as it follows from (3.2) with

θ = n−m+
mm∗0(n−m)− nm2

m∗0(n−m)
> n−m.

We pick now an r′ < m, close enough to m, and such that

n−m <
m

r′
(n− r′) < θ
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in order to have

n− r′ + (n− r′)(m− r′)
r′

< θ,

and then Lemma 2.1 implies |u|
m2

n−m ∈ L1,n−r′+ (n−r′)(m−r′)
r′ (Ω). Therefore,

Lemma 2.2 and the Hölder inequality give∫
Ak

|uk(x)|m|u(x)|
m2

n−m dx

6 C


∫
Ak

|Duk(x)|r
′
dx

m/r′

+

∫
Ak

|uk(x)|σ dx

m/σ


6 C|Ak|
m
r′−1

∫
Ak

|Duk(x)|m dx+ C

∫
Ak

|uk(x)|σ dx

m/σ

with C depending also on
∥∥∥|u| m2

n−m

∥∥∥
L1,θ(Ω)

which is anyway bounded in

terms of ‖u‖
Lm
∗
0 (Ω)

as Lemma 2.4 and (3.2) show.
We have this way

I3 6 C

|Ak|mr′−1

∫
Ak

|Duk(x)|m dx+ kmm(Ak) +

∫
Ak

|uk(x)|σ dx

m/σ


and using it, together with (3.10) and (3.12), (3.9) takes on the form

∫
Ak

|Duk(x)|m dx 6 C

(|Ak|mr′−1 + ε
) ∫
Ak

|Duk(x)|m dx

+ kmm(Ak) +

∫
Ak

|uk(x)|σ dx

m/σ


(3.13)

Further on, we have
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k
nm
n−m |Ak| 6

∫
Ak

|u(x)|
nm
n−m dx

6
∫
Ω

|u(x)|
nm
n−m dx 6 C

(
‖Du‖Lm(Ω) + ‖u‖Lm(Ω)

) nm
n−m

by Lemma 2.3, that means C
(
|Ak|

m
r′−1 + ε

)
on the right-hand side of

(3.13) can be made less than 1/2 if k > k0 for large enough k0, depending
on known quantities, on ‖u‖Lm(Ω) and on ‖Du‖Lm(Ω), and if ε > 0 is small
enough.

Thus (3.13) becomes

∫
Ak

|Duk(x)|m dx 6 C

kmm(Ak) +

∫
Ak

|uk(x)|σ dx

m/σ
 ∀ k > k0

and then (3.4) rewrites as∫
Ω

uk(x) dm

6 C
(
m(Ak)

)1− n−m
m(n−m+ε0)

k(m(Ak)
) 1
m +

∫
Ak

|uk(x)|σ dx

1/σ
 (3.14)

valid for all k > k0 and all σ ∈ (0,m].
Since σ ∈ (0,m] is at our disposal, we will show now that, choosing

appropriately σ, we can reach∫
Ak

|uk(x)|σ dx

1/σ

6 Ck
(
m(Ak)

) 1
m (3.15)

with a constant C depending on known quantities. We will distinguish
between two cases:

Case 1: m < n/2. Taking σ = m2

n−m , we have∫
Ak

|uk(x)|
m2

n−m dx =

∫
Ak

|u(x)− k|
m2

n−m dx
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6C

∫
Ak

|u(x)|
m2

n−m dx+ k
m2

n−m |Ak|


6 C

(
m(Ak) + k

m2

n−m |Ak|
)
6 Ck

m2

n−mm(Ak)

since |Ak| 6 m(Ak) and k > 1. Therefore,∫
Ak

|uk(x)|
m2

n−m dx


n−m
m2

6 Ck
(
m(Ak)

)n−m
m2 = Ck

(
m(Ak)

) 1
m (m(Ak)

)n−m
m2 − 1

m

6 Ck
(
m(Ak)

) 1
m (m(Ω)

)n−m
m2 − 1

m

since n−m
m2 − 1

m > 0. Bearing in mind (3.11), we get (3.15) in this case.

Case 2: m > n/2. We choose now σ = 1 and note that m2

n−m > 1. Then∫
Ak

|uk(x)| dx =

∫
Ak

|u(x)− k| dx

6
∫
Ak

|u(x)| dx+ k|Ak| 6
∫
Ak

|u(x)| dx+ km(Ak),

while the Hölder inequality and m2

n−m > 1 yield

∫
Ak

|u(x)| dx 6

∫
Ak

|uk(x)|
m2

n−m dx


n−m
m2

|Ak|1−
n−m
m2 6 m(Ak).

Remembering once again k > 1, we obtain∫
Ak

|uk(x)| dx 6 2km(Ak) = 2k
(
m(Ak)

) 1
m
(
m(Ak)

)1− 1
m

6 2k
(
m(Ak)

) 1
m
(
m(Ω)

)1− 1
m 6 Ck

(
m(Ak)

) 1
m

by (3.11). So, we have (3.15) also in the second case.

With (3.15) at hand, (3.14) becomes∫
Ak

uk(x) dm 6 Ck
(
m(Ak)

)1+
ε0

m(n−m+ε0) ∀ k > k0 (3.16)
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with ε0 > 0.
Now, the Cavalieri principle yields∫

Ak

uk(x) dm =

∫
Ak

(u(x)− k) dm =

∞∫
k

m(At) dt,

whence, setting τ(t) := m(At), (3.16) takes on the form
∞∫
k

τ(t) dt 6 Ckτ(k)1+δ ∀k > k0, δ =
ε0

m(n−m+ ε0)
> 0.

At this point, the Hartman–Stampacchia maximum principle Lemma 2.5
asserts

u(x) 6 kmax a.e. Ω

where kmax depends on known quantities, on ‖u‖Lm(Ω) and on ‖Du‖Lm(Ω)

in addition.

To get a bound from below for u(x), it suffices to repeat the above
procedure with −u(x) instead of u(x), and this gives the claim (3.1) when
m < n.

The limit case m = n can be treated easily by slightly changing the
approach already adopted. In fact, the coercivity condition (1.2) and the
controlled growth assumption (1.4) for the term b(x, z, ξ) have now the
form

a(x, z, ξ) · ξ > γ|ξ|n − Λ|z|m
∗
− Λϕ1(x)

n
n−1 , (3.17)

|b(x, z, ξ)| 6 Λ
(
ϕ2(x) + |z|m

∗−1 + |ξ|
n(m∗−1)

m∗
)
, (3.18)

respectively, where m∗ > n is an arbitrary exponent, ϕ1 ∈ Lp,λ(Ω) with
p > n

n−1 , λ ∈ (0, n) and (n − 1)p + λ > n, and ϕ2 ∈ Lq,µ(Ω) with q > 1

and µ ∈ (0, n).
We choose now, without loss of generality, a number m′ < n, close

enough to n, such that m∗ = n2

(n−m′)(n+1) whence

m∗ < (m′)∗ =
nm′

n−m′
,

n

n− 1
<

m′

m′ − 1
,

n(m∗ − 1)

m∗
=
m′((m′)∗ − 1)

(m′)∗
.
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This way (3.17) takes on the form

a(x, z, ξ) · ξ > γ|ξ|n − Λ|z|m
∗
− Λϕ1(x)

n
n−1 (3.19)

> γ|ξ|m
′
− Λ|z|(m

′)∗ − Λϕ1(x)
m′
m′−1

when |z| > 1 and |ξ| > 1 and where, without loss of generality, we have
supposed ϕ1(x) > 1, while (3.18) becomes

|b(x, z, ξ)| 6 Λ

(
ϕ2(x) + |z|(m

′)∗−1 + |ξ|
m′((m′)∗−1)

(m′)∗

)
(3.20)

for |z| > 1 and |ξ| > 1.
Considering the measure

dm′ =

(
χ(x) + ϕ1(x)

m′
m′−1 + ϕ2(x) + |u(x)|

m′2
n−m′

)
dx,

we may increase eventually the value of m′, maintaining it anyway strictly
less than n, in order to have p > m′

m′−1 , (m′−1)p+λ > n and m′q+µ > n.
This leads to

m′(Bρ) 6 Kρ
n−m′+ε0

as above, with a suitable ε0 > 0.
Defining the functions uk(x) and the sets Ak as before, it is clear that∫

{x∈Ak : |Duk(x)|<1}

|Duk(x)|m
′
dx 6 |Ak| 6 km

′
m′(Ak),

while ∫
{x∈Ak : |Duk(x)|>1}

|Duk(x)|m
′
dx

can be estimated with the help of (3.19) and (3.20), as already done before
when m < n. That leads to the bound (3.16) with m′ instead of m and
the Hartman–Stampacchia maximum principle Lemma 2.5 leads to the
desired estimate (3.1) also in the case m = n and this completes the proof
of Theorem 3.1. �
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