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QUANTUM L-OPERATOR OF THE CRITICAL ISING

MODEL

Abstract. We consider the two-dimensional Ising model on the
square lattice at the critical temperature. This model can be related
to the free-fermion eight-vertex model with the trigonometric depen-
dence of the Boltzmann weights on the spectral variable. We obtain
the quantum L-operator as a solution of the RLL-relation assuming
the spectral variable dependence similar to that of the R-matrix.

1. Introduction

The two-dimensional Ising model is probably one of the most famous
models of statistical mechanics. Historically, this is the �rst model for
which the existence of a phase transition at a non-zero temperature have
been demonstrated and an explicit expression for the free energy in the
thermodynamic limit is obtained [1]. The model admits exact solution at
the zero �eld for the regular square, triangular, and hexagonal lattices
as well as for the case of a non-zero �eld at the critical temperature in
the continuum limit. There exist a vast of literature devoted to the Ising
model, see, e.g., monographs [2�4] and references therein.

In the Ising model (and its generalizations, Potts and Ashkin�Teller
models) the local variables (discrete �spins�) are placed at sites of the lat-
tice. Another way to build a planar statistical mechanics model is to place
spins at faces and edges, that correspond to face and vertex models, re-
spectively. The latter acquire their names since they are usually de�ned by
specifying the allowed con�gurations of states around a vertex (other con-
�gurations assigned in�nite energies). Ising-type models, face models and
vertex models, to one degree or another, admit equivalent (re-)formulations
through each other.

All these models are closely related to quantum one-dimensional sys-
tems, such as quantum spin chains, which have numerous applications in
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various �elds: condensed matter physics, quantum �eld theory, supersym-
metric Yang-Mills �eld theory, quantum computing algorithms, see, e.g.,
review [5]. Recent studies show a renewed and sharply increased inter-
est in constructing new quantum systems with speci�c properties, such
as frustration-free quantum spin chains [6�8]. Applications in the context
of the quantum information theory stimulate an activity in �nding new
solutions of the Yang�Baxter equation [9�14].

The standard modern approach in studying of integrable two-dimensional
statistical mechanics models and related one-dimensional quantum sys-
tems is the Quantum Inverse Scattering method (QISM) [15�17]. In the
framework of this method, new systems can be constructed by �nding the
quantum L-operator satisfying the so-called RLL-relation, which general-
izes the Yang-Baxter equation. The RLL-relation allows for searching an
L-operator starting with a given R-matrix, which can be speci�ed, for ex-
ample, as a matrix of the Boltzmann weights of an integrable (usually, ver-
tex) model. A prototypical example here is the R-matrix of the six-vertex
model, which leads, through the RLL-relation, to the quantum L-operator
of the Heisenberg XXZ spin chain of an arbitrary spin [18].

Motivated by the problem of constructing new integrable models one
may wonder which quantum systems can be obtained from the Ising, and
more generally, Potts models. It is known that for the free-fermion eight-
vertex model, which includes the Ising model as a particular case, this can
be done by q-deforming the Cli�ord algebra [19]. In this case one deals
with the free-fermion elliptic R-matrix. At the same time it is known that
the trigonometric case may admit a richer set of solutions in comparison
with the elliptic one. Hence, it is intriguing to study the special case of
that R-matrix in which it becomes trigonometric but remains related to
the free-fermion eight-vertex model. This is also a necessary step towards
addressing the similar problem in the context of the Potts model [20].

In the present paper, we consider the Ising model with the Bolztmann
weights corresponding to the critical temperature. In this case, the related
vertex model is a free-fermion eight-vertex model with the trigonometric
dependence on the spectral variable. We solve the RLL-relation assuming
the spectral parameter dependence of the L-operator similar to that of the
R-matrix. Taking the central elements of the induced quadratic algebra
proportional to the identity operator, we have obtained two solutions for
the L-operator.
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Figure 1. Square lattice with Ising spins sitting at sites
with the chessboard coloring of faces (left) and the corre-
sponding square lattice of a vertex model (right).

We organize the paper as follows. In the next section we recall how the
Ising model can be formulated as the free-fermion eight-vertex model and
consider the case of the critical temperature where the R-matrix become
trigonometric. In �3 we propose an ansatz for the L-operator, present the
induced quadratic algebra of commutation relations, and derive solutions
for these relations.

2. Ising model as a vertex model

In this section we formulate the Ising model as a vertex model and
present the R-matrix at the critical temperature. Here we follow mainly
the ideas of papers [21�24].

The Ising model can be de�ned as a special case of the Potts model
in which interaction between two spins µ and ν connected by an edge is
described by the Boltzmann weight

w(x|µ, ν) = xδµν ,

where δµν is the Kronecker symbol and µ, ν = 1, . . . , n. The Ising model
corresponds to n = 2. Here, x = exp{J/kT} encodes the dependence on
the energy of interaction J , the Boltzmann constant k, and temperature
T . The partition function is given as the sum over values of all lattice spins
of the product of the edge Boltzmann weights.

To map the Ising model on to a vertex model let us �rst consider the
square lattice with the Ising spins and color its faces in the chessboard
manner, in �empty� and �dashed� faces, see Fig. 1. Next, consider another
square lattice obtained by assigning vertices to the �dashed� faces. The
corresponding vertex model follows by identifying the Boltzmann weight
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Figure 2. �Dashed� face with spin variables at the sites
(left) and the corresponding vertex of the resulting square
lattice (right); also shown the variables x1, x2, y1, and y2
of the edge Boltzmann weights of the Ising model.

of a vertex as the product of the four Boltzmann weights of edges around
the �dashed� face.

Namely, let x1, x2, y1, and y2 be the variables of the Boltzmann weights
of the four edges of a �dashed� face of the starting lattice, and µ1, µ2, ν1,
and ν2 are the spins at the sites of this face, see Fig. 2. The corresponding
vertex carries at its edges the same spins µ1, µ2, ν1, and ν2. The Boltzmann
weight W ν1ν2

µ1µ2
of the vertex is given as the product of those of edges of the

�dashed� face:

W ν1ν2
µ1µ2

= w(y1|µ1, µ2)w(x1|µ2, ν1)w(x2|µ1, ν2)w(y2|ν1, ν2).

The weight W ν1ν2
µ1µ2

can be regarded as a matrix element of an operator

acting in C2⊗C2. We will treat µ's as �out� and ν's as �in� indices, µi and
νi being assigned to the ith copy of C2. Writing the weight explicitly

W ν1ν2
µ1µ2

= y
δµ1µ2
1 x

δµ2ν1
1 x

δµ1ν2
2 y

δν1ν2
2 (2.1)

one easily obtains

W =


y1

1
1

y1

P

[(
x1 1
1 x1

)
⊗
(
x2 1
1 x2

)]
y2

1
1

y2

 .
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Here, P stands for the permitation matrix

P =


1

1
1

1

 (2.2)

and we use the convention to omit in writing an entry when it is zero. We
also use the convention that indices of the �rst (respectively, second) space
label blocks (elements of blocks) of a matrix.

The weight matrix W can be represented as

W = (Λ⊗ Λ)R(Λ⊗ Λ)−1, Λ =
1√
2

(
1 −1
1 1

)
where R is the matrix of Boltzmann weights of the eight-vertex model

R =


w1 w7

w3 w5

w6 w4

w8 w2

 .

Con�gurations of the eight-vertex model are given in terms of arrows
placed at edges of the square lattice; the allowed vertex con�gurations
and their respective Boltzmann weights (we follow conventions of [3]) are
shown in Fig. 3. The weights are given by

w1 = a+, w2 = a−, w3 = b+, w4 = b−,

w5 = c+, w6 = c−, w7 = d+, w8 = d−

where

a± =
1

2

[
(x1x2 + 1)(y2y1 + 1)± (x1 + x2)(y2 + y1)

]
,

b± =
1

2

[
(x1x2 − 1)(y2y1 − 1)± (x1 − x2)(y2 − y1)

]
,

c± =
1

2

[
(x1x2 − 1)(y2y1 + 1)± (x1 − x2)(y2 + y1)

]
,

d± =
1

2

[
(x1x2 + 1)(y2y1 − 1)± (x1 + x2)(y2 − y1)

]
.
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Figure 3. The eight arrow con�gurations allowed at a ver-
tex, and their Boltzmann weights.

The weights obey the relations

w1w2 + w3w4 − w5w6 − w7w8 = 0, (2.3a)

w1w3 + w2w4 − w5w7 − w6w8 = 0, (2.3b)

w1w4 + w2w3 − w5w8 − w6w7 = 0. (2.3c)

Relation (2.3a) is the so-called free fermion condition. Relations (2.3b) and
(2.3c) specify the asymmetry between the pairs of the weights w5, w6 and
w7, w8 of the generic free-fermion vertex model that corresponds to the
Ising model with the face weight (2.1).

It is well known (see, e.g., [21,22]) that the free-fermion model is critical
when one of the following four quantities vanish

w1−w2−w3−w4, w1−w2+w3+w4, w1+w2−w3+w4, w1+w2+w3−w4.

For the �rst quantity equals zero this amounts to

(x1x2 − 1)(y1y2 − 1)

(x1 + x2)(y1 + y2)
= 1. (2.4)

Other cases correspond to the mappings of pairs of the variables (x1, x2) 7→
(−x1,−x2), (x1, y1) 7→ (−x1,−y1), and (x1, y2) 7→ (−x1,−y2), respec-
tively, in (2.4). An exhaustive study of criticality conditions for the Ising
model can be found in [25].
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In this paper we focus our attention to the case where x1 = x2 ≡ x and
y1 = y2 ≡ y, so that (2.4) becomes the Kramers�Wannier duality relation(

x− x−1

2

)(
y − y−1

2

)
= 1.

The Baxter's substitution

x =
1 + cosu

sinu
, y =

1 + sinu

cosu

yields

R = R(u) = ρ(u)


2 + sin 2u 2 sinu

sin 2u 2 cosu
2 cosu sin 2u

2 sinu 2− sin 2u

 , (2.5)

where ρ(u) = 4 sin2(u/2) sin2(u/2− π/4).
Matrix (2.5) satis�es the Yang�Baxter equation(
Ř(u− v)⊗ I

) (
I ⊗ Ř(u)

) (
Ř(v)⊗ I

)
=
(
I ⊗ Ř(v)

) (
Ř(u)⊗ I

) (
I ⊗ Ř(u− v)

)
,

where I denotes 2 × 2 identity matrix and Ř(u) ≡ PR(u) with P being
the permutation matrix (2.2).

3. Quantum L-operator

A generalization of the Yang�Baxter relation is the so-called RLL-
relation:

Ř(u− v)
[
L(u)⊗ L(v)

]
=
[
L(v)⊗ L(u)

]
Ř(u− v). (3.1)

Here, L(u) is a 2 × 2 matrix with the entries being quantum operators
acting in H, a space of quantum states. The RLL-relation can be seen as
an equation for L(u), called quantum L-operator. In the QISM, quantum
L-operators can be constructed by quantization of classical ones, or, more
generally, they can be found by directly solving (3.1) with a given R-
matrix [17].

Here we consider the problem of construction of the quantum L-operator
of the form

L(u) =

(
e2iua+ + a0 + e−2iua− eiub+ + e−iub−

eiuc+ + e−iuc− e2iud+ + d0 + e−2iud−

)
. (3.2)
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Expression (3.2) seems to be the simplest possible ansatz to satisfy (3.1)
in the case of the R-matrix given by (2.5).

In the critical Ising model dimH = 2 and the operator coe�cients are
represented by the following 2× 2 matrices:

a± = diag

(
± 1

2i
,± 1

2i

)
, a0 = diag(2, 0),

b± =

(
0 ∓i
1 0

)
, c± =

(
0 1
∓i 0

)
,

d± = diag

(
± 1

2i
,∓ 1

2i

)
, d0 = diag(0, 2).

(3.3)

In this case L(u) = R(u), where R(u) is given by (2.5).

3.1. Commutation relations. In general, the coe�cients are subject to
the following algebra of quadratic relations.

The operators a+ and a− are central elements, i.e., commute with all
operators of the algebra,

[a±, e] = 0, e = a±,0, b±, c±, d±,0.

The operators d+ and d− commute with each other, with a0 and d0,

[d+, d−] = 0, [d±, a0] = [d±, d0] = 0, (3.4)

and anti-commute with b+, b−, c+, and c−,

{d±, b+} = {d±, b−} = {d±, c+} = {d±, c−} = 0. (3.5)

The remaining relations can be split on two sets, of `even' and `odd' type
relations, according to the number of b- and c-factors. Both sets consists
of 16 independent relations. The `even' relations are

d2± = a2±, (3.6a)

b2± = c2± = a±a0 − d0d±, (3.6b)

b±b∓ = c∓c±, (3.6c)

{b+, b−} = 2 (a+a− − d+d−) , (3.6d)

[b±, c±] = ±2i (a±d0 − a0d±) , (3.6e)

[b+, c−] = [b−, c+] = 2i (a+d− − a−d+) , (3.6f)

[a0, d0] = 2i (b+c− − b−c+) = 2i (c−b+ − c+b−) , (3.6g)

a20 − d20 = (1− 2i)b−b+ + (1 + 2i)b+b−. (3.6h)
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The `odd' relations are

b±d± = ±ia±c±, (3.7a)

c±d± = ∓ia±b±, (3.7b)

[b±, a0] = ±i {c±, d0} = ±2ia±b∓ + 2c∓d±, (3.7c)

b±a0 ∓ id0c± = a±b∓ ± ic∓d±, (3.7d)

[c±, a0] = ∓i {b±, d0} = ∓2ia±c∓ + 2b∓d±, (3.7e)

c±a0 ± id0b± = a±c∓ ∓ ib∓d±. (3.7f)

Since a+ and a− are central elements, it is interesting to study how the
relations above simplify when a+ and a− are proportional to the identity
operator, id ≡ I. We will assume that a± 6= 0. By shifting the variable u
one can always make such that a− = −a+, and we will assume this choice
hereafter. By �xing further a+, one can �x the overall normalization of the
solution; below we use a+ = 1/2i as in (3.3).

From (3.4), (3.5), and (3.6a) it follows that

d± = ν±a±X, ν2± = 1,

where X is an operator satisfying

X2 = I, (3.8)

and

{b±, X} = {c±, X} = [a0, X] = [d0, X] = 0. (3.9)

The further analysis depends upon whether ν− = ν+ or ν− = −ν+,
where without loosing generality one can put ν+ = 1 (otherwise the sign
can be absorbed into the operator X). We will refer to the case ν− = ν+
as the regular solution, since it includes as a particular case the R-matrix
itself, see (3.3). The case ν− = −ν+ will be referred to as the irregular
solution.

3.2. Regular solution. Using d± = a±X in (3.7a) and (3.7b) one gets

c± = ∓ib±X. (3.10)

Relation (3.6c) and the relation given by the �rst equality in (3.6b) are
ful�lled with (3.8) and (3.10). The relations given by the second equality
in (3.6b) imply

b2+
a+

=
b2−
a−

= a0 − d0X. (3.11)
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Relation (3.6d) becomes
{b+, b−} = 0. (3.12)

Relations (3.6e) boils down to (3.11) and (3.6f) to (3.12). Relation (3.6g)
is just

[a0, d0] = 0

and (3.6h) with (3.12) taken into account gives

a20 − d20 = 4ib+b−. (3.13)

Relations (3.7c), (3.7d), (3.7e), and (3.7f) simplify to

[b±, a0] = {b±, d0}X = ±4ia±b∓ (3.14)

and
b±a0 = d0b±X. (3.15)

Note that from the �rst equality in (3.14) also follows that

a0b± = −b±d0X. (3.16)

To complete constructing the solution, we have to �nd how the operators
a0 and d0 can be expressed in terms of b+, b−, and X. The following
properties of the operators b+ and b− are crucial for accomplishing this
task.

An important observation which can be made from the obtained rela-
tions is that b2+ and b2− are central elements. To show this one has just to
prove that these operators commute with a0 and d0. Indeed, acting with
b± on (3.15) from the left, moving operator X through b± and using (3.16)
gives

b2±a0 = b±d0b±X = −b±d0Xb± = a0b
2
±

and similarly we have b2±d0 = d0b
2
±.

Furthermore, the operators b+ and b− are not independent from each
other, as it follows from the �rst equality in (3.11) and from (3.12). To
tackle this issue more precisely, we now on set a− = −a+, so that the �rst
equality in (3.11) becomes

b2+ = −b2−. (3.17)

Again using b±X = −Xb± one can easily �nd that (3.12) and (3.17) are
ful�lled with

b− = ±b+X. (3.18)

It turns out that besides (3.18) there may exist other solutions to (3.12)
and (3.17), provided that certain conditions are met. In Appendix A we
give an example valid in the case where the operators are represented by
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4× 4 matrices with 2× 2 block structure, which shows that in addition to
the �trivial� solutions (3.18) there exist �non-trivial� solutions

b− = ±
(
µb+X + νb−1

+ X
)
, (3.19)

where µ and ν are numerical coe�cients. They are functions of the entries
of the matrix b+, i.e., µ = µ(||b+||) and ν = ν(||b+||), see (A.2). Apparently,
for (3.19) to exist, b+ must be invertible; from (3.17) it follows that if this
is true for b+, then b− is also invertible.

Now we are ready to compute a0 and d0. Let us �rst consider the case
where b± are represented by invertible matrices. Rewriting (3.13) as

(a0 − d0X)(a0 + d0X) = 4ib+b−

and using (3.11), we get

a0 + d0X = 4ib−1
+ b−.

Hence,

a0 = 2ia+b
−1
+ b− +

b2+
2a+

, d0 = 2ia+b
−1
+ b−X −

b2+
2a+

X.

Setting a+ = 1/2i that �x the overall normalization, we thus arrive at the
following expression for the L-operator:

L(u) =

(
sin 2u · I + b−1

+ b− + ib2+ eiub+ + e−iub−

−ieiub+X + ie−iub−X sin 2u ·X + b−1
+ b−X − ib2+X

)
.

(3.20)
Here, the operators b+, b−, and X satisfy

{b+, b−} = b2+ + b2− = {b±, X} = 0, X2 = I,

and we also note that b−1
+ b− = −b+b−1

− .
Let us now consider the case of relation (3.18), without the assumption

that b+ and b− are invertible. We introduce new operator B by

b+ ≡ B, b− = ±BX. (3.21)

To �nd a0 and d0, we take the following ansatz:

a0 = αI + βX, d0 = γI + δX,

where α, β, γ, and δ are some functions of B2, the central element. From
(3.14), (3.15), and (3.16) it follows that

β = γ = ±2ia+, δ = −α,
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and from the second equality in relation (3.11), or from (3.13), one can
�nd

α =
B2

2a+
.

Finally setting a+ = 1/2i, we arrive at

L(u) =

(
sin 2u · I + iB2 ±X eiuB ± e−iuBX

−ieiuBX ± ie−iuB sin 2u ·X − iB2X ± I

)
, (3.22)

where

XB = −BX, X2 = I.

Note that (3.22) can be obtained from (3.20) upon formally using the
substitution de�ned by (3.21).

3.3. Irregular solution. Setting d+ = a+X and d− = −a−X in (3.7a)
and (3.7b), where the operator X is de�ned as above, see (3.8) and (3.9),
we get

c± = −ib±X. (3.23)

Relations (3.6c) turn into

[b+, b−] = 0 (3.24)

and (3.6d) into

{b+, b−} = 4a+a−. (3.25)

Second equality in (3.6b) gives us two relations

b2±
a±

= a0 ∓ d0X

from which we immediately obtain

a0 =
1

2

(
b2−
a−

+
b2+
a+

)
, d0 =

1

2

(
b2−
a−
−
b2+
a+

)
X.

These expressions for a0 and d0 together with (3.23), (3.24), and (3.25)
make the remaining relations of the algebra, namely, (3.6e)�(3.6h) and
(3.7c)�(3.7f), totally ful�lled.

To �x the expression for the L-operator, we set, as above, a− = −a+
and a+ = 1/2i. As result, we obtain

L(u) =

(
sin 2u · I + ib2+ − ib2− eiub+ + e−iub−

−ieiub+X − ie−iub−X −i cos 2u ·X − ib2+X − ib2−X

)
. (3.26)
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Here,

{b+, b−} = I, [b+, b−] = {b±, X} = 0, X2 = I.

From these relations follows that b+b− = b−b+ = 1
2I, hence both b+ and

b− must be invertible, and no analogue of (3.22) exists in this case. This
also means that in (3.26) one can set b− = 1

2b
−1
+ .

4. Conclusion

In this paper, we have considered the Ising model at the critical tem-
perature and studied solutions of the RLL-relation. The starting object
is the R-matrix with trigonometric dependence on the spectral variable.
Using the ansatz for the L-operator with the similar spectral variable de-
pendence, we have obtained two expressions for the L-operator valid in the
case where two central elements of the algebra of commutation relations
are proportional to the identity operator. Note that, since the algebra of
operators de�ning entries of the L-operator contains one more central el-
ement, b2+, the obtained expressions for the L-operator can be multiplied
by an arbitrary function (which can also depend on the spectral variable)
of b2+.

As a further development of the obtained results one could be interested
in construction of local spin-chain Hamiltonians. Unlike, e.g., the case of
the �ve-vertex model where the L-operator has a simple spectral variable
dependence such that the expansion of the transfer matrix at in�nity gen-
erates local interaction Hamiltonians [26], for the L-operator considered
here no such a simple construction seems to exist. This means that one
has to study the corresponding fundamental R-matrix [18]. We intend to
address this problem in the sequel.

Another direction of further study could be an extension of the present
results to the cases n > 3 of the critical n-state Potts model. These mod-
els are known to be trigonometric with an exception of the n = 4 case
where a rational R-matrix arises [20]. One more interesting problem to be
addressed is the role of the star-triangle relation in constructing of new
integrable systems. Indeed, the star-triangle relation is a basic ingredient
for integrability of the Ising and Potts models and there are evidences that
it could be even more fundamental in general than the Yang-Baxter and
RLL-relations [27].
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Appendix A. An example of matrices b+ and b−

Here we give an example of solutions to the matrix system of equations

b+b− + b−b+ = 0, b2+ + b2− = 0, (A.1)

where matrices b+ and b− are subject to the relations

b±X +Xb± = 0, X2 = I.

Consider the case of 4× 4 matrices with 2× 2 block structure, induced by
the choice of the matrix X in the form:

X = diag(1, 1,−1,−1).

This means that

b+ =

(
b

a

)
, b− =

(
g

f

)
,

where a, b, f , and g are some 2× 2 matrices.
Solving (A.1) for entries of f and g against those of a and b one can

�nd four solutions. Two solutions have the form

f = ±a, g = ∓b,

which apparently describe relation (3.18). Other two solutions are

f = ±(µa+ νb−1), g = ∓(µb+ νa−1),

where

µ =
tr ab√

(tr ab)2 − 4 det ab
, ν = − 2 det ab√

(tr ab)2 − 4 det ab
.

These solutions describe relation (3.19) where µ and ν are the following
functions of the entries of b+:

µ =
tr b2+√(

tr b2+
)2 − 16 det b+

, ν = − 4 det b+√(
tr b2+

)2 − 16 det b+

. (A.2)
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