Ю. В. Якубович

РОСТ СЛУЧАЙНЫХ РАЗБИЕНИЙ ПУТЕМ ДОБАВЛЕНИЯ ЧАСТЕЙ: СЛУЧАЙ СТЕПЕННЫХ ВЕСОВ

§1. Введение

В этой статье мы изучаем случайные разбиения, распределенные в соответствии с обобщенной мерой Ювенса¹. Напомним, что разбиение λ неотрицательного целого числа n – это его представление в виде суммы $n=\lambda_1+\dots+\lambda_\ell$ положительных целых чисел. Порядок слагаемых (часто называемых частями) не имеет значения. Принято упорядочивать их так, чтобы $\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant 0$, здесь предполагается, что $\lambda_j=0$ для $j>\ell$. Количество положительных частей $\ell=\ell(\lambda)$ называется длиной разбиения λ , тот факт, что λ является разбиением n, обозначается $\lambda \vdash n$ или $|\lambda|=n$. Мы также используем обозначение \mathcal{P}_n для множества всех разбиений n. Разбиение λ можно описать и другим способом, задав последовательность c-четчиков частей

$$c_k(\lambda) = \#\{j : \lambda_j = k\}, \qquad k = 1, 2, \dots$$

Очевидно,

$$|\lambda| = \sum_{k=1}^{\infty} k c_k(\lambda) \quad \text{ if } \quad \ell(\lambda) = \sum_{k=1}^{\infty} c_k(\lambda). \tag{1}$$

Обобщенное распределение Ювенса на \mathcal{P}_n параметризуется последовательностью $(\theta_k)_{k\geqslant 1}$ неотрицательных вещественных чисел (обычно одной и той же для всех n) и определяется равенством

$$P^{n}(\lambda) := \frac{1}{h_{n}} \prod_{k=1}^{n} \frac{\theta_{k}^{c_{k}(\lambda)}}{k^{c_{k}(\lambda)} c_{k}(\lambda)!}, \qquad \lambda \in \mathcal{P}_{n},$$
 (2)

Ключевые слова: Случайное разбиение целого числа, распределение Ювенса, усиленный закон больших чисел, предельная форма.

Результаты получены в рамках реализации государственной программы федеральной территории "Сириус" "Научно-технологическое развитие федеральной территории "Сириус".

¹В русскоязычной литературе фамилию Ewens иногда записывают Эвенс (например, [19]). Мы следуем написанию, принятому в переводе книги [16].

где нормирующий множитель (статсумма) это

$$h_n = \sum_{\lambda \in \mathcal{P}_n} \prod_{k=1}^n \frac{\theta_k^{c_k(\lambda)}}{k^{c_k(\lambda)} c_k(\lambda)!}.$$
 (3)

(В (2) мы предполагаем $h_n > 0$, что может оказаться неверным для некоторых значений n, поскольку мы допускаем $\theta_k = 0$ для каких-то k; если $h_n = 0$, то P^n не определено, см. замечание 2 далее.)

Для постоянной последовательности $\theta_k \equiv \theta > 0$ мы получаем распределение Ювенса как частный случай. Эти распределения появились в математической популяционной генетике [7] в 1972 году и с тех пор активно изучались. Многие результаты и ссылки можно найти в книге [1]. Случай $\theta = 1$ имеет явную и естественную комбинаторную интерпретацию: P^n — это проекция равномерного распределения на симметрической группе S_n при отображении, которое переводит перестановку $\pi \in S_n$ в набор длин циклов π , то есть в разбиение числа n. Возможно, по этой причине некоторые авторы определяют (обобщенное) распределение Ювенса как распределение на S_n , что делает его некоторой естественной деформацией равномерной меры. Для наших целей более естественно рассматривать его как распределение на разбиениях, и мы принимаем это соглашение в этой статье.

Обобщенное распределение Ювенса изучалось несколькими авторами под разными названиями. Одно из возможных приложений возникает, если взять $\theta_k = 1$ при $k \in A$ для некоторого множества $A \subset \mathbb{N}$, и $\theta_k = 0$ в противном случае. Это приводит к равномерной мере на перестановках из S_n с длинами циклов, лежащими в A (так называемые A-перестановки), и ее проекции на \mathcal{P}_n , см. [19] и ссылки в этой работе. Другие применения появляются в комбинаторике [1,2] и статистической физике [3,6]. Естественно, асимптотическое поведение мер P^{n} сильно зависит от поведения последовательности (θ_{k}), см., однако, замечание 1 ниже. Когда обобщенное распределение Ювенса появляется в прикладных задачах, часто оказывается, что $\theta_k \sim ck^{\alpha}$ при $k \to \infty$, для некоторых $\alpha \in \mathbb{R}$ и c > 0; иногда константа c заменяется медленно меняющейся функцией от k. Эти и некоторые другие типы поведения (θ_k) изучались в [6]. Некоторые аспекты степенного случая с $\alpha \leq 0$ исследовал Якымив [18], хотя предположения там несколько отличаются. Случай $\alpha = 0$ подробно рассматривается как частный случай логарифмических комбинаторных структур в книге [1]. Результаты для

 $\alpha>0$ можно найти в [5,11,12]. В этой статье мы также рассматриваем степенной случай с $\alpha>0$, но накладываем менее ограничительное условие в терминах производящей функции

$$\theta(x) := \sum_{k=1}^{\infty} \theta_k \, x^{k-1}. \tag{4}$$

А именно, мы предполагаем, что

$$\theta(x) = \frac{\ell(\frac{1}{1-x})}{(1-x)^{\beta}} \quad \text{при} \quad x \uparrow 1, \qquad \beta > 1, \tag{5}$$

где функция ℓ медленно меняется на ∞ , то есть $\ell(Cy)/\ell(y) \to 1$ при $y \to \infty$ для любой постоянной C>0. Из условия $\theta_k \sim ck^\alpha$ вытекает (5) с $\beta=\alpha+1$ и $\ell(z)\to c\Gamma(\alpha+1)$ при $z\to\infty$. По сути условие (5) фиксирует асимптотическое поведение частичных сумм $\sum_{k=1}^n \theta_k \sim n^\beta \ell(n)/\Gamma(\beta+1)$ при $n\to\infty$, см. следствие 1.7.3 в [4].

Хотя предположение (5) требуется для многих приведенных ниже результатов, некоторые из них имеют более общую природу и справедливы только при предположении, что $\theta(x)$ является аналитической функцией в некоторой окрестности нуля.

Замечание 1. Замена θ_k на $r^k \theta_k$ для любого r > 0 не меняет меру P^n . Это называется *перекашиванием* (tilting) в [2]. Действительно, в силу (1) после перекашивания произведение в (2) умножается на r^n для всех $\lambda \in \mathcal{P}_n$, и при нормировании этот множитель сокращается. Таким образом, (5) можно заменить формально более общим предположением, что $\theta(x)$ регулярно меняется с индексом $\beta > 1$ в окрестности своего радиуса сходимости r > 0. Однако это не меняет класс допустимых распределений.

Важную роль в нашем исследовании играют распределения степенного ряда. Напомним, что степенному ряду $\phi(x) = \sum_{n=0}^{\infty} \phi_n x^n$ с неотрицательными коэффициентами и положительным радиусом сходимости r (возможно, бесконечным) можно сопоставить семейство распределений $PS_x^{\phi(\,\cdot\,)}$ на $\mathbb{N}_0 := \{0,1,2,\dots\}$, параметризованное $x \in (0,r)$, положив

$$PS_x^{\phi(\cdot)}(\{n\}) := \frac{\phi_n x^n}{\phi(x)}, \qquad k \in \mathbb{N}_0, \quad x \in (0, r).$$
 (6)

Эти распределения называют распределениями степенного ряда, многие часто встречающиеся распределения, например, биномиальное, отрицательное биномиальное или Пуассона, допускают представление (6). Заметим, что все семейство $PS_x^{\phi(\cdot)}$ можно рассматривать как перекашивание одного распределения $PS_1^{\phi(\cdot)}$ в смысле замечания 1.

Меры P^n обладают следующим удобным свойством. Благодаря структуре произведения (2) можно выбрать случайную величину N(x) со значениями в \mathbb{N}_0 и распределением, зависящим от положительного параметра x, так что количества частей $c_k(\lambda)$ становятся независимыми при смешанном распределении $P_x(\lambda) := P^{N(x)}(\lambda)$. Распределение N(x) имеет распределение степенного ряда $PS_x^{H(\cdot)}$, связанное со степенным рядом $H(x) = \sum_{n=0}^{\infty} h_n x^n$. По формуле полной вероятности для любого разбиения $\lambda \in \mathcal{P} := \bigcup_{n=0}^{\infty} \mathcal{P}_n$ произвольного целого числа можно найти

$$P_{x}(\lambda) = \sum_{n=0}^{\infty} \frac{h_{n}x^{n}}{H(x)} P^{n}(\lambda) = \frac{x^{|\lambda|}}{H(x)} \prod_{k=1}^{\infty} \frac{\theta_{k}^{c_{k}(\lambda)}}{k^{c_{k}(\lambda)}c_{k}(\lambda)!}$$
$$= \frac{1}{H(x)} \prod_{k=1}^{\infty} \frac{(x^{k}\theta_{k})^{c_{k}(\lambda)}}{k^{c_{k}(\lambda)}c_{k}(\lambda)!}, \tag{7}$$

потому что $P^n(\lambda) \neq 0$ только для $n = |\lambda|$. Последнее равенство следует из (1). Из (7) ясно, что счетчики c_k независимы относительно распределения P_x , c_k имеет распределение Пуассона с параметром $x^k\theta_k/k$ и $H(x) = \prod_{k=1}^\infty \exp(x^k\theta_k/k)$; подробности см. в разделе 2. В частности, при предположении (5) H(x) имеет радиус сходимости 1 и, следовательно, P_x корректно определено при $x \in (0,1)$. Можно посмотреть на эту конструкцию и в противоположном направлении: меры P^n являются условными распределениями последовательности независимых случайных величин c_k при условии, что взвешенная сумма $\sum_{k=1}^\infty k c_k$ равняется n, см. (1). Мы кратко упомянем, что аналогичный подход может быть применен к более широкому классу вероятностных распределений на разбиениях целых чисел, для которых счетчики c_k не обязательно имеют распределения Пуассона (такие распределения иногда называют мультипликативными мерами), см. [14, 15].

Появление в этой конструкции "свободного" параметра x делает естественной следующую схему исследования различных асимптотических свойств мер P^n при $n \to \infty$. Сначала мы изучаем те же свойства

для мер P_x , используя независимость c_k . Затем мы выбираем параметр x=x(n) так, чтобы $P_{x(n)}$ вели себя подобно P^n в определенном смысле, и переводим результат для $P_{x(n)}$ в соответствующий результат для P^n . Эта схема используется в большинстве работ по обобщенным мерам Ювенса, явно или неявно; в последнем случае она обычно скрыта под манипуляциями с производящими функциями, а выбор x=x(n) соответствует выбору седловой точки при определенных вычислениях.

В любом случае в этих конструкциях x рассматривается как параметр. Наш подход иной: мы думаем о x как о времени, которое растет от 0 до 1, и о счетчиках c_k с пуассоновскими распределениями, индуцированными P_x , как о значениях независимых пуассоновских процессов $\rho_k(x)$ с накопленной интенсивностью $\theta_k x^k/k$. Это позволяет нам определить процесс $\Lambda(x) \in \mathcal{P}, x \in [0,1),$ со значениями на разбиениях целых чисел, такой что $c_k(\Lambda(x)) = \rho_k(x)$. Этот процесс стартует в $\Lambda(0) = \emptyset$ и возрастает: в каждой точке x, в которой один из процессов Пуассона $\rho_k(x)$ делает скачок, причем такой процесс только один почти наверное (п.н.), часть k добавляется к разбиению $\Lambda(x-0)$. Случайное разбиение $\Lambda(x)$ имеет распределение P_x для любого $x \in [0,1)$. Поскольку $P_x(\lambda \mid |\lambda| = n) = P^n(\lambda)$ для всех $x \in (0,1), \lambda \in \mathcal{P}$ и любого $n \geqslant 0$, при условии, что $|\Lambda(x)| = n$ для некоторого x, условное распределение $\Lambda(x)$ есть P^n .

Траекторию процесса $\Lambda(x)_{x\in[0,1)}$ можно п.н. определить по двум объектам: последовательности моментов времени $0 < \xi_1 < \xi_2 < \cdots < 1$, в которые процесс совершает скачок, и последовательности K_1, K_2, \dots частей, которые добавляются одна за другой к разбиению. Таким образом, разбиение $\Lambda(x)$ имеет части K_1, \ldots, K_ℓ , где $\ell = \max\{j: \xi_j \leqslant x\}$. В этом контексте естественно говорить о случайной композиции n= $K_1 + \cdots + K_{\ell}$. Из следствия 2 ниже следует, что перевернутая случайная композиция $n = K_{\ell} + \cdots + K_1$ является регенеративной (regenerative) в смысле [8]. Это означает, что ее хвостовые суммы $K_{\ell-j} + K_{\ell-j-1} + \dots + K_1 \ (j=0,\dots,\ell)$ являются траекториями убывающей цепи Маркова на \mathbb{N}_0 со стационарными вероятностями перехода, начальным состоянием n и поглощающим состоянием 0. Однако, используя результаты Керова [10], можно проверить, что распределения P^n не являются согласованными [8] и, таким образом, не образуют структуру композиций, основной предмет исследования статьи [8], кроме случая $\theta_k \equiv \theta$, то есть распределения Ювенса, который исключается из нашего рассмотрения требованием $\beta > 1$ в (5).

Подход, при котором x играет роль времени, а не параметра, и определение процесса $(\Lambda(x))_{x\in[0,1)}$, то есть семейства случайных разбиений, заданных на одном вероятностном пространстве, и для которого распределения P_x являются одномерными распределениями, имеет свои преимущества. В частности, он позволяет говорить о сильных предельных теоремах для $\Lambda(x)$ при $x \uparrow 1$. В этой статье мы рассматриваем только усиленные законы больших чисел для некоторых характеристик случайного разбиения, таких как их размер $|\Lambda(x)|$ (предложение 4) или соответствующая им диаграмма Юнга $Y_{\Lambda(x)}$ (теорема 2). Мы также исследуем процесс скачков цепи Маркова с непрерывным временем $(\Lambda(x))_{x\in[0,1)}$, то есть последовательность разбиений, которые посещает $(\Lambda(x))_{x\in[0,1)}$. Этот процесс скачков оказывается цепью Маркова со стационарными вероятностями перехода, для которой мы также доказываем некоторые усиленные законы больших чисел (теорема 1, следствие 3). Эти результаты о существовании п.н. неслучайных пределов для некоторых функционалов от $\Lambda(x)$ позволяют нам установить существование предельной формы для обобщенных мер Ювенса P^n (теорема 3). Этот результат не новый. Для класса регулярно меняющихся последовательностей (θ_k) он доказан в [5] (вместе с более сильными результатами о флуктуациях), тогда как при менее ограничительном предположении, близком к (5), это следует из общего исследования существования предельных форм для мультипликативных мер на разбиениях в [14].

Оставшаяся часть этой статьи организована следующим образом. В разделе 2 мы вводим процесс $(\Lambda(x))_{x\in[0,1)}$ со значениями в множестве $\mathcal P$ разбиений целых чисел и изучаем некоторые его свойства. Затем в разделе 3 мы исследуем его процесс скачков и другие связанные с ним процессы скачков, которые оказываются цепями Маркова со стационарными вероятностями перехода. Раздел 4 посвящен предельным теоремам для моментов скачков и для размеров новых частей, добавляемых к разбиению, по мере того как размер разбиения возрастает к бесконечности. В разделе 5 мы доказываем усиленные законы больших чисел для некоторых характеристик случайного разбиения $\Lambda(x)$ при $x \uparrow 1$ и для соответствующих цепей скачков. Наконец, в разделе 6 мы доказываем, что диаграмма Юнга случайного разбиения $\Lambda(x)$ после соответствующего масштабирования приближается к предельной форме п.н. при $x \uparrow 1$, и используем этот результат для вывода того,

что предельная форма существует также для распределений P^n при $n \to \infty.$

§2. Построение случайных развиений на основе пуассоновских процессов

Рассмотрим последовательность $(\theta_k)_{k\geqslant 1}$ неотрицательных действительных чисел, такую что ряд (4) сходится при |x|<1 и удовлетворяет предположению (5). Пусть $\rho_k(x),\ k=1,2,\ldots,\ x\in[0,1),$ – последовательность независимых пуассоновских процессов с интенсивностью $\theta_k x^{k-1} dx$ в точке x, определенных на некотором вероятностном пространстве $(\Omega,\mathcal{F},\mathbb{P})$. Для заданного времени $x\in[0,1)$ значения $\rho_k(x)$ имеют распределение Пуассона со средним $\theta_k x^k/k$ и являются независимыми. Сумма этих процессов

$$\rho(x) := \sum_{k=1}^{\infty} \rho_k(x)$$

также будет пуассоновским процессом с интенсивностью $\theta(x)dx$ в x, где $\theta(x)$ определено равенством (4), см. [16]. Поэтому $\rho(x)$ имеет распределение Пуассона со средним

$$\Theta(x) := \int_{0}^{x} \theta(y) \, dy = \sum_{k=1}^{\infty} \frac{\theta_k x^k}{k}.$$
 (8)

Так как $\lim_{x\uparrow 1}\Theta(x)=\infty$ в силу условия $\beta>1$ в (5), процесс $\rho(x)$ п.н. стремится к ∞ в финальный момент x=1. Мы пишем ρ и ρ_k без аргументов для соответствующих точечных процессов Пуассона, которые понимаются как случайный конечный или счетный набор точек, в которых процесс совершает скачок.

Пусть $0 < \xi_1 < \xi_2 < \dots$ – это точки точечного процесса $\rho = \bigcup_{k=1}^{\infty} \rho_k$, то есть

$$\xi_i = \inf\{x \in [0,1) : \rho(x) \geqslant j\}, \qquad j = 0, 1, 2, \dots$$
 (9)

Положим $K_j=k$, если точка ξ_j лежит в точечном процессе ρ_k , такое k единственно п.н. Заметим, что условная вероятность $\{K_j=k\}$ при заданном ξ_j пропорциональна плотности $\rho_k(x)$ при $x=\xi_j$, и, таким образом, условное распределение K_j при заданном ξ_j есть распределение

степенного ряда $PS_{\xi_j}^{\phi(\,\cdot\,)},$ связанное со степенным рядом $\phi(x)=x\,\theta(x)$:

$$\mathbb{P}(K_j = k | \xi_j) = \frac{\theta_k \xi_j^{k-1}}{\theta(\xi_j)}, \qquad k = 1, 2, \dots, \quad j = 1, 2, \dots$$
 (10)

При $x\in[0,1)$ определим $\Lambda(x)$ как случайное разбиение с частями $K_1,\dots,K_{\rho(x)}.$ По построению имеем $\xi_{\rho(x)}\leqslant x<\xi_{\rho(x)+1}$ (здесь $\xi_0=0$). При увеличении x до новой точки $\xi_{\rho(x)+1},$ которая принадлежит ρ_k для некоторого k, новая часть $k=K_{\rho(x)+1}$ добавляется к $\Lambda(x)$.

Из свойства независимости точечного процесса Пуассона, процесс $\Lambda(x)_{x\in[0,1)}$ со значениями в множестве $\mathcal P$ является цепью Маркова с непрерывным временем. Его траектории возрастают, то есть для $x_1\leqslant x_2$ разбиение $\Lambda(x_2)$ включает те же части, что и $\Lambda(x_1)$, и, возможно, некоторые другие части. Распределение $\Lambda(x)$ для заданного $x\in(0,1)$ равно P_x , определенное формулой (7), в которой

$$H(x) = \sum_{n=0}^{\infty} h_n x^n = \prod_{k=1}^{\infty} \exp \frac{\theta_k x^k}{k} = e^{\Theta(x)},$$
 (11)

и $\Theta(x)$ задается формулой (8). Следовательно, если предположение (5) выполнено, то число частей $\ell(\Lambda(x)) = \rho(x)$ имеет распределение Пуассона со средним $\Theta(x)$ и возрастает к ∞ п.н. при $x \uparrow 1$.

Наряду с возрастающим процессом $\Lambda(x)$, мы рассмотрим убывающий процесс, который является его обращением во времени. Чтобы избежать трудностей с начальным распределением, мы определим семейство процессов $\widehat{\Lambda}^{(\zeta)}(y)_{u\in[0,1-\zeta]}$, параметризованное $\zeta\in(0,1)$ как

$$\widehat{\Lambda}^{(\zeta)}(y) = \Lambda(1 - \zeta - y), \qquad y \in [0, 1 - \zeta]. \tag{12}$$

Стартовав со случайного разбиения $\widehat{\Lambda}^{(\zeta)}(0) = \Lambda(1-\zeta)$, этот процесс уменьшается, отбрасывая части одну за другой, пока не достигнет пустого разбиения \varnothing , которое является его единственным поглощающим состоянием. Его пространство состояний $\widehat{\Lambda}^{(\zeta)}(x)_{x\in[0,\zeta]}$ есть все \mathcal{P} и, значит, счетно, но для любого $\lambda\in\mathcal{P}$ при заданном $\widehat{\Lambda}^{(\zeta)}(0)=\lambda$ имеет место $\widehat{\Lambda}^{(\zeta)}(x)\in\mathcal{P}(\subset\lambda)$ для всех $x\in[0,\zeta]$ (условно) п.н., где $\mathcal{P}(\subset\lambda)=\{\mu\in\mathcal{P}:c_k(\mu)\leqslant c_k(\lambda)\ \forall k\}$ является конечным множеством. Это делает исследование этих обращенных во времени цепей особенно простым. Мы используем эти цепи в основном в качестве технического инструмента, однако соответствующая цепочка прыжков имеет очень естественное описание, см. лемму 3 ниже.

Для начала установим явно, что это непрерывная по времени цепь Маркова, хотя это также следует из общих результатов [13]. Для разбиения λ с $c_k(\lambda)>0$ обозначим $\lambda\setminus k$ разбиение λ с удаленной одной частью k, так что $c_k(\lambda\setminus k)=c_k(\lambda)-1$ и $c_j(\lambda\setminus k)=c_j(\lambda)$ для $j\neq k$.

Лемма 1. Для любого $\zeta \in (0,1)$, $\widehat{\Lambda}^{(\zeta)}(y)_{y \in [1,1-\zeta]}$ является цепью Маркова с непрерывным временем, с пространством состояний \mathcal{P} , начальным распределением $P_{1-\zeta}$ и (нестационарной) интенсивностью скачка от $\widehat{\Lambda}^{(\zeta)}(y) = \lambda$ до $\lambda \setminus k$, которая равна $kc_k(\lambda)/(1-\zeta-y)$ в момент времени у. Следовательно, общая интенсивность скачка в состоянии λ в момент времени у равна $|\lambda|/(1-\zeta-y)$.

Доказательство. Начальное распределение случайного разбиения $\widehat{\Lambda}^{(\zeta)}(0)$ есть $P_{1-\zeta}$ в силу определения (12). Пусть $\lambda \vdash n$ – разбиение n, такое что $c_k(\lambda) > 0$. Тогда

$$\begin{split} \mathbb{P}(\Lambda(x-\delta) &= \lambda \setminus k, \Lambda(x) = \lambda) \\ &= \mathbb{P}(\Lambda(x) = \lambda | \Lambda(x-\delta) = \lambda \setminus k) \mathbb{P}(\Lambda(x-\delta) = \lambda \setminus k) \\ &\sim \theta_k x^{k-1} \delta \cdot \mathrm{e}^{-\Theta(x)} x^{n-k} \frac{k c_k(\lambda)}{\theta_k} \prod_{j=1}^{\infty} \frac{\theta_j^{c_j(\lambda)}}{j^{c_j(\lambda)} c_j(\lambda)!}, \quad \delta \downarrow 0, \end{split}$$

где $\frac{kc_k(\lambda)}{\theta_k}$ компенсирует множитель с $c_k(\lambda)$ вместо $c_k(\lambda \setminus k) = c_k(\lambda) - 1$ в произведении при j = k. Разделив на $\mathbb{P}(\Lambda(x) = \lambda)$, которое задается (7), и взяв $x = 1 - \zeta - y$, видим, что при условии $\widehat{\Lambda}^{(\zeta)}(y) = \lambda$ процесс переходит к любому разбиению $\mu = \lambda \setminus k$ с интенсивностью $kc_k(\lambda)/(1 - \zeta - y)$. В силу (1), общая интенсивность перехода составляет $|\lambda|/(1 - \zeta - y)$.

Интенсивности цепи Маркова с непрерывным временем $\widehat{\Lambda}^{(\zeta)}(y)$ в состоянии λ (кроме состояния $\lambda=\varnothing$) не являются стационарными и возрастают к ∞ при $y\uparrow 1-\zeta$, что отражает тот факт, что все части отбрасываются к моменту $y=1-\zeta$ и $\widehat{\Lambda}^{(\zeta)}(1-\zeta)=\varnothing$ п.н.

При n = 0, 1, ... положим

$$\chi_n^+ = \inf(\{x \in [0, 1) : \Lambda(x) \in \mathcal{P}_n\} \cup \{1\}),\tag{13}$$

$$\chi_n^- = \sup(\{0\} \cup \{x \in [0,1) : \Lambda(x) \in \mathcal{P}_n\}). \tag{14}$$

Тогда события $\chi_n^+ < 1$ или $\chi_n^- > 0$ означают, что цепь Маркова с непрерывным временем $\Lambda(x)_{x \in [0,1)}$ посещает некоторое разбиение из \mathcal{P}_n , входит в это разбиение в момент времени $x = \chi_n^+$ и покидает его в момент

времени χ_n^- . В противном случае $\chi_n^+=1$ и $\chi_n^-=0$. Заметим, что $\chi_0^+=0$, а множества $\{\chi_n^+:n\geqslant 1,\chi_n^+<1\}=\{\chi_n^-:n\geqslant 0,\chi_n^->0\}$ являются в точности точками точечного процесса Пуассона ρ , то есть $\{\xi_1, \xi_2, \dots\}.$

Используя убывающие цепи $\widehat{\Lambda}^{(\zeta)}(y)$, легко найти совместное распределение (χ_n^+, χ_n^-) , и, следовательно, вероятности посещения $\mathbb{P}(\chi_n^+ < 1)$ $=\mathbb{P}(\chi_n^->0)$ уровней \mathcal{P}_n цепью Маркова $|\Lambda(x)|_{x\in[0,1)}$.

Предложение 1. Вероятность того, что цепь Маркова $(\Lambda(x))_{x\in[0,1)}$ посещает какое-то разбиение числа $n \geqslant 0$ – это

$$g_n := \mathbb{P}(\exists x \in [0, 1) : \Lambda(x) \in \mathcal{P}_n) = h_n u_n, \tag{15}$$

где h_n определено равенствами (3) или, альтернативно, (11), а

$$u_n = \int_0^1 x^n \theta(x) e^{-\Theta(x)} dx.$$
 (16)

При $n=0, \ \chi_0^+=0$ п.н., а χ_n^- имеет плотность (19). При $n\geqslant 1, \ (\chi_n^+,\chi_n^-)$ имеет атом размера $1-g_n$ в (1,0), а исключая этот атом, совместное распределение (χ_n^+,χ_n^-) абсолютно непрерывно с совместной условной плотностью

$$\frac{d^2}{dx_1 dx_2} \mathbb{P}\left(\chi_n^+ \leqslant x_1, \chi_n^- \leqslant x_2 \mid \chi_n^+ \neq 1\right) = \frac{n x_1^{n-1} \theta(x_2) e^{-\Theta(x_2)}}{u_n}, \qquad (17)$$

$$0 < x_1 < x_2 < 1.$$

Кроме того, частные распределения имеют условные плотности

$$\frac{d}{dx} \mathbb{P}(\chi_n^+ \leqslant x | \chi_n^+ \neq 1) = \frac{nx^{n-1} e^{-\Theta(x)}}{u_n}, \quad x \in (0, 1), \, n \geqslant 1, \quad (18)$$

$$\frac{d}{dx} \mathbb{P}(\chi_n^- \leqslant x | \chi_n^- \neq 0) = \frac{x^n \theta(x) e^{-\Theta(x)}}{u_n}, \quad x \in (0, 1), \, n \geqslant 0. \quad (19)$$

$$\frac{d}{dx}\mathbb{P}\left(\chi_n^- \leqslant x | \chi_n^- \neq 0\right) = \frac{x^n \theta(x) e^{-\Theta(x)}}{u_n}, \qquad x \in (0, 1), \ n \geqslant 0.$$
 (19)

Доказательство. Поскольку $\Lambda(0) = \varnothing$, видим, что $\chi_0^+ = 0$ п.н. и $\chi_0^- = \xi_1$, то есть это первая точка пуассоновского точечного процесса ρ , которая имеет плотность $\theta(x)$ е $^{-\Theta(x)}$, что совпадает с (19) при n=0. В остальной части доказательства мы предполагаем, что $n\geqslant 1$. Для

любого разбиения $\lambda \vdash n, \, 0 < x < 1 - \zeta$ и $\delta \in (0,x)$ мы имеем

$$\begin{split} & \mathbb{P} \big(\Lambda(x) = \lambda, \ \chi_n^+ \in (x - \delta, x] \big) = \mathbb{P} \big(\Lambda(x) = \lambda, \ \Lambda(x - \delta) \neq \lambda \big) \\ & = \mathbb{P} \big(\widehat{\Lambda}^{(\zeta)} (1 - \zeta - x) = \lambda, \ \widehat{\Lambda}^{(\zeta)} (1 - \zeta - x + \delta) \neq \lambda \big) \\ & \sim \mathbb{P} \big(\widehat{\Lambda}^{(\zeta)} (1 - \zeta - x) = \lambda \big) \frac{n\delta}{1 - \zeta - (1 - \zeta - x)} = P_x(\lambda) \frac{n\delta}{x}, \quad \delta \downarrow 0. \end{split}$$

Асимптотическая эквивалентность в последней строке следует из леммы 1. Используя представление

$$P_x(\lambda) = \mathbb{P}(|\Lambda(x)| = n)P^n(\lambda) = e^{-\Theta(x)}h_nx^nP^n(\lambda), \quad \lambda \in \mathcal{P}_n,$$

которое получается комбинированием (7) и (11), и суммируя по $\lambda \in \mathcal{P}_n$, получаем

$$\mathbb{P}(\Lambda(x) \in \mathcal{P}_n, \chi_n^+ \in (x - \delta, x]) \sim e^{-\Theta(x)} h_n x^{n-1} n \delta, \quad \delta \downarrow 0,$$

поскольку $P^n(\mathcal{P}_n)=1$. Так как если $\chi_n^+<1$, то $\Lambda(\chi_n^+)\in\mathcal{P}_n$ и $\Lambda(x)$ остается в \mathcal{P}_n некоторое п.н. положительное случайное время и после χ_n^+ , то $\mathbb{P}(\Lambda(x)\in\mathcal{P}_n,\chi_n^+\in(x-\delta,x])\sim\mathbb{P}(\chi_n^+\in(x-\delta,x])$ при $\delta\downarrow 0$. Таким образом, плотность χ_n^+ в x равна $nh_nx^{n-1}\mathrm{e}^{-\Theta(x)}$, и интегрирование по $x\in[0,1)$ дает (15) с $u_n=n\int\limits_0^1x^{n-1}\mathrm{e}^{-\Theta(x)}dx$. Выражение (16) для u_n получается интегрированием по частям с использованием $\Theta'(x)=\theta(x)$ и остается верным также в случае n=0. Поскольку $\chi_n^+\in[0,1]$ по построению, условная плотность задается как (18).

Для любых $0 < x_1 < x_2 < 1$ вероятность того, что $\Lambda(x)$ не имеет скачков в (x_1,x_2) и имеет скачок в $[x_2,x_2+\delta]$ эквивалентна величине $\mathrm{e}^{\Theta(x_1)-\Theta(x_2)}\theta(x_2)\delta$ при $\delta\downarrow 0$, поскольку $\Lambda(x)$ имеет скачки в тех же точках, что и процесс Пуассона $\rho(x)$, $\Theta(x)$ – это накопленная интенсивность $\rho(x)$, а $\theta(x) = \Theta'(x)$ – его плотность. Это наблюдение вместе с (18) дает (17). Наконец, (19) получается из (17) интегрированием по $x_1 \in [0,x_2]$.

Замечание 2. Возможно, что $\mathbb{P}(\exists x \in [0,1): \Lambda(x) \in \mathcal{P}_n) = 0$ для некоторого n. Поскольку $u_n > 0$ для всех n, это означает, что $h_n = 0$ в этом случае. Следовательно, P^n не определено для таких n, см. (2). Это вполне может происходить, поскольку мы не запрещаем $\theta_k = 0$ для некоторых k. Например, если $\theta_k = 0$ для всех нечетных k, то $\Theta(x)$, а значит, и $\mathrm{e}^{\Theta(x)}$ являются аналитическими функциями x^2 и, следовательно, $h_n = 0$ для всех нечетных n. Тогда меры P^n не определены для

нечетных n. Однако такие арифметические препятствия не влияют на наши результаты, поэтому мы не вводим дополнительных условий на множество $\{k: \theta_k > 0\}$ как это часто делается.

§3. ЦЕПИ СКАЧКОВ

Марковские цепи с непрерывным временем

$$\Lambda(x)_{x\in[0,1)}$$
 и $\widehat{\Lambda}^{(\zeta)}(y)_{y\in[0,1-\zeta]}$

имеют нестационарные интенсивности перехода. Однако оказывается, что вероятности перехода соответствующих цепей скачков $(\Lambda_j)_{j=0,1,\dots}$ и $(\widehat{\Lambda}_j^{(\zeta)})_{j=0,1,\dots,\rho(1-\zeta)}$ стационарны. Это устанавливается в следующих двух леммах.

Лемма 2. Для любого $r \geqslant 1$ и произвольных $k_1, \ldots, k_r \in \mathbb{N}$,

$$\mathbb{P}(K_1 = k_1, \dots, K_r = k_r) = u_{n_r} \prod_{j=1}^r \frac{\theta_{k_j}}{n_j},$$
(20)

где u_n определено равенством (16) u

$$n_j = k_1 + \dots + k_j \tag{21}$$

– это частичные суммы k_j .

Доказательство. При $0=x_0 < x_1 < \cdots < x_r < 1$ и $0 < \delta < \min\{x_j-x_{j-1},j=1,\ldots,r\}$ вероятность того, что каждый из интервалов $[x_j,x_j+\delta]$ содержит одну точку ρ , точка в $[x_j,x_j+\delta]$ принадлежит ρ_{k_j} , и нет других точек ρ , меньших чем x_r , эквивалентна, при $\delta \downarrow 0$,

$$\prod_{j=1}^{r} \left(e^{-(\Theta(x_j) - \Theta(x_{j-1}))} \theta_{k_j} x_j^{k_j - 1} \delta \right) = \delta^r e^{-\Theta(x_r)} \prod_{j=1}^{r} \theta_{k_j} x_j^{k_j - 1}.$$

Устремляя $\delta \downarrow 0$ и интегрируя по $0 < x_1 < \cdots < x_r < 1$, получаем

$$\mathbb{P}(K_1 = k_1, \dots, K_r = k_r)$$

$$= \left(\prod_{j=1}^{r} \theta_{k_{j}}\right) \int_{0}^{1} e^{-\Theta(x_{r})} x_{r}^{k_{r}-1} dx_{r} \int_{0}^{x_{r}} x_{r-1}^{k_{r-1}-1} dx_{r-1} \cdots \int_{0}^{x_{2}} x_{1}^{k_{1}-1} dx_{1}$$

$$= \left(\prod_{j=1}^{r} \theta_{k_{j}}\right) \frac{1}{k_{1}(k_{1}+k_{2})\cdots(k_{1}+\cdots+k_{r-1})} \int_{0}^{1} e^{-\Theta(x)} x^{k_{1}+\cdots+k_{r}-1} dx,$$

откуда (20) выводится заменой обозначений.

Следствие 1. Последовательность $N_j = K_1 + \cdots + K_j$, $r = 0, 1, \ldots$, – это марковская цепь на \mathbb{N}_0 , начинающаяся в $N_0 = 0$ и имеющая стационарные вероятности переходов

$$q_{n,n+k} := \mathbb{P}(N_{j+1} = n + k \mid N_j = n) = \frac{u_{n+k} \theta_k}{(n+k) u_n}, \qquad k = 1, 2, \dots, (22)$$

если только $\mathbb{P}(N_j = n) > 0$, где u_n определено равенством (16).

Доказательство. Для j=0 имеем $N_0=0$ п.н., и (22) при n=0 и $u_0=1$ есть просто равенство (20), в котором мы берем r=1 и $k_1=n_1=k$. Для бо́льших значений j выражение (22) получается сокращением членов в соотношении (20) для r=j+1 и r=j, так как результат зависит только от значения N_j , а не от его композиции (K_1,\ldots,K_j) .

Траектория (N_0,N_1,\ldots,N_j) полностью определяет случайное разбиение Λ_j числа N_j : Λ_j имеет j частей $K_i=N_i-N_{i-1},\ i=1,2,\ldots,j$. Следующее разбиение Λ_{j+1} определяется разбиением Λ_j и следующим значением N_{j+1} : оно получается добавлением новой части $K_{j+1}=N_{j+1}-N_j$ к Λ_j . Распределение новой части задается (22) и зависит только от $N_j=|\Lambda_j|$ из-за марковского свойства последовательности (N_j) .

Для $\zeta\in(0,1)$ цепь Маркова с непрерывным временем $(\Lambda(x))_{x\in[0,1-\zeta]}$ делает ровно $\rho(1-\zeta)$ скачков, и, значит, ее обращение во времени $(\widehat{\Lambda}^{(\zeta)}(x))_{x\in[0,1-\zeta]}$ также имеет $\rho(1-\zeta)$ скачков, а цепь скачков в обратном времени $(\widehat{\Lambda}_j^{(\zeta)})_{j=0,\dots,\rho(1-\zeta)}$ можно записать как $\widehat{\Lambda}_j^{(\zeta)}=\Lambda_{\rho(1-\zeta)-j},$ $j=0,1,\dots,\rho(1-\zeta)$. Оказывается, она имеет простое описание и зависит от последовательности (θ_k) только через свое начальное распределение.

Лемма 3. Для любого $\zeta \in (0,1)$ убывающая цепь скачков $(\widehat{\Lambda}_j^{(\zeta)})_{j=0,1,\dots,\rho(1-\zeta)}$ является цепью Маркова с начальным распределением $P_{1-\zeta}$ и стационарными вероятностями перехода

$$\widehat{p}_{\lambda,\mu} = \begin{cases} \frac{kc_k(\lambda)}{|\lambda|}, & \mu \text{ получено из } \lambda \text{ удалением одной части } k, \\ 0, & \text{иначе.} \end{cases}$$
 (23)

Другими словами, на каждом шаге цепи $(\widehat{\Lambda}_j^{(\zeta)})$ из текущего разбиения выбирается одна часть с вероятностями, пропорциональными размеру (size-biased), и выбранная часть удаляется.

Доказательство. Утверждение леммы немедленно следует из леммы 1, поскольку, хотя интенсивности переходов $\widehat{\Lambda}^{(\zeta)}(y)$ нестационарны и зависят от y, отношение интенсивности перехода от λ к $\mu = \lambda \setminus k$ и общей интенсивности выхода из λ равно $kc_k(\lambda)/|\lambda|$ для любого $y \in [0, 1 - \zeta)$.

Можно также ввести и описать явно обращенную во времени марковскую цепь

$$\widehat{N}_i^{(\zeta)} := |\widehat{\Lambda}_i^{(\zeta)}|, \qquad j = 0, \dots, \rho(1 - \zeta), \tag{24}$$

при любом $\zeta \in (0,1)$. Это убывающая марковская цепь со значениями в \mathbb{N}_0 .

Следствие 2. Для любого $\zeta \in (0,1)$ и всякого $n=1,2,\ldots$, такого что $h_n>0$, при условии $\left|\widehat{\Lambda}_0^{(\zeta)}\right|=n$ определенный равенством (24) случайный процесс $(\widehat{N}_j^{(\zeta)})$ является цепью Маркова с начальным значением $\widehat{N}_0^{(\zeta)}=|\widehat{\Lambda}_0^{(\zeta)}|=n$ и стационарными вероятностями переходов

$$\widehat{q}_{m,k} := \mathbb{P}(\widehat{N}_{j+1}^{(\zeta)} = k \mid \widehat{N}_{j}^{(\zeta)} = m) = \frac{\theta_{m-k} h_k}{m h_m}, \qquad n \geqslant m > k \geqslant 0, \quad (25)$$

не зависящими от ζ . Здесь неявно предполагается, что $h_m > 0$; в противном случае состояние m недостижимо: $\mathbb{P}(\exists j: \widehat{N}_j^{(\zeta)} = m) = 0$.

Доказательство. Этот результат является комбинацией следствия 1 и предложения 1. Благодаря результатам Ханта [9], цепь Маркова (N_j) можно рассматривать в обратном времени, и соответствующий процесс $\widehat{N}_j := N_{-j}, j \in \{\dots, -2, -1, 0\}$, также является цепью Маркова со стационарными вероятностями перехода $\widehat{q}_{m,k}$, удовлетворяющими

$$g_k q_{k,m} = g_m \, \widehat{q}_{m,k}. \tag{26}$$

Эти два равных значения — это вероятности того, что $|\Lambda(x)|$ переходит между k и m за один шаг во время своей эволюции, в прямом и обратном времени. Из равенства (26) и из выражений (22) для $q_{k,m}$ и (15) для g_n получается (25). Рассматривая $(\hat{N}_j^{(\zeta)})_{j=0,\dots,\rho(1-\zeta)}$, мы просто начинаем тот же процесс в случайном состоянии, равном $|\Lambda(1-\zeta)|$. Дальнейшее обусловливание событием, что процесс стартует из n, дает утверждение.

Для альтернативного доказательства можно считать, что процесс $\Lambda(x)$ останавливается в момент времени $x=1-\zeta$ и переформулировать

предложение 1 и следствие 1 для этого остановленного процесса. Тогда u_n следует заменить на

$$u_n^{(\zeta)} = n \int_0^{1-\zeta} x^{n-1} e^{-\Theta(x)} dx,$$

а h_n останется тем же. Рассуждение, также базирующееся на (26), показывает, что зависимость от ζ исчезает и имеет место (25).

§4. АСИМПТОТИКА РАСПРЕДЕЛЕНИЯ СКАЧКОВ

Следствие 1 дает описание распределения скачка K_{j+1} цепи Маркова $(N_j)_{j\geqslant 0}$ в состоянии $N_j=n$. Используя определение u_n (16), мы можем переписать его в более явной форме: при всех $k\geqslant 1$ и $n\in\mathbb{N}_0$

$$q_{n,n+k} = \mathbb{P}(N_{j+1} = n + k \mid N_j = n) = \frac{1}{u_n} \int_{0}^{1} \theta_k x^{n+k-1} e^{-\Theta(x)} dx.$$
 (27)

Формулу (27) можно трактовать как выражение для смешанного распределения степенного ряда $PS_{X_n}^{\phi}$, связанного со степенным рядом $\phi(x)=x\,\theta(x)$, который задается (4), то есть с $\phi_0=0$ и $\phi_k=\theta_k$ для $k\geqslant 1$, где распределение смешивающего случайного параметра X_n является условным распределением χ_n^- при условии $\chi_n^-\neq 0$ и имеет плотность (19). Поскольку если цепь $\Lambda(x)$ когда-либо посещает \mathcal{P}_n , то она покидает \mathcal{P}_n в момент времени χ_n^- , это также можно увидеть из (10).

Легко видеть, что $X_n \stackrel{d}{\longrightarrow} 1$ при $n \to \infty$ из-за множителя x^n в плотности (19) ($\stackrel{d}{\longrightarrow}$ означает здесь и далее сходимость по распределению). При предположении регулярности (5) можно оценить, насколько быстро она приближается к 1, и даже доказать нормальную предельную теорему для X_n .

Чтобы ее сформулировать, обозначим x_n решение уравнения

$$n = x_n \, \theta(x_n). \tag{28}$$

Так как $\theta(\cdot)$ –возрастающая функция по построению и $\lim_{x\uparrow 1} \theta(x) = \infty$, уравнение (28) имеет единственное решение. Из условия регулярной вариации (5) для $\theta(\cdot)$ следует по теореме 1.5.12 [4], что

$$1 - x_n = \ell_1(n) n^{-1/\beta}, \qquad n \to \infty, \tag{29}$$

где $\ell_1(n)$ медленно меняется на бесконечности. В простейшем случае, когда $\ell(y) \to c \in (0,\infty)$ при $y \to \infty$, легко найти $1-x_n \sim (c/n)^{1/\beta}$; для медленно меняющейся функции $\ell(\,\cdot\,)$ общего вида способы асимптотического обращения $\theta(\,\cdot\,)$ можно найти в §1.5.7 и приложении 5 в книге [4].

Предложение 2. Предположим, что $\theta(\cdot)$ удовлетворяет (5), $\Theta(\cdot)$ определяется равенством (8) и случайная величина X_n имеет распределение вероятностей с плотностью (19). Тогда

$$b_n(X_n - x_n) \xrightarrow{d} \mathcal{N}, \qquad n \to \infty,$$
 (30)

где \mathcal{N} имеет стандартное нормальное распределение, а

$$b_n = \sqrt{\frac{\beta}{\ell_1(n)}} n^{\frac{1+\beta}{2\beta}}. \tag{31}$$

Кроме того,

$$u_n \sim \sqrt{2\pi} \, n \, b_n^{-1} \, x_n^n \, \mathrm{e}^{-\Theta(x_n)}, \qquad n \to \infty.$$
 (32)

Доказательство. В этом доказательстве мы используем без дальнейшего упоминания тот факт, что для любой медленно меняющейся на бесконечности функции $\ell(z)$ имеет место

$$\lim_{z \to \infty} z^{\alpha} \ell(z) = \infty, \qquad \lim_{z \to \infty} z^{-\alpha} \ell(z) = 0$$

для любого $\alpha > 0$, см. [4, предложение 1.3.6].

Пусть $f_n(x) = x^n \theta(x) e^{-\Theta(x)}$ – числитель в (19). Рассмотрим разложение Тейлора для $\log f_n(x)$ в точке x_n с остаточным членом в форме Лагранжа: поскольку $\Theta'(x) = \theta(x)$,

$$\log f_n(x) = \log f_n(x_n) + \left(\frac{n}{x_n} + \frac{\theta'(x_n)}{\theta(x_n)} - \theta(x_n)\right)(x - x_n) + \left(-\frac{n}{a^2} + \frac{\theta''(a)}{\theta(a)} - \frac{\theta'(a)^2}{\theta(a)^2} - \theta'(a)\right) \frac{(x - x_n)^2}{2}$$
(33)

при некотором a между x_n и x. Выберем $\tau \in (0, \frac{\beta-1}{2\beta})$ и предположим, что $x=x_n+t/b_n$ для некоторого t, такого что $|t|< n^\tau$. Предположим также, что n достаточно велико, так что $x_n\geqslant 1/2$ и $x\in [0,1];$ это возможно, поскольку $x_n\to 1$ и $n^\tau/b_n=o(1-x_n)$ при $n\to\infty$. Заметим, что асимптотическое соотношение (5) влечет

$$\theta'(x) \sim \frac{\beta \theta(x)}{1-x}, \qquad x \uparrow 1,$$
 (34)

см. пример 1.11.13 в [4] или доказательство леммы 3 в [14]. Следовательно, предполагая дополнительно, что n достаточно велико для выполнения неравенств $\theta'(x_n)(1-x_n) \leqslant 2\beta \, \theta(x_n)$ и $1-x_n \geqslant \ell_1(n) \, n^{-1/\beta}/2$, для таких x получаем, используя (28), что

$$\left| \left(\frac{n}{x_n} + \frac{\theta'(x_n)}{\theta(x_n)} - \theta(x_n) \right) (x - x_n) \right| \leqslant \frac{2\beta}{1 - x_n} \frac{n^{\tau}}{b_n} \leqslant \frac{4\beta n^{\tau + 1/\beta}}{\ell_1(n) b_n} \to 0$$

при $n \to \infty$ в силу выбора τ .

Если $x=x_n+t/b_n$ и $|t|\leqslant n^{\tau}$, то при $n\to\infty$ имеет место $1-x\sim 1-x_n$. Действительно,

$$\left| \frac{1-x}{1-x_n} - 1 \right| = \frac{|t|}{(1-x_n)b_n} \leqslant \frac{2n^{\tau+1/\beta}}{\ell_1(n)b_n} \to 0, \quad n \to \infty.$$
 (35)

Поскольку a в последнем слагаемом в (33) находится между x_n и x, мы также получаем $1-a\sim 1-x_n$ при $n\to\infty$. Из четырех слагаемых, которые умножаются на $(x-x_n)^2$ в (33), быстрее всего растет при $a\uparrow 1$ слагаемое $\theta'(a)$. Действительно, используя (34), мы получаем

$$\theta'(a) \sim \theta'(x_n) \sim \frac{\beta \theta(x_n)}{1 - x_n} = \frac{\beta n}{x_n (1 - x_n)} \sim \frac{\beta n^{1 + 1/\beta}}{\ell_1(n)},$$

$$\frac{\theta''(a)}{\theta(a)} \sim \frac{\theta''(x_n)}{\theta(x_n)} \sim \frac{\beta (\beta + 1)}{(1 - x_n)^2} \sim \frac{\beta (\beta + 1) n^{2/\beta}}{\ell_1(n)^2},$$

$$\frac{\theta'(a)^2}{\theta(a)^2} \sim \frac{\theta'(x_n)^2}{\theta(x_n)^2} \sim \frac{\beta^2}{(1 - x_n)^2} \sim \frac{\beta^{2n^{2/\beta}}}{\ell_1(n)^2}$$

при $n \to \infty$. Поэтому третье слагаемое в (33) эквивалентно $-t^2/2$, равномерно по $|t| \leqslant n^{\tau}$.

В результате мы имеем

$$f_n(x_n + t/b_n) \sim f_n(x_n) e^{-t^2/2}, \qquad n \to \infty,$$
 (36)

равномерно по $|t| \leq n^{\tau}$. С другой стороны,

$$u_{n} = \int_{0}^{1} f_{n}(x) dx$$

$$= \int_{0}^{x_{n}-n^{\tau}/b_{n}} f_{n}(x) dx + \int_{x_{n}-n^{\tau}/b_{n}}^{x_{n}+n^{\tau}/b_{n}} f_{n}(x) dx + \int_{x_{n}+n^{\tau}/b_{n}}^{1} f_{n}(x) dx.$$
 (37)

Главный вклад дает второй интеграл, и по теореме Лебега о мажорируемой сходимости мы получаем

$$\frac{b_n}{f_n(x_n)} \int_{x_n - n^{\tau}/b_n}^{x_n + n^{\tau}/b_n} f_n(x) \, dx = \frac{1}{f_n(x_n)} \int_{-n^{\tau}}^{n^{\tau}} f_n(x_n + t/b_n) \, dt$$

$$\to \int_{-\infty}^{\infty} e^{-t^2/2} \, dt = \sqrt{2\pi}, \qquad n \to \infty. \tag{38}$$

Чтобы ограничить другие два интеграла, рассмотрим производную

$$f'_n(x) = \frac{f_n(x)}{x} \left(n + \frac{x \theta'(x)}{\theta(x)} - x \theta(x) \right). \tag{39}$$

При $x\leqslant x_n$ выполняется $n\geqslant x\,\theta(x)$, поскольку $x\,\theta(x)$ возрастает, а равенство достигается при $x=x_n$ согласно определению (28). Поэтому $f_n'(x)\geqslant 0,\, f_n(x)$ возрастает на $[0,x_n]$ и при $n\to\infty$

$$\frac{1}{f_n(x_n)} \int_{0}^{x_n - n^{\tau}/b_n} f_n(x) dx \leqslant \frac{f_n(x_n - n^{\tau}/b_n)}{f_n(x_n)} \sim e^{-n^{2\tau}/2} = o(b_n),$$

где эквивалентность следует из (36). При $x\geqslant x_n$ мы не можем утверждать, что производная отрицательна. Однако, поскольку $x_n\uparrow 1$, для $x\geqslant x_n$ мы можем использовать асимптотику (5) для $\theta(x)$ и (34) для $\theta'(x)$, чтобы заключить, что $f'_n(x)<0$ для $x>\tilde{x}_n>x_n$, где $f'_n(\tilde{x}_n)=0$. Из (36) мы видим, что $\tilde{x}_n-x_n=o(1/b_n)$ при $n\to\infty$, поэтому $f_n(x)$ убывает на $[x_n+n^\tau/b_n,1)$. Таким образом, аналогично первому интегралу, при $n\to\infty$

$$\frac{1}{f_n(x_n)} \int_{x_n + n^{\tau}/b_n}^{1} f_n(x) dx \leqslant \frac{f_n(x_n + n^{\tau}/b_n)}{f_n(x_n)} \sim e^{-n^{2\tau}/2} = o(b_n).$$

Совмещая эти две оценки с (38) и (37), получаем формулу (32).

Чтобы показать, что сходимость по распределению (30) также имеет место, заметим, что при любом вещественном y и достаточно больших n можно записать

$$\mathbb{P}(b_n(X_n - x_n) \leqslant y) = \frac{1}{u_n} \int_{0}^{x_n + y/b_n} f_n(x) dx$$

и разложим интеграл в сумму, аналогично (37), где третий интеграл отсутствует, а верхний предел второго интеграла заменен на $x_n + y/b_n$. Детали очевидны и опускаются.

Предложение 2 показывает, что X_n концентрируется около x_n для больших n, в то время как x_n сходится к 1. Поэтому естественно предположить, что распределение смешанного степенного ряда $PS_{X_n}^{\phi(\cdot)}$ имеет асимптотически то же распределение, что и $PS_{x_n}^{\phi(\cdot)}$, а последнее после надлежащего масштабирования имеет предел вследствие предположения о регулярности (5). Поскольку мы используем последнее утверждение несколько раз, сформулируем его здесь.

Лемма 4 ([14], лемма 3; [17], теорема 1). Пусть случайная величина X имеет распределение степенного ряда $PS_x^{\theta(\,\cdot\,)}$, связанное c регулярно меняющимся степенным рядом $\theta(x)$, который удовлетворяет (5) c $\beta>0$. Тогда, при $x\uparrow 1$, $X/\mathbb{E}X$ сходится по распределению κ гаммараспределению c параметром формы β и параметром масштаба $1/\beta$, то есть c плотностью $\beta^\beta u^{\beta-1} e^{-\beta u}/\Gamma(\beta)$ ϵ точке $u\geqslant 0$.

Это дает следующий результат.

Предложение 3. Пусть $\theta(\cdot)$ удовлетворяет (5). Для любого j>0 и $s\geqslant 0$ шаг K_{j+1} цепи (N_j) в состоянии $N_j=n$ после масштабирования сходится при $n\to\infty$ к гамма-распределению с параметрами формы β и масштаба 1:

$$\lim_{n \to \infty} \mathbb{P}(\ell_1(n) \, n^{-1/\beta} K_{j+1} \leqslant s \mid N_j = n) = \frac{1}{\Gamma(\beta)} \int_0^s v^{\beta - 1} e^{-v} dv, \qquad (40)$$

 $r \partial e \ \ell_1(n)$ определено соотношением (29).

Доказательство. Как упоминалось в начале этого раздела, условное распределение K_{j+1} при $N_j=n$ является смешанным распределением степенного ряда $PS_{X_n}^{\phi(\,\cdot\,)}$, где $\phi(x)=x\,\theta(x)$ и смешивающее распределение параметра X_n совпадает с условным распределением χ_n^- при условии $\chi_n^->0$, то есть X_n имеет плотность (19). По лемме 4 распределение $PS_x^{\phi(\,\cdot\,)}$ с неслучайным параметром x удовлетворяет

$$\lim_{x\uparrow 1} PS_x^{\phi(\cdot)}([0, \frac{t\beta}{1-x}]) = \int_0^t \frac{\beta^{\beta} u^{\beta-1} e^{-\beta u}}{\Gamma(\beta)} du =: G_{\beta}(t), \tag{41}$$

поскольку для K с распределением $PS_{x}^{\phi(\,\cdot\,)}$ имеет место

$$\mathbb{E}K = \frac{x(x\,\theta(x))'}{x\,\theta(x)} = \frac{x\,\theta'(x)}{\theta(x)} + 1 \sim \frac{\beta}{1-x}, \qquad x\uparrow 1,$$

в силу соотношения (34). Из предложения 2 можно заключить, что для любого $\varepsilon>0$ найдутся n_1 и T>0, такие что для интервала $I_n:=[x_n-T/b_n,x_n+T/b_n]$ будет выполнено $\mathbb{P}(X_n\in I_n)\geqslant 1-\varepsilon$ для всех $n\geqslant n_1$. Используя уравнение (41), факт, что $x_n\to 1$ при $n\to\infty$, и непрерывность $G_\beta(t)$ и применяя вычисление, аналогичное (35), нетрудно показать, что найдется n_2 , такое что $\left|PS_x^{\phi(\cdot)}\left([0,\frac{t\beta}{1-x_n}]\right)-G_\beta(t)\right|<\varepsilon$ при любом $x\in I_n$ для всех $n\geqslant n_2$. Для $n\geqslant n_0=\max\{n_1,n_2\}$ имеем

$$\mathbb{P}\left(\left|PS_{X_n}^{\phi(\cdot\,)}([0,\frac{t\beta}{1-x_n}]) - G_{\beta}(t)\right| < \varepsilon\right)$$

$$\geqslant \mathbb{P}\left(\left|PS_{X_n}^{\phi(\cdot\,)}([0,\frac{t\beta}{1-x_n}]) - G_{\beta}(t)\right| < \varepsilon \mid X_n \in I_n\right) \mathbb{P}(X_n \in I_n) \geqslant 1 - \varepsilon.$$

Поскольку $\varepsilon > 0$ произвольно, отсюда получается (40) после переобозначения $s = t\beta$, в силу соотношения (29) и непрерывности правой части (40) по s.

§5. Усиленные законы больших чисел

Поведение пуассоновских процессов хорошо изучено и в большом масштабе детерминировано в определенном смысле. В частности, поскольку $\ell(\Lambda(x)) = \rho(x)$, а $\Theta(x) = \mathbb{E}\rho(x)$, задаваемое равенством (8), растет к ∞ при $x \uparrow 1$ (что следует из предположения (5)), прямое применение результатов раздела 4.5 [16] дает

$$\lim_{x \uparrow 1} \frac{\ell(\Lambda(x))}{\Theta(x)} = \lim_{x \uparrow 1} \frac{\rho(x)}{\Theta(x)} = 1 \quad \text{п.н.}$$
 (42)

Целочисленный процесс, сопоставляющий размер разбиения $|\Lambda(x)|$ времени x, не является пуассоновским процессом, однако установить для него усиленный закон больших чисел, аналогичный (42), также несложно.

Предложение 4. Пусть выполнено предположение (5). Тогда

$$\lim_{x \uparrow 1} \frac{|\Lambda(x)|}{\theta(x)} = 1 \quad n.H. \tag{43}$$

Доказательство. Из представления (1) получаем, что при любом $x \in [0,1)$

$$\mathbb{E}|\Lambda(x)| = \sum_{k=1}^{\infty} k \,\mathbb{E}\,\rho_k(x) = \sum_{k=1}^{\infty} \theta_k \,x^k = x \,\theta(x),\tag{44}$$

$$\operatorname{Var}|\Lambda(x)| = \sum_{k=1}^{\infty} k^2 \operatorname{Var} \rho_k(x) = \sum_{k=1}^{\infty} k \,\theta_k \, x^k = x(x \,\theta(x))'. \tag{45}$$

Поэтому, по неравенству Чебышева при любых $\varepsilon > 0$ и $x \in (0,1)$

$$\mathbb{P}\big(\big||\Lambda(x)|-x\,\theta(x)\big|\geqslant \varepsilon x\,\theta(x)\big)\leqslant \frac{(x\,\theta(x))'}{\varepsilon^2 x\,\theta(x)^2}=\frac{1}{\varepsilon^2 x\,\theta(x)}\Big(\frac{x\,\theta'(x)}{\theta(x)}+1\Big).\eqno(46)$$

При $x=x_n$ правую часть (46) можно асимптотически приблизить выражением $\beta n^{1/\beta-1}/(\varepsilon^2\ell_1(n))$ при $n\to\infty$, согласно (28), (29) и (34). Следовательно, для любого целого числа $\kappa>\beta/(\beta-1)$ среди событий $\{||\Lambda(x_{n^\kappa})|-x_{n^\kappa}\theta(x_{n^\kappa})|\geqslant \varepsilon x_{n^\kappa}\theta(x_{n^\kappa})\}$ произойдет только конечное число событий, в силу леммы Бореля–Кантелли и оценок Поттера (теорема 1.5.6 [4]) для медленно меняющихся функций. С другой стороны, $|\Lambda(x_{n^\kappa})|\leqslant |\Lambda(x)|\leqslant |\Lambda(x_{(n+1)^\kappa})|$ при $x\in[x_{n^\kappa},x_{(n+1)^\kappa}]$ по построению. Так как

$$\frac{x_{(n+1)^{\kappa}}\,\theta(x_{(n+1)^{\kappa}})}{x_{n^{\kappa}}\,\theta(x_{n^{\kappa}})} = \frac{(n+1)^{\kappa}}{n^{\kappa}} \to 1 \quad \text{при } n \to \infty,$$

утверждение (43) следует из того, что $\varepsilon > 0$ произвольно.

Комбинируя предложение 4 и равенство (42), получаем наш первый основной результат.

Теорема 1. Пусть выполнено предположение о регулярности (5). Тогда найдется медленно меняющаяся на бесконечности функция ℓ_2 , такая что размер N_j случайного разбиения после j шагов удовлетворяет

$$\lim_{j \to \infty} \frac{N_j}{\ell_2(j) j^{\frac{\beta}{\beta - 1}}} = 1 \qquad n. \mu. \tag{47}$$

Замечание 3. В простейшем случае $\lim_{z\to\infty}\ell(z)=c>0$ в качестве ℓ_2 можно взять постоянную функцию $\ell_2(j)=(\beta-1)^{\frac{\beta}{\beta-1}}c^{-\frac{1}{\beta-1}}$. Для произвольной медленно меняющейся функции ℓ рецепт как найти ℓ_2 можно найти в доказательстве ниже.

Доказательство. По определению пуассоновский процесс $\rho(x)$ подсчитывает скачки цепи Маркова с непрерывным временем $\Lambda(x)$. Поэтому

$$|\Lambda(x)| = N_{\rho(x)}, \qquad x \in [0, 1).$$

Напомним, что для $j=1,2,\ldots$ случайное время $\xi_j\in(0,1)$ j-го скачка $\rho(x)$ было определено равенством (9). Поэтому $\xi_j\to 1$ при $j\to\infty$ п.н., и $\rho(\xi_j)=j$, так что из равенства (42) получаем

$$\lim_{j \to \infty} \frac{\Theta(\xi_j)}{j} = 1 \quad \text{п.н.}$$
(48)

Из условия (5) согласно предложению 1.5.8 [4] следует, что

$$\Theta(x) \sim \frac{\ell(\frac{1}{1-x})}{(\beta - 1)(1-x)^{\beta - 1}}, \qquad x \uparrow 1, \tag{49}$$

так что (48) дает

$$\frac{\ell(\frac{1}{1-\xi_j})}{(\beta-1)(1-\xi_j)^{\beta-1}} \sim j \quad \text{fi.h.}, \qquad j \to \infty.$$

Асимптотически обращая это отношение, получаем, что

$$1 - \xi_j \sim \ell_3(j) j^{-1/(\beta - 1)}$$
 II.H., $j \to \infty$, (50)

при некоторой медленно меняющейся на бесконечности функции ℓ_3 . (Если $\ell(z) \to c > 0$ при $z \to \infty$, то можно взять $\ell_3(j) = \left(c/(\beta-1)\right)^{1/(\beta-1)}$.) Значит.

$$\begin{split} N_j &= N_{\rho(\xi_j)} = |\Lambda(\xi_j)| \sim \theta(\xi_j) \\ &= \frac{\ell(\frac{1}{1-\xi_i})}{(1-\xi_j)^\beta} \sim \frac{\ell(j^{1/(\beta-1)}/\ell_3(j))}{\ell_3(j)^\beta} \, j^{\beta/(\beta-1)} \quad \text{п.н.} \end{split}$$

при $j \to \infty$. Дробь в правой части является медленно меняющейся функцией от j на бесконечности, откуда и следует утверждение теоремы.

Следствие 3. В условиях теоремы 1, при $j \to \infty$ распределение новой части K_j , добавленной на j-м шаге, становится асимптотически независимым от предыдущих шагов: при любом s

$$\lim_{j \to \infty} \mathbb{P}(\ell_4(j) \, j^{-1/(\beta - 1)} K_j \leqslant s \, | \, N_{j - 1}) = \frac{1}{\Gamma(\beta)} \int_0^s v^{\beta - 1} e^{-v} dv \quad n. n., \quad (51)$$

 $\partial e \, \ell_4(j) = \ell_1 \big(\ell_2(j) \, j^{\beta/(\beta-1)} \big) \, \ell_2(j)^{-1/\beta}$ медленно меняется на бесконечности.

Замечание 4. Если $\ell(z) \to c > 0$ при $z \to \infty$, то можно взять $\ell_4(j) = \left(\frac{c}{\beta-1}\right)^{1/(\beta-1)}$.

Доказательство. Это утверждение – простая комбинация предложения 3 и теоремы 1.

§6. ПРЕДЕЛЬНАЯ ФОРМА

Естественный способ представлять разбиение λ графически — это его диаграмма Юнга \mathcal{Y}_{λ} . Она определяется как замыкание подмножества $\{(s,t): s\geqslant 0, 0\leqslant t< Y_{\lambda}(s)\}$ положительного квадранта на плоскости, где верхняя граница — это функция

$$Y_{\lambda}(s) := \sum_{k \geqslant s} c_k(\lambda), \qquad s \geqslant 0.$$
 (52)

(Здесь используется соглашение $c_0(\lambda) = 0$.)

Для многих естественных вероятностных мер на \mathcal{P}_n известно, что для больших случайных разбиений формируется предельная форма, то есть для больших n с вероятностью, близкой к 1, диаграмма Юнга случайного разбиения Λ после масштабирования оказывается близкой к неслучайной фигуре, известной как npedenbhas форма.

В нашем случае имеется случайный процесс $\Lambda(x)$ со значениями на разбиениях, и мы можем доказать усиленный вариант результата о предельной форме.

Теорема 2. Пусть выполнено условие регулярности (5). Тогда при любом фиксированном $s \geqslant 0$

$$\lim_{x \uparrow 1} \frac{Y_{\Lambda(x)}(s(\beta - 1)/(1 - x))}{\Theta(x)} = y(s) \qquad n.n.,$$
 (53)

 $ede\ \Theta(x)$ задается равенством (8), а предельная форма – это

$$y(s) := \frac{\Gamma(\beta - 1, (\beta - 1)s)}{\Gamma(\beta - 1)} = \frac{1}{\Gamma(\beta - 1)} \int_{(\beta - 1)s}^{\infty} z^{\beta - 2} e^{-z} dz.$$
 (54)

Замечание 5. Масштабирующие множители $(\beta-1)/(1-x)$ и $\Theta(x)$ выбраны так, что y(0)=1 и предельная форма имеет единичную площадь: $\int\limits_0^\infty y(s)\,ds=1.$ Отказываясь от первого условия, можно перемасштабировать предельную форму и получить

$$\frac{1}{\beta - 1} y \left(\frac{s}{\beta - 1} \right) = \Gamma(\beta - 1, s) / \Gamma(\beta)$$

в качестве альтернативного выражения для нее, которое может показаться более привлекательным и было выбрано в [5].

Доказательство. Количества $c_k(\Lambda(x))$ частей k в случайном разбиении $\Lambda(x)$ являются независимыми пуассоновскими случайными величинами со средними $\theta_k x^k/k$. Следовательно, из (52) мы видим, что $Y_{\Lambda(x)}(t)$ также имеет распределение Пуассона со средним

$$y_x(t) := \sum_{k \geqslant t} \frac{\theta_k x^k}{k} \tag{55}$$

(при t=0 используется соглашение $\theta_0=0$). Положим в (55) $t=s(1-\beta)/(1-x)$, где $s\geqslant 0$ фиксировано, и найдем асимптотику $y_x(s(\beta-1)/(1-x))$ при $x\uparrow 1$. Для этого рассмотрим случайную величину X с распределением степенного ряда $PS_x^{\Theta(\,\cdot\,)}$, связанную с задаваемым равенством (8) степенным рядом $\Theta(x)$. Тогда

$$y_x(t) = PS_x^{\Theta(\cdot)}([t, \infty)) \Theta(x). \tag{56}$$

Математическое ожидание X – это $x\,\theta(x)/\Theta(x)\sim(\beta-1)/(1-x)$ при $x\uparrow 1,$ согласно (34). Значит, при любом фиксированном $s\geqslant 0,$ по лемме 4, при $x\uparrow 1$

$$PS_{x}^{\Theta(\cdot)}([s(\beta-1)/(1-x),\infty)) \to \int_{s}^{\infty} (\beta-1)^{\beta-1} u^{\beta-2} e^{(\beta-1)u} du$$
$$= \int_{s(\beta-1)}^{\infty} v^{\beta-2} e^{-v} dv.$$
 (57)

Поэтому $y_x(s(\beta-1)/(1-x)) \to \infty$ при $x \uparrow 1$, и по обычному усиленному закону больших чисел для пуассоновских процессов получаем

$$\lim_{x\uparrow 1} \frac{Y_{\Lambda(x)}(s(\beta-1)/(1-x))}{y_x(s(\beta-1)/(1-x))} = 1 \qquad \text{п.н.}$$

Совмещая это равенство с (56) и (57), получаем утверждение теоремы.

Выполняющиеся п.н. предельные результаты этого и предыдущего разделов позволяют установить существование предельной формы относительно мер P^n . Напомним определения (13), (14) случайных величин χ_n^+ и χ_n^- как времен входа и выхода для уровня \mathcal{P}_n цепи Маркова с непрерывным временем $\Lambda(x)$. Следующее утверждение показывает, что эти времена приближаются к 1 с одной и той же детерминированной скоростью вдоль любой (случайной) последовательности n_k , такой что уровни \mathcal{P}_{n_k} были посещены $\Lambda(x)$.

Лемма 5. Для каждой из двух последовательностей времен входа χ_n^+ и времен выхода χ_n^- выполняется

$$\lim_{n \to \infty} \frac{n^{1/\beta}}{\ell_1(n)} (1 - \chi_n^+) = 1, \quad \lim_{n \to \infty} \frac{n^{1/\beta}}{\ell_1(n)} (1 - \chi_n^-) = 1 \qquad n.\text{H.},$$
 (58)

где \lim^* берется по любой (случайной) последовательности $n \to \infty$, такой что $\Lambda(x) \in \mathcal{P}_n$ при некотором $x \in [0,1)$, а $\ell_1(n)$ определено соотношением (29).

Доказательство. Обозначим $\mathcal{N}:=\{N_0,N_1,\dots\}=\{n:|\Lambda(x)|=n$ для некоторого $x\in[0,1)\}$ случайный набор уровней, которые посещает $\Lambda(x)$. Предел \lim_n^* берется по $n\in\mathcal{N}$. Уже из построения процесса $(\Lambda(x))$ должно быть ясно, что $\lim_{n\to\infty}^*\chi_n^+=\lim_{n\to\infty}^*\chi_n^-=1$ п.н. Увидеть это формально можно, объединив (15) и (18), чтобы найти $\mathbb{P}(\chi_n^+\leqslant y)=nh_n\int\limits_0^y x^{n-1}\mathrm{e}^{-\Theta(x)}\,dx$ для любых $y\in[0,1)$ и $n\geqslant 1$. Таким образом, используя (11), мы получаем при любом $y\in[0,1)$

$$\sum_{n=1}^{\infty} \mathbb{P}(\chi_n^+ \leqslant y) = \int\limits_0^y \left(\mathrm{e}^{\Theta(x)} \right)' \mathrm{e}^{-\Theta(x)} \, dx = \int\limits_0^y \theta(x) \, dx = \Theta(y) < \infty.$$

Значит, по лемме Бореля–Кантелли, только конечное число событий $\{\chi_n^+ \leqslant y\}$ произойдет п.н., поэтому $\lim_{n \to \infty} \chi_n^+ = 1$, так как $\chi_n^+ \leqslant 1$ по построению. При $n \in \mathcal{N}$ имеет место $1 > \chi_n^- \geqslant \chi_n^+$, так что и $\lim_{n \to \infty}^* \chi_n^- = 1$.

Также по построению выполняется $|\Lambda(\chi_n^+)| = |\Lambda(\chi_n^- - 0)| = n$ при любом $n \in \mathcal{N}.$ Значит,

$$\lim_{n \to \infty} \frac{|\Lambda(\chi_n^+)|}{\theta(\chi_n^+)} = \lim_{n \to \infty} \frac{n}{\theta(\chi_n^+)} = \lim_{n \to \infty} \frac{n}{\chi_n^+ \theta(\chi_n^+)} = 1 \qquad \text{п.н.}$$

$$\lim_{n\to\infty}^* \frac{|\Lambda(\chi_n^--0)|}{\theta(\chi_n^-)} = \lim_{n\to\infty}^* \frac{n}{\theta(\chi_n^-)} = \lim_{n\to\infty}^* \frac{n}{\chi_n^-\theta(\chi_n^-)} = 1 \qquad \text{ fi.h.},$$

согласно предложению 4. Напомним обозначение x_n для решения уравнения (28). Поскольку асимптотическое обращение правильно меняющейся функции единственно с точностью до асимптотической эквивалентности (см. теорему 1.5.12 [4]), соотношение (58) следует из (29).

Мы не определяли случайные разбиения с распределениями P^n на одном вероятностном пространстве, поэтому говорить об их сходимости п.н. в рамках текущего подхода невозможно. Однако мы можем доказать следующий результат.

Теорема 3. Пусть выполнено условие (5). При любом $\varepsilon > 0$ имеет место

$$\lim_{n\to\infty} P^n \left\{ \lambda \in \mathcal{P}_n : \sup_{s\geq 0} \left| \frac{(\beta-1)n^{1/\beta-1}}{\ell_1(n)} Y_\lambda \left(\frac{(\beta-1)n^{1/\beta}}{\ell_1(n)} s \right) - y(s) \right| < \varepsilon \right\} = 1, \quad (59)$$

где y(s) определено (53), $\ell_1(n)$ – это медленно меняющаяся функция из (29) и \lim^{\diamond} берется по любой последовательности $n \to \infty$, такой что $h_n > 0$ и, значит, мера P^n определена.

Доказательство. Зафиксируем $\varepsilon>0$ и рассмотрим целое число $m>8/\varepsilon$. Для $i=1,\ldots,m$ определим s_i как решение $y(s_i)=i/m$; поскольку y(s) непрерывно уменьшается от 1 до 0 при изменении s от 0 до ∞ , эти решения существуют, единственны и удовлетворяют $0=s_m< s_{m-1}<\cdots< s_1$. Определим также $s_0=\infty$ и обозначим для краткости

$$\widetilde{Y}_x(s) := \frac{Y_{\Lambda(x)}(s(\beta-1)/(1-x))}{\Theta(x)}.$$

Из теоремы 2, примененной с $\varepsilon/8$ вместо ε , следует, что для любого $i=1,\ldots,m$ найдется случайное время η_i , такое что $\left|\widetilde{Y}_x(s_i)-y(s_i)\right|<\frac{\varepsilon}{8}$ для всех $x\in(\eta_i,1)$, и что $\mathbb{P}(\eta_i<1)=1$. Пусть $\eta=\max_{i=1,\ldots,m}\eta_i$, тогда и $\mathbb{P}(\eta<1)=1$. Более того, поскольку $y(s_i)-y(s_{i-1})=1/m<\varepsilon/8$ для $i=1,\ldots,m$ (где $y(s_0)=0$), и как $\widetilde{Y}_x(s)$, так и y(s) не возрастают

как функции от s, то $|\widetilde{Y}_x(s) - y(s)| < \frac{\varepsilon}{4}$ для любого $s \in [s_i, s_{i-1}]$. Следовательно, начиная со случайного времени η , то есть при $x \geqslant \eta$, масштабированная диаграмма Юнга $\widetilde{Y}_x(s)$ лежит в $\varepsilon/4$ -окрестности y(s).

Напомним обозначение $\mathcal N$ для случайного множества, которое посещает $|\Lambda(x)|$ из доказательства леммы 5. Для $n\in\mathcal N$ имеем $\Lambda(\chi_n^+)\in\mathcal P_n$ и, таким образом, $\Lambda(\chi_n^+)$ имеет (условное при $\mathcal N\ni n$) распределение P^n по построению. Когда $n\in\mathcal N$ достаточно велико, для того чтобы выполнялось $\chi_n^+>\eta$, масштабированная диаграмма Юнга $\widetilde Y_{\chi_n^+}(s)$ лежит в $\varepsilon/4$ -окрестности y(s). Однако есть разница в масштабированиях, применяемых в (59) и в (53): они п.н. совпадают асимптотически, но не совпадают точно. Чтобы преодолеть это препятствие, можно использовать лемму 5, из которой следует, что найдется случайный номер M_1 , такой что при всех $n>M_1$ и $n\in\mathcal N$ выполнены неравенства

$$\frac{s_{i+1}}{1-\chi_n^+} \leqslant \frac{s_i n^{1/\beta}}{\ell_1(n)} \leqslant \frac{s_{i-1}}{1-\chi_n^+}, \qquad i = 1, \dots, m-1.$$

Тогда, поскольку $Y_{\lambda}(s)$ не возрастает по s, при дополнительном предположении $\chi_n^+ > \eta$ получаем

$$y(s_{i}) - \frac{3\varepsilon}{8} < y(s_{i-1}) - \frac{\varepsilon}{4} \leqslant \frac{Y_{\Lambda(\chi_{n}^{+})} \left(\frac{s_{i-1}(\beta-1)}{1-\chi_{n}^{+}}\right)}{\Theta(\chi_{n}^{+})} \leqslant \frac{Y_{\Lambda(\chi_{n}^{+})} \left(s_{i} \frac{(\beta-1)n^{1/\beta}}{\ell_{1}(n)}\right)}{\Theta(\chi_{n}^{+})}$$
$$\leqslant \frac{Y_{\Lambda(\chi_{n}^{+})} \left(\frac{s_{i+1}(\beta-1)}{1-\chi_{n}^{+}}\right)}{\Theta(\chi_{n}^{+})} \leqslant y(s_{i+1}) + \frac{\varepsilon}{4} < y(s_{i}) + \frac{3\varepsilon}{8} \quad (60)$$

при всех $i=1,\ldots,m-1$. При i=m, то есть в точке $s=s_m=0$, окончательные оценки в (60) также выполнены, поскольку разница в масштабировании аргумента s=0 не имеет значения. Повторяя рассуждения, которые использовались для $\widetilde{Y}_x(s)$, видим, что

$$\left| \frac{Y_{\Lambda(\chi_n^+)} \left(s \frac{(\beta - 1)n^{1/\beta}}{\ell_1(n)} \right)}{\Theta(\chi_n^+)} - y(s) \right| < \frac{3\varepsilon}{4}$$
 (61)

при всех $s\geqslant 0$, если выполняется $n\in\mathcal{N},\ n\geqslant M_1$ и $\chi_n^+\geqslant \eta.$ Осталось изменить знаменатель с $\Theta(\chi_n^+)$ на $n^{1-1/\beta}\ell_1(n)/(\beta-1)$ в (61). Согласно (58), (29) и (49), эти выражения асимптотически эквивалентны п.н., поэтому это можно сделать, предположив, что $n\geqslant M_2$ для некоторой случайной величины M_2 , и немного увеличив правую часть в (61), скажем, заменив $\frac{3\varepsilon}{4}$ на $\varepsilon.$

Подводя итог, мы нашли случайное время $\eta \in (0,1)$, случайную величину $M = \max\{M_1, M_2\} < \infty$ и п.н. бесконечное случайное множество $\mathcal{N} \subset \mathbb{N}_0$, такие что

$$\sup_{s\geqslant 0} \left| \frac{(\beta-1)n^{1/\beta-1}}{\ell_1(n)} Y_{\Lambda(\chi_n^+)} \left(s \frac{(\beta-1)n^{1/\beta}}{\ell_1(n)} \right) - y(s) \right| < \varepsilon \tag{62}$$

выполнено для всех $n \in \mathcal{N}$, таких что $n \geqslant M$ и $\chi_n^+ \geqslant \eta$. Пусть A_n – это событие (62). Предыдущие рассуждения показывают, что

$$\mathbb{P}(\overline{A_n}, \ M \leqslant n, \ \chi_n^+ \geqslant \eta, \ \mathcal{N} \ni n) = 0. \tag{63}$$

Условное распределение $\Lambda_{\chi_n^+}$ при $\mathcal{N}\ni n$ равно P^n , поэтому чтобы завершить доказательство, нужно проверить, что

$$\lim_{n\to\infty}^{\diamond} \mathbb{P}(\overline{A_n} \mid \mathcal{N} \ni n) = 0$$

(напомним, что \lim^{\diamond} берется вдоль любой подпоследовательности, такой что $h_n>0$, и, следовательно, условная вероятность определена). Из (63) следует, что $\mathbb{P}(\overline{A_n}, M\leqslant n, \chi_n^+\geqslant \eta\,|\,\mathcal{N}\ni n)=0$ для любого n, такого что $h_n>0$. Следовательно, для таких n имеем

$$\mathbb{P}(\overline{A_n} \mid \mathcal{N} \ni n) + \mathbb{P}(M \leqslant n, \chi_n^+ \geqslant \eta \mid \mathcal{N} \ni n) \leqslant 1.$$

Поскольку $\lim_{n\to\infty}\chi_n^+=1$ и случайное множество $\mathcal N$ бесконечно п.н., заключаем, что $\lim_{n\to\infty}^{\diamond}\mathbb P(M\leqslant n,\ \chi_n^+\geqslant \eta\,|\,\mathcal N\ni n)=1,$ и отсюда следует желаемый результат.

Список литературы

- R. A. Arratia, A. D. Barbour, S. Tavaré, Logarithmic combinatorial structures: a probabilistic approach. — EMS Monographs in Mathematics, Eur. Math. Soc., Zürich, 2003, 374 pp.
- 2. A. D. Barbour, B. L. Granovsky, Random combinatorial structures: the convergent case. J. Combin. Theory A $\bf 109$ (2005), 203–220.
- V. Betz, D. Ueltschi, Y. Velenik, Random permutations with cycle weights. Ann. Appl. Probab. 21, No. 1 (2011), 312–331.
- N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27, 1987.
- A. Cipriani, D. Zeindler, The limit shape of random permutations with polynomially growing cycle weights. — ALEA Lat. Am. J. Probab. Math. Statist. 12, No. 2 (2015), 971–999.
- N. M. Ercolani, D. Ueltschi, Cycle structure of random permutations with cycle weights. — Random Structures Algorithms 44, No. 1 (2014), 109–133.
- W. J. Ewens, The sampling theory of selectively neutral alleles. Theor. Populations Biol. 3 (1972), 87–112.

- A. Gnedin, J. Pitman, Regenerative composition structures. Ann. Probab. 33, No. 2 (2005), 445–479.
- G. A. Hunt, Markov chains and Martin boundaries. Illinois J. Math. 4 (1960), 313–340.
- S. Kerov, Coherent random allocations and the Ewens-Pitman formula.— PDMI Preprint, Steklov Math. Institute, St. Petersburg (1995), 15 pp.
- J. Storm, D. Zeindler, The order of large random permutations with cycle weights.
 Electron. J. Probab. 20 (2015), 126, 34 pp.
- 12. J. Storm, D. Zeindler, Total variation distance and the Erdős-Turán law for random permutations with polynomially growing cycle weights. Ann. Inst. Henri Poincaré, Probab. Statist. **52**, No. 4 (2016), 1614–1640.
- 13. J. Walsh, The Martin boundary and completion of Markov chains. Z. Wahrscheinlichkeitstheorie verw. Geb. ${\bf 14}$ (1970), 169–188.
- Y. Yakubovich, Ergodicity of multiplicative statistics. J. Comb. Theory, Ser. A 119 (2012), 1250–1279.
- А. М. Вершик, Статистическая механика комбинаторных разбиений и их предельные конфигурации. — Функц. анализ и его прил. 30, No. 2 (1996), 19– 39
- 16. Дж. Кингман, Пуассоновские процессы. М., МЦНМО (2007).
- А. Н. Тимашёв, Предельные теоремы для распределений типа степенного ряда с конечным радиусом сходимости. — Теория вероятн. и ее примен. 63, No. 1 (2018), 57–69.
- 18. А. Л. Якымив, O порядке случайной подстановки с весами циклов. Теория вероятн. и ее примен. 63, No. 2 (2018), 260–283.
- А. Л. Якымив, Предельное поведение порядковых статистик на длинах циклов случайных А-подстановок. — Теория вероятн. и ее примен. 69, No. 1 (2024), 148–160.

Yakubovich Yu. V. Random partitions growth by appending parts: power weights case.

We investigate a generalization of Ewens measures on integer partitions where parts of size k have weights $\theta_k \ge 0$. The Ewens measure is a partial case of the constant sequence $\theta_k \equiv \theta > 0$. In this paper we consider the case when partial sums $\theta_1 + \cdots + \theta_k$ have regular growth of index greater that 1 as $k \to \infty$. We introduce a continuous time random partition growth process such that given it visits some partition of n, the random partition of n it visits has the generalized Ewens distribution. In contrast to the often considered growth procedure, in which parts are increased by 1 or a new part 1 is added, in the growth process defined in the paper parts are added one by one and remain in the partition forever. The partition growth process is derived explicitly from a sequence of independent Poisson

processes. This allows to establish strong laws of large numbers for some characteristics of the process and to determine its asymptotic behavior.

Санкт-Петербургский государственный университет, 199034, Санкт-Петербург; НТУ "Сириус", 354340, Краснодарский край

 $E ext{-}mail:$ yuyakub@gmail.com

Поступило 10 октября 2024 г.