
Записки научных
семинаров ПОМИ

Том 532, 2024 г.

A. V. Kitaev, A. Vartanian

ASYMPTOTICS OF SOLUTIONS OF THE

DEGENERATE THIRD PAINLEVÉ EQUATION IN THE
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Abstract. This paper contains several technical refinements of
our previously obtained results on the monodromy parametrisa-
tion of small-τ asymptotics of solutions u(τ) of the degenerate third
Painlevé equation,

u′′(τ)=
(u′(τ))2

u(τ)
−

u′(τ)

τ
+

1

τ

(
−8ε(u(τ))2+2ab

)
+

b2

u(τ)
,

where ε=±1, εb>0, a∈C, and of its associated mole function, ϕ(τ),

which satisfies ϕ′(τ)= 2a
τ
+ b

u(τ)
. We also describe three families of

three-real-parameter solutions u(τ) which have infinite sequences of
zeros converging to the origin of the complex τ -plane. Furthemore,
for a = 0, a numerical visualisation of the formulae connecting the
asymptotics as τ → 0 and τ → +∞ of solutions u(τ) and ϕ(τ)
having logarithmic behaviour as τ → 0 is given.

§1. Introduction

The Degenerate Third Painlevé equation (DP3E),

u′′(τ)=
(u′(τ))2

u(τ)
− u′(τ)

τ
+
1

τ

(
−8ε(u(τ))2+2ab

)
+

b2

u(τ)
,

ε=±1, εb>0, a∈C,

(1.1)

has garnered recent interest not only with respect to the description of the
asymptotic properties of its solutions in the algebroid [21], algebraic [3,4],
and elliptic [23] function classes, but also its manifestations in differential
geometry and theoretical and applied physics [2, 5–9,13, 24].

The immediate goal of our current research on the DP3E is to obtain
a complete description of the small-τ asymptotic behaviour of all its so-
lutions u(τ). This description is based on the Method of Isomonodromy
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Deformations, which provides not only the asymptotics, but also their
parametrisation(s) in terms of the monodromy data of an associated first-
order 2 × 2 matrix linear ODE whose isomonodromy deformations are
described in terms of solutions of the DP3E (see [16] for details). This
work is, in fact, an elaboration of Section 5 of our paper [16]; in particular,
notation, formulae, and statements from [16] are used with little, or no
further, explanation, except where absolutely necessary. The reader who
wants to fully comprehend the contents of this paper should refer to [16];
otherwise, only the main scheme of the derivations and formulations of
the results will be clear. Here, we present the “core” asymptotic results
as τ → 0, which, in the notation of [16], means that ε1 = ε2 = 0, that is,
ε1=0⇒arg(τ)=0 and ε2=0⇒εb>0.

For the reader’s convenience, we recall the definition of the manifold of
the monodromy data, M, which is important for understanding the results
presented in this paper. Consider C8 with co-ordinates (a, s00, s

∞
0 , s∞1 ,

g11, g12, g21, g22), where a, the parameter of formal monodromy, s00, s
∞
0 ,

and s∞1 , the Stokes multipliers, and gij := (G)ij , i, j = 1, 2, the elements
of the connection matrix, G, constitute the monodromy data [16]. The
monodromy data are related by the set of algebraic equations 1

s∞0 s
∞
1 =−1−e−2πa−is00e

−πa, (1.2)

g21g22−g11g12+s00g11g22=ie−πa, (1.3)

g211−g221−s00g11g21=is∞0 e−πa, (1.4)

g222−g212+s00g12g22=is∞1 eπa, (1.5)

g11g22−g12g21=1. (1.6)

For the unique parametrisation of solutions of the DP3E in terms of the
monodromy data, one has to identify (glue) points of M that correspond
to matrices G and −G, that is, one has to consider G ∈ PSL(2,C). This
parametrisation can be used to connect the asymptotics as τ → 0 to the
asymptotics as τ→∞, that is, in obtaining connection formulae for asymp-
totics of solutions of the DP3E [16,17, 21]. It is also of paramount impor-
tance for the complete classification of the asymptotic behaviour(s) of so-
lutions, because if asymptotics of solutions of the DP3E are prescribed in
a one-to-one manner to each point of M, then all conceivable asymptotic
behaviours are exhausted.

1In these equations, eπa is considered to be a parameter.
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This paper is the first in a series of works devoted to the goal of obtaining
the complete asymptotic behaviour as τ → 0 of solutions u(τ) of the DP3E
and of its associated mole function, ϕ(τ), which satisfies the ODE

ϕ′(τ)=
2a

τ
+

b

u(τ)
. (1.7)

This paper contains several technical results that are implied by, and/or
can be derived from, the isomonodromy deformation framework developed
in [16], in which we obtained monodromy-data-dependent parametrisations
for the τ → 0 and τ→∞ asymptotic formulae for the general solution of
the DP3E. Asymptotic results for the function ϕ(τ) were actually obtained
in [16] but were not explicitly stated there since the importance of this
function in the theory of Painlevé equations was not understood at that
time and the principal object of our concern was the Painlevé function
u(τ). In our recent work on algebroid solutions of the DP3E [21], the
τ → 0+ (resp., τ → +∞) asymptotics for ϕ(τ) is given in Appendix B
(resp., Appendix C). Note that the notation τ → 0+ is understood in the
extended sense as |τ | → 0 and | arg τ | 6 φ0 < π.

The asymptotic results of [16] were stated in terms of a plethora of
notations that appeared during the course of their derivation, which, in-
advertently, had the effect of adding a degree of unreadability to them,
and thereby making the results not wholly transparent to those readers
who are not fully immersed in the technical aspects of the Isomonodromy
Deformation Method; furthermore, scant attention was paid to various
special cases that are inconspicuous to extract from the general asymp-
totic formulae in [16]: one of the purposes of this paper is to rectify these
shortcomings.

The aforementioned asymptotics contain several restrictions on the mon-
odromy data. Some of the restrictions are important: when these restric-
tions are violated, the qualitative behaviour of the asymptotics changes,
and other restrictions turn out to be related to our methodology [16] for
obtaining the parametrisation(s) of asymptotics rather than to the prop-
erties of the solutions themselves. One purpose of the present paper is
to remove those restrictions that do not reflect the essential properties of
the solutions; in [16], for example, we derived monodromy-data-dependent
parametrisations for the τ→ 0 and τ→∞ asymptotics of u(τ) under the
“generic” condition g11g22 6=0. This restriction is an essential constraint for
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asymptotics at the point at infinity, whilst for asymptotics in the neigh-
bourhood of τ =0, it is related with our method for obtaining this result,
and can, therefore, be eliminated.

This paper is organised as follows. In Section 2, the generic condition
g11g22 6=0 is removed, and power-like asymptotics for u(τ) and ϕ(τ) cor-
responding to special sets of monodromy data are given. In Section 3,
logarithmic asymptotics for the functions u(τ) and ϕ(τ) are considered;
in particular, the notation for the general logarithmic asymptotic formula
stated in Theorem 3.5 of [16] is simplified, and non-trivial, special cases
of this formula for a=0 are specified. In Section 4, three families of solu-
tions u(τ), depending on three real parameters, having zeros accumulating
at the origin are studied; the corresponding mole function, ϕ(τ), which
depends on one additional complex parameter, has movable logarithmic
branch points at these zeros. In Appendix A, an inconsistency in Proposi-
tions 5.1 and 5.2 of [16] is amended. Finally, in Appendix B, a numerical
verification of a connection result for asymptotics of a solution of the DP3E
for a = 0 having logarithmic behaviour as τ → 0 is given.

§2. The condition g11g22 6=0 and power-like asymptotics

The DP3E has a regular singular point at τ =0; therefore, the general
solution has a branching point at τ =0. In order to characterise this non-
single-valued behaviour, we introduced a branching parameter, ρ, such
that |Re(ρ)|<1/2. In Theorem 3.4 of [16], the leading term of asymptotics
of u(τ) is stated under the assumption g11g22 6= 0. This assumption was
essential for the derivation of the formula relating ρ and the monodromy
data, namely,

cos(2πρ)=− is00
2

=cosh(πa)+
1

2
s∞0 s

∞
1 eπa, (2.1)

which was derived in Proposition 5.6 of [16]. In the course of the proof of
Proposition 5.6, we used the following relation, which is valid for ρ 6=0 (the
case ρ=0 is considered in Section 3):2

(
ρ− ia

2

)
p(a, ρ)p(−a,−ρ)eπiρχ1(ρ)χ2(−ρ)

+
(
ρ+ ia

2

)
p(a,−ρ)p(−a, ρ)e−πiρχ1(−ρ)χ2(ρ)=0, (2.2)

2 For ε1=ε2=0, the monodromy functions in Theorem 3.4 of [16] simplify as follows:
s00(0, 0) :=s00, s

∞
j (0, 0) :=s∞j , j=0, 1, gkl(0, 0) :=gkl, k, l=1, 2, χm(~g(0, 0); ∗) :=χm(∗),

m=1, 2, and ̟♮
n(0, 0; ∗) :=̟n(∗), n=1, 2.
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where p(z1, z2), χ1(z3), and χ2(z4) are given in equations (47) and (48)
of [16].3 Via equations (47) of [16] and the gamma function identities [10]
Γ(12 −z)Γ(12 +z) = π

cos(πz) , Γ(z)Γ(1−z) = π
sin(πz) , and Γ(1+z) = zΓ(z), it

follows from equations (1.3) and (2.2) that

π(ρ−ia/2)(ρ+ia/2)

sin(π(ρ+ia/2))

(
e−πa+is00g11g22+g11g22e

2πiρ+g12g21e
−2πiρ

)
eπiρ

+
π(ρ−ia/2)(ρ+ia/2)

sin(π(ρ−ia/2))

(
e−πa+is00g11g22+g11g22e

−2πiρ+g12g21e
2πiρ

)
e−πiρ = 0.

(2.3)

(Equation (2.3) is also valid for ρ=±ia/2.) For ρ 6=±ia/2, equation (2.3)
simplifies to

g11g22
(
2 cos(2πρ)+is00

)
=0, (2.4)

which, for g11g22 6=0, implies equation (2.1).4 In Proposition 2.1 below, we
present a direct calculation for the Stokes multiplier s00 that is independent
of any assumptions on the connection matrix.

Proposition 2.1. For all connection matrices G∈PSL(2,C),

s00=2i cos(2πρ). (2.5)

Proof. The Stokes multiplier s00 is defined in terms of the canonical
solutions X0

k(µ), k=0, 1, of the linear auxiliary system (12) on p. 1169 of
[16], where µ∈Ω0

k :={µ∈C; |µ|<δ, −π+πk<arg(µ)−1
2 arg(τ)−1

2 arg(εb)<
π+πk}, with δ>0. Using equations (20)–(25) on p. 1171 of [16], one shows
that the defining relation for the determination of the Stokes multiplier s00
can be expressed in terms of one canonical solution corresponding to k=0:

(
X0

0 (µ)
)−1

σ3X
0
0 (e

−πiµ)=

(
1 s00
0 1

)
σ1, (2.6)

where σ3 = diag(1,−1) and σ1 = ( 0 1
1 0 ). For arg(τ) = arg(εb) = 0, an as-

ymptotic formula for X0
0 (µ)∈SL(2,C) in terms of the Hankel functions of

the first and second kinds, H
(1)
∗ (···) and H

(2)
∗ (···), respectively, is presented

3 Actually, in Proposition 5.6 of [16], we used the branching function ρ̂= ρ̂(τ), which
is related to the branching parameter ρ via the asymptotic relation ρ̂ =

τ→0+
ρ(1+o(τδ)),

δ>0; thus, equation (2.2) is, in fact, the leading term of the relation that was used in
the proof of Proposition 5.6.

4Considering the limits ρ→±ia/2 in equation (2.3), one arrives, again, at equation
(2.4), but with ρ=±ia/2.
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in Section 5 of [16]. From Propositions 2.1, 5.3, and 5.4 of [16], it follows

that, with z :=
√
τεb/µ,

X0
0 (e

−πikµ) =
τ→0+

P(e−πikµ)B(eπikz)
(
I+o

(
(τµ2)δ

))
, k=0, 1, δ>0,

(2.7)

where I=diag(1, 1),

P(µ)=

(
1√
µ

1√
µ

Â(τ)√
−Â(τ)B̂(τ)

0
√
µ

)
, (2.8)

B11(z)=z11

(
r↑(τ)H(2)

ν0 (z)+zH
(2)
ν0−1(z)

)
,

B12(z)=z12

(
r↑(τ)H(1)

ν0 (z)+zH
(1)
ν0−1(z)

)
,

B21(z)=z21

(
r↓(τ)H(2)

ν0 (z)+zH
(2)
ν0−1(z)

)
,

B22(z)=z22

(
r↓(τ)H(1)

ν0 (z)+zH
(1)
ν0−1(z)

)
,

(2.9)

with

z11 :=−
√
π e−i(

πν0
2 +π

4 )

√
−Â(τ)B̂(τ)

2
√
εb

√
B̂(τ)

,

z12 :=−
√
π ei(

πν0
2 +π

4 )

√
−Â(τ)B̂(τ)

2
√
εb

√
B̂(τ)

,

z21 :=−
√
π e−i(

πν0
2 +π

4 )

√
B̂(τ)

2
√
εb

,

z22 :=−
√
π ei(

πν0
2 +π

4 )

√
B̂(τ)

2
√
εb

,

r↑(τ) :=−ν0+ia+
2τB̂(τ)Ĉ(τ)√
−Â(τ)B̂(τ)

,

r↓(τ) :=−ν0−ia+
2τD̂(τ)

√
−Â(τ)B̂(τ)

B̂(τ)
,

ν20 =4ρ̂2,

(2.10)



THE DEGENERATE THIRD PAINLEVÉ EQUATION 175

and Â(τ) = A(τ)τ−ia, B̂(τ) = B(τ)τ ia, Ĉ(τ) = C(τ)τ−ia, and D̂(τ) =
D(τ)τ ia are the elements of the coefficient matrices of the linear auxil-
iary system (12), where A(τ), B(τ), C(τ), and D(τ) solve the system of
isomonodromy deformations (5) on p. 1167 of [16], which are equivalent
to the system (1.1), (1.7) for the functions u(τ) and ϕ(τ), that is, u(τ)=

ετ
√
−A(τ)B(τ), ε=±1, and ϕ(τ)=−i ln

(√
−A(τ)B(τ)/B(τ)

)
.5 The in-

dex of the Hankel functions is given by ν0=2ρ̂, where ρ̂ is the branching
function.3 Using the fact that (cf. equation (2.8)) (P(µ))−1σ3P(e

−πiµ)=i I,
it follows from equations (2.6) and (2.7) that

(B(z))−1
B(eπiz) =

τ→0+
e−

πi
2

(
s00 1
1 0

)
+o2×2

(
(τµ2)δ

)
,

where o2×2

(
(τµ2)δ

)
denotes a 2 × 2 matrix each of whose entries are

o
(
(τµ2)δ

)
, thus

e−
πi
2 s00+o

(
(τµ2)δ

)
=

τ→0+
B22(z)B11(e

πiz)−B12(z)B21(e
πiz). (2.11)

Since, from equations (2.10),

z11z22=z12z21=
π

√
−Â(τ)B̂(τ)

4(εb)
, (2.12)

it follows from equations (2.9), (2.11), and (2.12) that

e−
πi
2 s00+o

(
(τµ2)δ

)
=

τ→0+

π

√
−Â(τ)B̂(τ)

4(εb)

(
r↑(τ)−r↓(τ)

)

×
(
H(1)

ν0 (z)H
(2)
ν0−1(e

πiz)+H
(1)
ν0−1(z)H

(2)
ν0 (eπiz)

)
z.

(2.13)

Using the Hankel function identities [11]

H(1)
ν0 (eπiz) =−e−πiν0H(2)

ν0 (z),

H(2)
ν0 (eπiz) =

sin(2πν0)

sin(πν0)
H(2)

ν0 (z)+eπiν0H(1)
ν0 (z),

H(1)
ν0 (z)H

(2)
ν0−1(z)−H

(1)
ν0−1(z)H

(2)
ν0 (z)=− 4i

πz
,

5 As discussed in Appendix A, due to the recalibration of the gauge of the canonical
solutions at the point at infinity (see [18], Section 7), the functions A(τ), B(τ), C(τ),

D(τ), γ̂, and δ̂ appearing on the left-hand sides of equations (139)–(145) (resp., equa-
tions (147)–(153)) in Proposition 5.5 (resp. Proposition 5.7) of [16] must be changed to

A(τ)τ−ia, B(τ)τ ia, C(τ)τ−ia, D(τ)τ ia, γ̂τ−ia, and δ̂τ ia, respectively.
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it follows from equation (2.13) that

e−
πi
2 s00+o

(
τδ
)

=
τ→0+

2e
πi
2

√
−Â(τ)B̂(τ)

εb

(
r↑(τ)−r↓(τ)

)
cos(πν0). (2.14)

One shows from equations (13) and (14) of [16], in conjunction with equa-
tions (2.10), that

r↑(τ)−r↓(τ)= 2√
−Â(τ)B̂(τ)

(
ia

√
−Â(τ)B̂(τ)+τ

(
Â(τ)D̂(τ)+B̂(τ)Ĉ(τ)

))

=− iεb√
−Â(τ)B̂(τ)

; (2.15)

hence, taking the τ→ 0+ limit in equation (2.14) and recalling that ν0 =
2ρ̂→2ρ,3 one arrives at equation (2.5). �

Remark 2.1. Proposition 2.1 implies that one can use the τ→0+ asymp-
totic results in Theorem B.1 of [21] for the cases g11=0 (and g12g21g22 6=0)
or g22=0 (and g11g12g21 6=0); the corresponding monodromy data for these
cases read: (i) for g11=0,

a, g21∈C \ {0}, |Im(a)|<1, is00∈C \ {∓2},

s∞0 = ieπag221, s∞1 =
ie−πa

g221

(
1+e−2πa+ie−πas00

)
,

g11=0, g12=− 1

g21
, g22=

ie−πa

g21
;

(2.16)

and (ii) for g22=0,

a, g12∈C \ {0}, |Im(a)|<1, is00∈C \ {∓2},

s∞0 =
ieπa

g212

(
1+e−2πa+ie−πas00

)
, s∞1 =ie−πag212,

g11=− ie−πa

g12
, g21=− 1

g12
, g22=0.

(2.17)

Substituting the particular values of the monodromy data (2.16) and (2.17)
into the generic asymptotic formulae given in Theorem B.1 of [21], one
arrives at the corresponding asymptotics for the functions u(τ) and ϕ(τ).
Despite the fact that the monodromy data (2.16) and (2.17) look rather
special, the corresponding τ→0+ asymptotic expansions for the functions
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u(τ) and ϕ(τ) resemble, in form, the generic τ→0+ asymptotic formulae
stated in Theorem B.1 of [21], and will, therefore, not be presented here.

The generic τ → 0+ asymptotic formulae for the functions u(τ) and
ϕ(τ) stated in Theorem B.1 of [21] (and also for u(τ) in Theorem 3.4
of [16]) are valid for all ρ 6= 0 such that |Re(ρ)| < 1/2. In Corollary 2.1
below, we consider the special cases ρ=±ia/2, because, in these cases, the
aforementioned asymptotic formulae require reparametrisation and one of
their coefficients vanishes; this fact can be gleaned from equations (2.2)
and (2.3).

Corollary 2.1. Let (u(τ), ϕ(τ)) be a solution of the system (1.1), (1.7)
corresponding to the monodromy data

a, g21∈C \ {0}, Im(a)∈ [0, 1), s00=2i cosh(πa), s∞0 =0, s∞1 ∈C,

g11=ig21e
−πa, g22=

i−s∞1 g221eπa
2g21 sinh(πa)

, g12=− eπa+is∞1 g
2
21

2g21 sinh(πa)
;

(2.18)

then,

u(τ) =
τ→0+

− bτ
2a

(
e

π
2 (a+i)

(
sinh(πa)

πa

)2

(Γ(1−ia))3s∞1 g
2
21

(
εbτ2

2

)ia

+1

)

×
(
1+O

(
τδ
))
,

(2.19)

eiϕ(τ) =
τ→0+

eπa

2πag221

(
4

εb

)ia
(
e

πa
2 Γ(1−ia)s∞1 g

2
21

(
εbτ2

2

)ia

−i(Γ(1+ia))2

)

×
(
1+O

(
τδ
))
,

(2.20)

where Γ(∗) is the gamma function [10], and δ>0.
Let (u(τ), ϕ(τ)) be a solution of the system (1.1), (1.7) corresponding

to the monodromy data

a, g12∈C \ {0}, Im(a)∈(−1, 0], s00=2i cosh(πa), s∞0 ∈C, s∞1 =0,

g11=
s∞0 g

2
12e

−πa−i

2g12 sinh(πa)
, g22=−ig12e

−πa, g21=−eπa+is∞0 g
2
12e

−2πa

2g12 sinh(πa)
;

(2.21)
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then,

u(τ) =
τ→0+

bτ

2a

(
e−

3π
2 (a−i)

(
sinh(πa)

πa

)2

(Γ(1+ia))3s∞0 g
2
12

(
εbτ2

2

)−ia

−1

)

×
(
1+O

(
τδ
))
,

(2.22)

e−iϕ(τ) =
τ→0+

− eπa

2πag212

(
εb

4

)ia
(
e−

3πa
2 Γ(1+ia)s∞0 g

2
12

(
εbτ2

2

)−ia

−i(Γ(1−ia))2

)

×
(
1+O

(
τδ
))
.

(2.23)

Let (u(τ), ϕ(τ)) be a solution of the system (1.1), (1.7) corresponding
to the monodromy data

a, g12∈C \ {0}, |Im(a)|<1, s00=2i cosh(πa), s∞0 =s∞1 =0,

g11=− i

2g12 sinh(πa)
, g21=− eπa

2g12 sinh(πa)
, g22=−ig12e

−πa;
(2.24)

then, the functions u(τ) and ϕ(τ) are holomorphic at the origin [18, 20],
and

u(τ) =
τ→0+

− τb

2a

(
1+O

(
τδ
))
, (2.25)

eiϕ(τ) =
τ→0+

2e−
πi
2 e−πag212 sinh(πa)

(
4

εb

)ia
Γ(1+ia)

Γ(1−ia)

(
1+O

(
τδ
))
, (2.26)

where δ=1 if a=±i/2 and δ=2 if a 6=±i/2. 6

Proof. If ρ=±ia/2, then it follows from Proposition 2.1 that

s00=2i cosh(πa). (2.27)

Since the asymptotic results for u(τ) presented in Theorem 3.4 of [16] are
symmetric with respect to the change ρ→−ρ, it suffices to consider the

6 The results formulated in this corollary (and Theorems 3.1 and 4.1 below) are
extended in [22] for all a 6= 0; since the removal of the restriction | Im(a)| < 1 used
in [16] requires a somewhat more elaborate technique, we continue to employ it in the
current work. We did not discuss a precise estimate for δ > 0 in [16], so in equations
(2.18) and (2.21) a more accurate restriction for Im(a), rather than | Im(a)| < 1, is
stated. As a matter of fact, the corresponding asymptotics are valid for | Im(a)| < 1.
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case ρ=ia/2, which, from equation (2.2), implies

χ1(−ia/2)χ2(ia/2)=0, (2.28)

since p(a,−ia/2)p(−a, ia/2) = (2/a)2 6= 0. In conjunction with equations
(1.2)–(1.6) and (2.27), equation (2.28) gives rise to the following three—
distinct—cases for the determination of the corresponding monodromy
data: (i) if χ1(−ia/2) = 0 and χ2(ia/2) 6= 0, then the monodromy data
are given by equations (2.18); (ii) if χ1(−ia/2) 6= 0 and χ2(ia/2) = 0,
then the monodromy data are provided by equations (2.21); and (iii) if
χ1(−ia/2)=χ2(ia/2)=0, then one arrives at the monodromy data (2.24).
Furthermore, via equations (46) of [16],2 it follows that: (i) χ1(−ia/2) =
0⇒̟1(−ia/2)=0; (ii) χ2(ia/2)=0⇒̟2(ia/2)=0; and (iii) χ1(−ia/2)=
χ2(ia/2) = 0⇒̟1(−ia/2) =̟2(ia/2) = 0. Finally, substituting the mon-
odromy data (2.18), (2.21), and (2.24) into the corresponding asymptotic
formula in Theorem 3.4 of [16], one arrives at the τ→0+ asymptotics for
u(τ) stated in equations (2.19), (2.22), and (2.25), respectively, whilst from
the results of Theorem B.1 of [21], one arrives at the τ→0+ asymptotics
for ϕ(τ) stated in equations (2.20), (2.23), and (2.26), respectively. �

Remark 2.2. Proposition 2.1 also implies that one can use the τ → 0+

asymptotics of Corollary 2.1 for the cases g11 = 0 (and g12g21g22 6= 0) or
g22=0 (and g11g12g21 6=0); the corresponding monodromy data for these
cases read: (i) for g11=0,

a, g12∈C \ {0}, Im(a)∈(−1, 0], s00=2i cosh(πa),

s∞0 =
ieπa

g212
, s∞1 =0,

g11=0, g21=− 1

g12
, g22=−ie−πag12;

(2.29)

and (ii) for g22=0,

a, g21∈C \ {0}, Im(a)∈ [0, 1),

s00=2i cosh(πa), s∞0 =0, s∞1 =
ie−πa

g221
,

g11=ie−πag21, g12=− 1

g21
, g22=0.

(2.30)

Substituting the particular values of the monodromy data (2.29) (resp.,
(2.30)) into the asymptotic formulae (2.22) and (2.23) (resp., (2.19) and
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(2.20)), one arrives at the corresponding asymptotics for the functions u(τ)
and ϕ(τ).

§3. Logarithmic asymptotics

In [16], we obtained small-τ asymptotics of the function u(τ) for the
case ρ=0: the corresponding results were presented in Theorem 3.5 of [16],
where it was shown that these asymptotics possess logarithmic behaviour;
the logarithmic asymptotics for the function ϕ(τ), however, was not con-
sidered in [16, 21]. As a consequence of Proposition 2.1, the restriction
g11g22 6= 0 can be removed from the formulation of Theorem 3.5 in [16].
We also analyse, more carefully, the case a= 0, and formulate the corre-
sponding results in Corollary 3.1.

The following theorem is an extension of Theorem 3.5 in [16]:7 it includes
a new formula for the τ→0+ asymptotics of the function ϕ(τ), and also a
simplified expression for the τ→0+ asymptotics of the function u(τ).

Theorem 3.1. Let (u(τ), ϕ(τ)) be a solution of the system (1.1), (1.7)
corresponding to the monodromy data (a, s00, s

∞
0 , s

∞
1 , g11, g12, g21, g22). Sup-

pose that

a∈C \ {0}, |Im(a)|<1, s00=2i; (3.1)

then,8

u(τ) =
τ→0+

−abτ
4

(
ln

(
εbτ2

2

)
+4γ+ψ

(
− ia

2

)
− πi

2
+
πi(g12+ig22)

(g12−ig22)

)

×
(
ln

(
εbτ2

2

)
+4γ+ψ

(
1− ia

2

)
− πi

2
+
πi(g12+ig22)

(g12−ig22)

)(
1+O

(
τδ
))
, (3.2)

eiϕ(τ) =
τ→0+

e
π
2 (a+i)

πa
(g12−ig22)

2
(
Γ
(
1− ia

2

))2
(2τ2)ia

×



ln
(

εbτ2

2

)
+4γ+ψ

(
1− ia

2

)
− πi

2 + πi(g12+ig22)
(g12−ig22)

ln
(
εbτ2

2

)
+4γ+ψ

(
− ia

2

)
− πi

2 + πi(g12+ig22)
(g12−ig22)


(1+O

(
τδ
))
, (3.3)

7For ε1=ε2=0, the monodromy functions in Theorem 3.5 of [16] simplify as follows:
s00(0, 0) := s00, s

∞
j (0, 0) := s∞j , j = 0, 1, gkl(0, 0) := gkl, k, l= 1, 2, χm(~g(0, 0); 0) := χm,

m=1, 2, and ̟♭
n(0, 0):=̟♭

n, n=1, 2, 3, 4.
8There exists another logarithmic expansion as τ → 0+ for the functions u(τ) and

ϕ(τ) corresponding to s00=−2i [22].



THE DEGENERATE THIRD PAINLEVÉ EQUATION 181

where ψ(z) := d lnΓ(z)
dz is the digamma function,

γ=−ψ(1)=0.577215664901532860606512 . . .

is the Euler–Mascheroni constant, and δ>0.

Proof. The corresponding τ→0+ asymptotic expansion of u(τ) given in
Theorem 3.5, equation (51) of [16] reads, after multiplying out the various
expressions in parentheses,

u(τ) =
τ→0+

τbe
πa
2

2a sinh(πa/2)

(
̟♭

1̟
♭
3+
(
̟♭

2̟
♭
3−̟♭

1̟
♭
4

)
ln τ−̟♭

2̟
♭
4(ln τ)

2
)

×
(
1+O

(
τδ
))
, (3.4)

where the coefficients ̟♭
k, k=1, 2, 3, 4, are given in equations (52) and (53)

of [16]. Using the digamma function identities [10] ψ(1+z)=ψ(z)+1/z,ψ(1−
z)=ψ(z)+π cot(πz), ψ(12+z)−ψ(12−z)=π tan(πz), and ψ(1/2)=ψ(1)−2 ln2,
the reflection formula [10] Γ(z)Γ(1−z) = π

sin(πz) , the algebraic relations

(1.2)–(1.6) (with s00=2i) for the monodromy data, and the corresponding
equations (52) and (53) in [16], one shows that

−̟♭
2̟

♭
4 = a2ω1(g; 1)ω2(g; 1),

̟♭
2̟

♭
3−̟♭

1̟
♭
4 =

a2

2

(
ω1(g; 1)

(
πiω2(g;−1)+ω2(g; 1)Φ(g;−1)

)

+ ω2(g; 1)
(
πiω1(g;−1)+ω1(g; 1)Φ(g; 1)

))
,

̟♭
1̟

♭
3 =

a2

4

(
πiω1(g;−1)+ω1(g; 1)Φ(g; 1)

)

×
(
πiω2(g;−1)+ω2(g; 1)Φ(g;−1)

)
,

(3.5)

where, for k=1, 2 and l=±1,

ωk(g; l) := g1ke
πi
4 + lg2ke

−πi
4 , (3.6)

Φ(g; l) := 4γ + ψ
(
1 + l ia2

)
+ ln

(
εb
2

)
+ l πi2 . (3.7)

Via the identities (3.5), one shows that the asymptotics (3.4) for u(τ) can
be presented in the factorised form

u(τ) =
τ→0+

abe
πa
2 τ

8 sinh(πa/2)

(
ω1(g; 1) ln(τ

2)+πiω1(g;−1)+ω1(g; 1)Φ(g; 1)
)

×
(
ω2(g; 1) ln(τ

2)+πiω2(g;−1)+ω2(g; 1)Φ(g;−1)
)(
1+O

(
τδ
))
. (3.8)
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Recall the following expression for the function ϕ(τ) given in [19]:

ϕ(τ)=−i ln

(√
−A(τ)B(τ)

B(τ)

)
;

substituting into the latter expression the τ → 0+ asymptotics for the
functions

√
−A(τ)B(τ) and

√
B(τ) given in Proposition 5.7 of [16],5 using

the identities (3.5), and simplifying, one shows that

eiϕ(τ) =
τ→0+

2π(2τ2)ia

a sinh(πa/2)(Γ(ia/2))2
(3.9)

×
(
ω2(g; 1) ln(τ

2)+πiω2(g;−1)+ω2(g; 1)Φ(g;−1)

ω1(g; 1) ln(τ2)+πiω1(g;−1)+ω1(g; 1)Φ(g; 1)

)(
1+O

(
τδ
))
.

Recalling that s00 = 2i, one arrives at, after using the algebraic relations
(1.2)–(1.6) and the definition(s) (3.6),

ω1(g; 1)ω2(g; 1)=−2e−
πa
2 sinh(πa/2),

ω2(g; 1)

ω1(g; 1)
=
g12−ig22
g11−ig21

,

ω1(g;−1)

ω1(g; 1)
=
g11+ig21
g11−ig21

,
ω2(g;−1)

ω2(g; 1)
=
g12+ig22
g12−ig22

:

(3.10)

using equations (3.10), one simplifies the asymptotics (3.8) and (3.9), re-
spectively, as follows:

u(τ) =
τ→0+

−abτ
4

(
ln

(
εbτ2

2

)
+4γ+ψ

(
1+ ia

2

)
+
πi

2
+
πi (g11+ig21)

(g11−ig21)

)

×
(
ln

(
εbτ2

2

)
+4γ+ψ

(
1− ia

2

)
− πi

2
+
πi(g12+ig22)

(g12−ig22)

)(
1+O

(
τδ
))
, (3.11)

eiϕ(τ) =
τ→0+

2π(g12−ig22)(2τ
2)ia

a sinh(πa/2)(Γ(ia/2))2(g11−ig21)

×



ln
(

εbτ2

2

)
+4γ+ψ

(
1− ia

2

)
− πi

2 + πi (g12+ig22)
(g12−ig22)

ln
(
εbτ2

2

)
+4γ+ψ

(
1+ ia

2

)
+ πi

2 + πi(g11+ig21)
(g11−ig21)


(1+O

(
τδ
))
. (3.12)

In order to reduce the number of parameters appearing in the asymptotics
(3.11) and (3.12), one shows from the definition(s) (3.6) and equations
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(3.10) that

g11+ig21
g11−ig21

=
e

π
2 (a−i)(g11g12+g21g22)

2 sinh(πa/2)
− e

πa
2

2 sinh(πa/2)
, (3.13)

g12+ig22
g12−ig22

=
e

π
2 (a−i)(g11g12+g21g22)

2 sinh(πa/2)
+

e
πa
2

2 sinh(πa/2)
, (3.14)

whence
g11+ig21
g11−ig21

=
g12+ig22
g12−ig22

− e
πa
2

sinh(πa/2)
. (3.15)

Finally, via equation (3.15) and the digamma and gamma function iden-
tities given at the beginning of the proof, one simplifies the asymptotics
(3.11) and (3.12), respectively, in order to arrive at the τ→0+ asymptotics
(3.2) and (3.3) for u(τ) and ϕ(τ). �

Remark 3.1. If one defines

c :=4γ+ψ(−ia/2)−πi
2
+
πi (g12+ig22)

(g12−ig22)
+

i

a
+ln(εb/2), (3.16)

then the asymptotics (3.2) and (3.3), respectively, can be presented in the
simplified form

u(τ) =
τ→0+

−abτ
(
(ln τ)2+c ln τ+

1

4

(
c2+

1

a2

))(
1+O

(
τδ
))
, (3.17)

eiϕ(τ) =
τ→0+

e
π
2 (a+i)

πa
(g12−ig22)

2
(
Γ
(
1− ia

2

))2
(2τ2)ia

×
(
ln τ+ 1

2 (c+i/a)

ln τ+ 1
2 (c−i/a)

)(
1+O

(
τδ
))
, (3.18)

where δ>0.

For a=0, the asymptotic results stated in Theorem 3.1 require repara-
metrisation: this is given in the following corollary.

Corollary 3.1. Let (u(τ), ϕ(τ)) be a solution of the system (1.1), (1.7)
corresponding to the monodromy data

a=s∞0 =0, s00=2i, g21∈C \ {0}, s∞1 =
i

g221
, g11=ig21,

g12=−1+ic1
2g21

, g22=−c1+i

2g21
, c1∈C;

(3.19)
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then,

u(τ) =
τ→0+

ibτ

2

(
ln

(
εbτ2

2

)
+3γ−πc1−

πi

2

)(
1+O

(
τδ
))
, (3.20)

eiϕ(τ) =
τ→0+

− 1

2πg221

(
ln

(
εbτ2

2

)
+3γ−πc1−

πi

2

)(
1+O

(
τδ
))
, (3.21)

where γ=−ψ(1)=0.577215664901532860606512 . . . is the Euler–Masche-
roni constant, and δ>0.

Let (u(τ), ϕ(τ)) be a solution of the system (1.1), (1.7) corresponding
to the monodromy data

a=s∞1 =0, s00=2i, g12∈C \ {0}, s∞0 =
i

g212
, g22=−ig12,

g11=
c2−i

2g12
, g21=−3+ic2

2g12
, c2∈C;

(3.22)

then,

u(τ) =
τ→0+

− ibτ

2

(
ln

(
εbτ2

2

)
+3γ+πc2−

3πi

2

)(
1+O

(
τδ
))
, (3.23)

e−iϕ(τ) =
τ→0+

− 1

2πg212

(
ln

(
εbτ2

2

)
+3γ+πc2−

3πi

2

)(
1+O

(
τδ
))
. (3.24)

Proof. For a=0 and s00=2i (ρ=0), equation (1.2) implies that s∞0 s
∞
1 =0.

The case s∞0 = s∞1 =0 contradicts equation (1.6); therefore, the following
two cases are left: (i) s∞0 = 0 and s∞1 6= 0; and (ii) s∞0 6= 0 and s∞1 =
0. Consider case (i). An analysis of equations (1.3)–(1.6) shows that the
monodromy data can be presented as in equations (3.19). To derive the
asymptotics of the functions u(τ) and ϕ(τ), one notes that the parameter
c (cf. equation (3.16)) has the following asymptotic behaviour as a→0:

c=− i

a
+ ĉ+O(a), (3.25)

where

ĉ :=3γ−πi

2
−πc1+ln(εb/2). (3.26)

Write, now, the asymptotics (3.17) and (3.18), respectively, in the form

u(τ) =
τ→0+

−bτ
(
a(ln τ)2+ac ln τ+

a

4

(
c+

i

a

)(
c− i

a

))(
1+O

(
τδ
))
, (3.27)
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and

eiϕ(τ) =
τ→0+

e
π
2 (a+i)

πg221

(
Γ
(
1− ia

2

))2
eia ln(2τ2)

(
ln τ+ 1

2 (c+i/a)

a ln τ+ a
2 (c−i/a)

)(
1+O

(
τδ
))

;

(3.28)
substituting into equations (3.27) and (3.28) the relation for c given in
equation (3.25) and taking the limit as a→0, one gets

u(τ) =
τ→0+

ibτ

2

(
ln τ2+ ĉ

)(
1+O

(
τδ
))
, (3.29)

and

eiϕ(τ) =
τ→0+

− 1

2πg221

(
ln τ2+ ĉ

)(
1+O

(
τδ
))

; (3.30)

thus, one arrives at the asymptotics (3.20) and (3.21), respectively. The
analysis for case (ii), with corresponding monodromy data given by equa-
tions (3.22), is similar; however, there is a difference, because the denom-
inator of the fractional term iπ(g12+ig22)/(g12− ig22) appearing in the
asymptotics (3.2) and (3.3) vanishes. In order to resolve this problem, one
has to exploit equation (3.15); by doing so, the following representation
for the asymptotics of the parameter c as a→0 is obtained:

c=
i

a
+ č+O(a), (3.31)

where

č :=3γ− 3πi

2
+πc2+ln(εb/2). (3.32)

Proceeding, now, as delineated above, one arrives at the asymptotics (3.23)
and (3.24). �

Remark 3.2. The validation of the limiting procedure as a → 0 stud-
ied in Corollary 3.1 is based on the justification scheme for the Isomon-
odromy Deformation Method [15]. The calculation of the monodromy data
in [16] for the case ρ=0 was undertaken in accordance with the condition
|Im(a)| < 1 and certain assumptions on the 4-tuple of coefficient func-
tions (A(τ), B(τ), C(τ), D(τ)) of a first-order 2 × 2 matrix linear ODE
whose isomonodromy deformations are described in terms of solutions of
the DP3E: these assumptions are valid for all a satisfying the restriction
|Im(a)|<1, including, in particular, a=0; therefore, the associated asymp-
totic formulae for the functions u(τ) and ϕ(τ) should be valid for all a
such that Im(a)∈(−1, 1). The manifestation of this problem is principally
due to the fact that one can not assign a unique parametrisation for M
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that subsumes both sets of the monodromy data (3.19) and (3.22); more
precisely, for a close to 0, one can not introduce variables that parametrise
the asymptotics smoothly in the neighbourhoods of two disjoint curves on
M, thus the neighbourhood of each curve requires its own parametrisa-
tion (cf. equations (3.26) and (3.32)). After the implementation of such
a parametrisation, one simply sets a=0 in the corresponding asymptotic
formulae; in fact, the raison d’être of the proof is to delineate a paradigm
for how one finds proper, smooth parametrisations for asymptotics in the
neighbourhoods of each of the two disjoint curves on M.

Remark 3.3. The results presented in Corollary 3.1 allow one to check
the two logarithmic asymptotics for τ−1/2eu that appear directly below
equations (19) on p. 2082 in [14]; the result of this comparison shows that
the right-hand sides of both formulae for τ−1/2eu must be multiplied by 2
(see, also, Appendix A of [13]).

§4. Distribution of zeros

In many, but not all, cases, at a point where a solution of a Painlevé
equation has a zero or a pole, the corresponding Fuchs-Garnier pair for
this Painlevé equation is not defined. Even when the Fuchs-Garnier pair
is well defined, at a zero, say, the definition of the canonical solutions may
require a modification depending on the type of the zero: this is precisely
the case we encounter in the study of the DP3E.

On the other hand, in case an asymptotic formula for the correspond-
ing solution of a Painlevé equation has zeros or poles accumulating at a
singular point where we construct the asymptotics, the standard asymp-
totic technique based on the isomonodromy deformations also fails in some
neighbourhood of these points; therefore, the poles and zeros of the asymp-
totic formulae also require a more accurate treatment.

Taking the DP3E as our principal example, we recall the standard inter-
pretation of the asymptotic results in case the leading term of asymptotics
has zeros accumulating at the origin. Of course, for the description of the
asymptotic behaviour of the solution in a neighbourhood of zeros or poles
of the leading term of its asymptotics accumulating at the corresponding
singular point, one can invoke the correction terms of the asymptotic ex-
pansion; this, however, is the next step of the asymptotic analysis, because
the initial step is to use the leading term of asymptotics in order to decide
whether or not, in a neighbourhood of its zeros or poles, there are zeros
and/or poles of the corresponding solution: this is the second question that
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we address in this section. To conclude the introductory part of this sec-
tion, we note that, as follows from a local analysis of equation (1.1), all
zeros of its solutions are of order one and all poles are of order two.

We recall the asymptotic formulae as τ → 0 for the functions u(τ) and
ϕ(τ) given in Theorem B.1 of [21]. These formulae contain a branching
parameter, ρ; for ρ = iκ, κ ∈ R \ {0}, these asymptotics read:

u(τ) =
τ→0

τbe
πa
2

16π

(
A(κ)τ2iκ+A(−κ)τ−2iκ

)

×
(
B(κ)τ2iκ+B(−κ)τ−2iκ

)(
1+O

(
τδ
))
, (4.1)

eiϕ(τ) =
τ→0

eπi(2τ2)ia
(
B(κ)τ2iκ+B(−κ)τ−2iκ

A(κ)τ2iκ+A(−κ)τ−2iκ

)(
1+O

(
τδ
))
, (4.2)

where

A(κ) =
(

1
2 (εb)e

πi
2

)iκ Γ(1−2iκ)

Γ(1+2iκ)

Γ(1+ ia
2 +iκ)

iκ

×
(
g11e

πi
4 e−πκ+g21e

−πi
4 eπκ

)
, (4.3)

B(κ) =
(

1
2 (εb)e

−πi
2

)iκ Γ(1−2iκ)

Γ(1+2iκ)

Γ(1− ia
2 +iκ)

iκ

×
(
g12e

πi
4 e−πκ+g22e

−πi
4 eπκ

)
. (4.4)

If, in addition, we assume that the Stokes multipliers corresponding to u(τ)
and ϕ(τ) satisfy the condition s∞0 s

∞
1 6= 0, then A(κ)A(−κ)B(κ)B(−κ) 6=

0; under this assumption, equation (4.1) can be rewritten as

u(τ) = uas(τ)
(
1 +O

(
τδ
))

= uas(τ) +O
(
τ1+δ

)
, (4.5)

where uas(τ) can be presented in the following form:

uas(τ)=
τbe

πa
2

4π

√
A(κ)A(−κ)

√
B(κ)B(−κ) cosh(zA(τ)) cosh(zB(τ)),

(4.6)
with

zA(τ) :=2iκ ln τ +
1

2
ln

(
A(κ)

A(−κ)

)
, zB(τ) :=2iκ ln τ +

1

2
ln

(
B(κ)

B(−κ)

)
.

(4.7)
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Equations (4.6) and (4.7) imply that there are two sequences of zeros of
uas(τ) accumulating at the origin:

τ̂m,C=exp

(
− πm

2|κ|+
π

4κ
+

i

4κ
ln

( C(κ)
C(−κ)

))
, C ∈ {A,B}, (4.8)

where the branches of the ln-functions can be fixed arbitrarily, and m ∈ N.
Define discs Dm,C of radius Rm,C = R0|τ̂m,C|1+δd , R0 > 0, 0 < δd < δ,

centred at τ̂m,C. If δd < δ, then R0 can be taken equal to 1, and if δd = δ,
then R0 is the same as the constant9 in the estimate of the function O

(
τδ
)

in equation (4.1).

Proposition 4.1. For large enough m1,m2 ∈ N, the discs Dm1,C1
and

Dm2,C2
do not intersect.

Proof. For large enough m1 and m2, the distance between the centres
of the discs is of the order O

(
|τ̂m,C1

|
)
, where m := min{m1,m2}, while

Rm1,C1
+Rm2,C2

= O
(
|τ̂m,C1

|1+δd
)
. �

Consider the sector S := {τ ∈ C : | arg(τ)| 6 φ0 < π}, and define the

complement of the open discs in this sector, Ŝ := S \ ∪
m∈N,C∈{A,B}

IntDm,C.

Theorem 4.1. Let (u(τ), ϕ(τ)) be a solution of the system (1.1), (1.7)
corresponding to the monodromy data (a, s00, s

∞
0 , s

∞
1 , g11, g12, g21, g22). Sup-

pose that 10

| Im(a)| < 1, Re(s00) = 0, Im(s00) > 2, s∞0 s
∞
1 6= 0, (4.9)

and κ ∈ R \ {0} is a solution of the equation s00 = 2i cosh(2πκ).11 Then,

the asymptotics of the functions u(τ) and ϕ(τ) as τ → 0 and τ ∈ Int Ŝ are
given by equations (4.1) and (4.2), respectively.

Proof. The functions uas(τ) and eiϕas(τ) are non-vanishing holomorphic

functions in Int Ŝ.12 They define the functions A(τ), B(τ), C(τ), and D(τ)
(cf. Appendix A of this paper and [16]) which satisfy all the conditions used

in the derivation of the asymptotics presented in [16] in Int Ŝ. The functions

u(τ) and eiϕ(τ) are meromorphic functions in Int Ŝ as a consequence of the

9The constant depends on the monodromy data.
10 Note that the restriction s∞0 s∞1 6= 0 in the conditions (4.9) is equivalent to (cf.

equation (1.2)) s00 6= 2i cosh(πa).
11 The sign of κ can be chosen arbitrarily because of the κ → −κ symmetry of the

asymptotics (4.1) and (4.2).
12 The function ϕas(τ) is defined as the leading term of the asymptotics (4.2).
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Painlevé property. Thus, one can use the justification scheme presented
in [15], which proves the asymptotic expansion (4.5) and the analogous
relation for eiϕ(τ); in particular, the functions u(τ) and eiϕ(τ) have neither

zeros nor poles in Int Ŝ. �

Lemma 4.1. If u(τ) is the solution of equation (1.1) that corresponds to
the monodromy data satisfying the restrictions (4.9), then, for all large
enough m ∈ N, the discs Dm,C do not contain poles of the function u(τ).

Proof. For ε = 1, the Laurent expansion of the function u(τ) in a neigh-
bourhood of a pole τp 6= 0 reads:

u(τ)=
u−2

(τ − τp)2
+

∞∑

k=0

uk(τ − τp)
k, u−2=−τp

4
, u0∈C, u1=−u0

τp
,

u2=
2abτp−24τpu

2
0+9u0

10τ2p
, u3=−4(2abτp−54τpu

2
0+9u0)

45τ3p
, . . . .

(4.10)

The coefficients uk, k > 4, can be uniquely determined in terms of u0 and
τp. To introduce the parameter ε = ±1 into the expansion (4.10), one can
make the following substitutions in the formulae for the coefficients uk:
b → εb, uk → εuk for all k = −2, 0, 1, 2, . . ., and take into account that
ε2 = 1.

The proof is by contradiction. Assume that u(τ) has n > 1 poles,
τp1 , . . . , τpn

, in Dm,C; then, the following integral can be evaluated ex-
plicitly via the Residue Theorem:

1

2πi

ffi

∂Dm,C

τ(u(τ) − uas(τ)) dτ = −1

4

n∑

k=1

τpk
. (4.11)

The absolute value of the sum of poles on the right-hand side of equa-
tion (4.11) can be estimated from below with the help of the triangle
inequality:

∣∣∣∣∣−
1

4

n∑

k=1

τpk

∣∣∣∣∣=
1

4

∣∣∣∣∣

n∑

k=1

τ̂m,C + τpk
− τ̂m,C

∣∣∣∣∣>
1

4

n∑

k=1

(|τ̂m,C|−|τpk
− τ̂m,C|)

>
n

4
(|τ̂m,C| −Rm,C) =

n

4
|τ̂m,C|

(
1−R0 |τ̂m,C|δd

)
.

(4.12)
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Now, we evaluate the integral on the left-hand side of equation (4.11) from
above:∣∣∣∣∣∣∣

1

2πi

ffi

∂Dm,C

τ(u(τ) − uas(τ)) dτ

∣∣∣∣∣∣∣
6

1

2π

ffi

∂Dm,C

|τ ||u(τ) − uas(τ)| |dτ |

< Rm,C(|τ̂m,C|+Rm,C)
∣∣O
(
(|τ̂m,C|+Rm,C)

1+δd
)∣∣=

∣∣∣O
(
|τ̂m,C|3+2δd

)∣∣∣ .
(4.13)

Combining inequalities (4.12) and (4.13) and dividing both sides by |τ̂m,C|,
we get

n

4

(
1−R0 |τ̂m,C|δd

)
<
∣∣∣O
(
|τ̂m,C|2+2δd

) ∣∣∣ . (4.14)

Letting m→ ∞, i.e., τ̂m,C → 0, we arrive at the conclusion that n = 0. �

Corollary 4.1. For any solution u(τ) corresponding to the monodromy
data specified in Theorem 4.1, there exists a pole-free small enough cut
neighbourhood of the origin, i.e., there exists ǫ > 0 such that for all τ ∈ C

with | arg τ | < π and 0 < |τ | < ǫ the function u(τ) has no poles.

Proof. Follows from Theorem 4.1 and Lemma 4.1. �

Theorem 4.2. If u(τ) is the solution of equation (1.1) that corresponds
to the monodromy data satisfying the restrictions (4.9), then, for all large
enough m ∈ N, the discs Dm,C contain one and only one zero of the func-
tion u(τ).

Proof. This is a consequence of the fact that the function uas(τ) has, by
construction, only one zero located at the centre of Dm,C and Rouché’s
Theorem, which should be applied to the right-hand side of equation (4.5)
where the function O

(
τ1+δ

)
is holomorphic in Dm,C (as the difference of

two holomorphic functions), and the condition |uas(τ)| > |O
(
τ1+δ

)
| is

guaranteed for all large enough m by a proper choice of the radius, Rm,C,
of the disc: one either has to take δd < δ, or, for a sharper estimate, take
δd = δ and increase, if necessary, the parameter R0. �

Theorem 4.2 can also be reformulated as follows.

Corollary 4.2. Assume that a solution u(τ) of equation (1.1) corresponds
to the monodromy data specified in Theorem 4.1. Then, there exists a small
enough cut neighbourhood of the origin (i.e., there exists ǫ > 0 such that
for all τ ∈ C with | arg τ | < π and 0 < |τ | < ǫ) where all zeros, τm,C, of
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the function u(τ) can be approximated by the corresponding zeros, τ̂m,C, of
the leading term of its asymptotics uas(τ):

τm,C =
m→∞

τ̂m,C

(
1 +O

(
e−

πmδ
2|κ|

))
, (4.15)

where τ̂m,C are defined in equation (4.8).

Proposition 4.2. Let the function ϕ(τ) be a solution of equation (1.7)
corresponding to the monodromy data specified in Theorem 4.1. Then, in
a small enough cut neighbourhood of the origin, all zeros of the function
eiϕ(τ) are located at τm,B and all poles are located at τm,A.

Proof. As follows from equation (1.7), the zeros and poles of eiϕ(τ) are
located at the zeros of u(τ). The asymptotic formulae (4.1) and (4.2) make
explicit which zeros of u(τ) define the zeros and poles of eiϕ(τ). �

In case the last condition in (4.9) is not valid, i.e., one of the Stokes
multipliers at the point at infinity vanishes, there are also sequences of
zeros of the function u(τ) accumulating at the origin. The asymptotic
formulae (4.1) and (4.2) for these cases remain valid, and therefore their
analysis does not require any new ideas; nevertheless, these asymptotics
can be simplified and presented in a slightly different form: this is done
below.

Theorem 4.3. Assume that a solution (u(τ), ϕ(τ)) of the system (1.1),
(1.7) corresponds to the monodromy data

a = −2κ, κ ∈ R \ {0}, s∞1 , g21 ∈ C \ {0},
s∞0 = 0, s00 = 2i cosh(2πκ),

g11 = ig21e
2πκ , g22 =

s∞1 g
2
21e

−2πκ − i

2g21 sinh(2πκ)
, g12 =

is∞1 g
2
21 + e−2πκ

2g21 sinh(2πκ)
;

(4.16)

then A(κ) = 0. The functions u(τ) and eiϕ(τ) have only one sequence
of zeros, τm,B, m ∈ N, accumulating at the origin with asymptotic be-
haviour (4.15) for C = B.

The asymptotics of the functions u(τ) and ϕ(τ) are given by equa-
tions (4.1) and (4.2), respectively, with A(κ) = 0 and τ → 0 in the sector

ŜB := S \ ∪
m∈N

IntDm,B; these asymptotic formulae coincide with those in

Corollary 2.1 (cf. equations (2.19) and (2.20) for a = −2κ).
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Theorem 4.4. Assume that a solution (u(τ), ϕ(τ)) of the system (1.1),
(1.7) corresponds to the monodromy data

a = 2κ, κ ∈ R \ {0},
s∞0 , g12 ∈ C \ {0}, s∞1 = 0, s00 = 2i cosh(2πκ),

g22 = −ig12e
−2πκ, g11 =

s∞0 g
2
12e

−2πκ − i

2g12 sinh(2πκ)
, g21 = − is∞0 g

2
12e

−4πκ + e2πκ

2g12 sinh(2πκ)
;

(4.17)
then B(κ) = 0. The function u(τ) (resp. eiϕ(τ)) has only one sequence of
zeros (resp. poles), τm,A, m ∈ N, accumulating at the origin with asymp-
totic behaviour (4.15) for C = A.

The asymptotics of the functions u(τ) and ϕ(τ) are given by equa-
tions (4.1) and (4.2), respectively, with B(κ) = 0 and τ → 0 in the sector

ŜA := S \ ∪
m∈N

IntDm,A; these asymptotic formulae coincide with those in

Corollary 2.1 (cf. equations (2.22) and (2.23) for a = 2κ).

Appendix §A. Revised derivation for the small-τ
asymptotics of isomonodromy

deformations in [16]

As pointed out in Section 7 of [18], there is an inconsistency in the
definition of the canonical asymptotics at the point at infinity: the pur-
pose of this appendix is to address this matter, and to discuss some of its
implications for the functions A(τ), B(τ), C(τ), and D(τ) satisfying the
system of isomonodromy deformations (5) on p. 1167 of [16] and defining
the functions u(τ) and ϕ(τ). Although the small-τ asymptotics for u(τ)
stated in Theorems 3.4 and 3.5 of [16] are not impacted by the changes
to A(τ), B(τ), C(τ), and D(τ) discussed below, the small-τ asymptotics
of ϕ(τ) presented in this paper, however, are affected by the multiplica-
tive factor τ ia (this also justifies the small-τ asymptotics for ϕ(τ) given in
Theorem B.1 of [21]).

Recall that the original matrix linear ODE system for the SL(2,C)-
valued function Φ(λ, τ) := Φ(λ), whose compatibility condition gives rise
to the isomonodromy deformations (5) on p. 1167 of [16], was given in
Proposition 1.1, equation (4) of [16]. The starting point of the Isomon-
odromy Deformation Method is the definition of the monodromy data for
the first equation of the 2 × 2 matrix linear ODE system (4) in Proposi-
tion 1.1 of [16]. To this end, one studies the fundamental solutions of this
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matrix differential equation under special normalisation conditions at the
singular points 0 and ∞ (the canonical solutions). The normalisation con-
dition of the canonical solutions at the point at infinity requires a minor
correction; this correction affects the formulation of Propositions 5.1 and
5.2 in [16]: for the convenience of the reader, amended versions of these
propositions, including proofs, are given below.

As shown in Section 5 of [16], for the asymptotic analysis of the fun-
damental solution(s) in the neighbourhood of the point at infinity, it is
convenient to present the first equation of the 2 × 2 matrix linear ODE
system (4) as

∂

∂λ
Φ(λ)=(U0(λ)+V0(λ))Φ(λ), (A.1)

where

U0(λ) =τ

(
−iσ3−

ia

2τλ
σ3−

1

λ

(
0 C(τ)

D(τ) 0

))
,

V0(λ) =
iτ

2λ2

(√
−A(τ)B(τ) A(τ)

B(τ) −
√

−A(τ)B(τ)

)
,

(A.2)

whilst for the asymptotic analysis of the fundamental solution(s) in the
neighbourhood of the origin, it is suitable to present the first equation of
the 2× 2 matrix linear ODE system (4) in the form

∂

∂λ
Φ(λ)=

(
Ũ0(λ)+Ṽ0(λ)

)
Φ(λ), (A.3)

where

Ũ0(λ)=τ

(
− ia

2τλ
σ3−

1

λ

(
0 C(τ)

D(τ) 0

)
+

i

2λ2

(√
−A(τ)B(τ) A(τ)

B(τ) −
√

−A(τ)B(τ)

))
,

Ṽ0(λ)=−iτσ3.

(A.4)
Consider the system (A.1), wherein the inaccuracy related to the point
at infinity occurs.13 To study the asymptotic representation of equation
(A.1) as τ→0+ and λ→∞ (argλ=0), the following “model problem” for
the SL(2,C)-valued parametrix W(λ) was considered in Proposition 5.1,

13The gauge of system (A.1) was changed, but the corresponding changes in the
normalisation of the canonical asymptotics were not done. In this appendix, this incon-
sistency is corrected.
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equation (111) of [16]:

∂

∂λ
W(λ)=U0(λ)W(λ). (A.5)

Its fundamental solution in terms of the Whittaker function [12],Wz1,z2
(z),

presented in Proposition 5.1, equation (112) of [16], contains an incor-

rectly typed factor; more precisely, the right-most term exp(ia ln(
√
2τ )σ3)

in equation (112) must be changed to exp(ia ln(
√
2τ)σ3).

14 As a result of
this correction, one arrives at asymptotics at the point at infinity that are
self-consistent with those of the canonical solution discussed in Section 7
of [18]. An amended version of Proposition 5.1 of [16] is now presented.15

Proposition A.1 ( [16], Proposition 5.1). Let W(λ)∈SL(2,C) solve equa-
tion (A.5). A fundamental solution of equation (A.5) is given by

W(λ)=
e−πa/4

√
2iτλ

(
W

κ1,ρ̂(2iτλ) iγ̂W−κ1,ρ̂(−2iτλ)

δ̂W
κ1−1,ρ̂(2iτλ) iW−(κ1−1),ρ̂(−2iτλ)

)
eia ln(

√
2τ)σ3 , (A.6)

where

κ1 :=
1
2 (1−ia), ρ̂2 := γ̂δ̂−a2/4, γ̂=τC(τ), δ̂=τD(τ); (A.7)

moreover,

W(λ) =
λ→∞

arg λ=0

(

I+
1

2iτλ

(
γ̂δ̂ −γ̂

δ̂ −γ̂δ̂

)

+
1

(2iτλ)2

(
1
2
γ̂δ̂(γ̂δ̂−(1+ia)) γ̂(γ̂δ̂−(1−ia))

δ̂(γ̂δ̂−(1+ia)) 1
2
γ̂δ̂(γ̂δ̂−(1−ia))

)

+ O

(
1

(τλ)3

(
γ̂δ̂(γ̂δ̂−(1+ia))(γ̂ δ̂−2(2+ia)) γ̂(γ̂δ̂−(1−ia))(γ̂ δ̂−2(2−ia))

δ̂(γ̂δ̂−(1+ia))(γ̂ δ̂−2(2+ia)) γ̂δ̂(γ̂δ̂−(1−ia))(γ̂ δ̂−2(2−ia))

)))

× e−i(τλ+a
2

lnλ)σ3τ
ia
2
σ3 . (A.8)

As a consequence of the correction above, the τ → 0+ conditions on
the functions A(τ), B(τ), C(τ), and D(τ) stated in Proposition 5.2 of [16]
require modification:16 this is the gist of the following proposition.

14One consequence of this modification is that the right-most factor in the large-λ
asymptotic expansion of W(λ) given in Proposition 5.1, equation (114) of [16] must be
changed to exp(−i(τλ+ a

2
ln(τ/λ))σ3).

15In contrast to the large-λ asymptotic expansion for W(λ) given in Proposition
5.1, equation (114) of [16], higher-order terms are retained in the λ → ∞ (arg λ = 0)
asymptotic expansion of W(λ) presented here.

16The conditions (115) in Proposition 5.2 of [16] require modification, whilst the
condition (116) remains unchanged, and is therefore not mentioned in Proposition A.2.
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Proposition A.2 ( [16], Proposition 5.2). For ǫ1 > 0, the parameters of
equation (A.1) satisfy the following conditions:

|Im(a)|<1, ρ̂ =
τ→0+

O(1), τ2(1−ia)A(τ) =
τ→0+

O(τ ǫ1 ),

τ2(1+ia)B(τ) =
τ→0+

O(τ ǫ1 ), τC(τ) =
τ→0+

O(τ2ia), τD(τ) =
τ→0+

O(τ−2ia).
(A.9)

Proof. Let W(λ)∈SL(2,C) be the fundamental solution of equation (A.5)
stated in Proposition A.1. Let Φ(λ) :=W(λ)C(λ) be a solution of equation
(A.1);17 substituting this representation for Φ(λ)∈SL(2,C) into equation
(A.1), it follows that C(λ)∈SL(2,C) solves the ODE system

∂

∂λ
C(λ)=(W(λ))−1V0(λ)W(λ)C(λ). (A.10)

One shows that the normalised solution of equation (A.10), that is, the
one for which C(+∞)=I, is given by

C(λ)=I+

∞∑

m=1

Cm(λ), (A.11)

where

Cm(λ)=

λ̂

+∞

(W(ξ))−1V0(ξ)W(ξ)Cm−1(ξ) dξ, m∈N, (A.12)

with C0(∗∗∗)=I; thus, there exists a fundamental solution Φ(λ) of equation
(A.1) with representation

Φ(λ)=W(λ)

(
I+

∞∑

m=1

Cm(λ)

)
. (A.13)

For the purposes of this proof, it suffices to study the λ→∞ (argλ=0)

behaviour of only C1(λ). Let z :=τλ; then, with C̃1(z) :=C1(z/τ), it follows
that

C̃1(z)=
zˆ

+∞

1

τ
(W(ξ/τ))−1V0(ξ/τ)W(ξ/τ) dξ. (A.14)

17For simplicity of notation, the τ -dependence of C(λ) has been suppressed.
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Via equations (A.2) and the λ→∞ (argλ= 0) asymptotics for W(λ) ∈
SL(2,C) given in equation (A.8), one shows that

1

τ
(W(ξ/τ))−1V0(ξ/τ)W(ξ/τ)

=
ξ→∞

arg ξ=0

ei(ξ+
a
2 ln ξ)σ3τ−iaσ3

(
iτ2

2ξ2

(√
−A(τ)B(τ) A(τ)

B(τ) −
√

−A(τ)B(τ)

)

+
τ2

4ξ3

(
A(τ)δ̂+B(τ)γ̂ −2γ̂(

√
−A(τ)B(τ)+A(τ)δ̂)

2δ̂(B(τ)γ̂−
√

−A(τ)B(τ)) −(A(τ)δ̂+B(τ)γ̂)

)

+O
(
τ2

ξ4

((√
−A(τ)B(τ) A(τ)

B(τ) −
√

−A(τ)B(τ)

)(
w1 w2

w3 w4

)

+

(
w4 −w2

−w3 w1

)(√
−A(τ)B(τ) A(τ)

B(τ) −
√

−A(τ)B(τ)

)

+

(
−γ̂δ̂ γ̂

−δ̂ γ̂δ̂

)(√
−A(τ)B(τ) A(τ)

B(τ) −
√

−A(τ)B(τ)

)(
γ̂δ̂ −γ̂

δ̂ −γ̂δ̂

))))

× e−i(ξ+ a
2 ln ξ)σ3τ iaσ3 , (A.15)

where

w1 :=
1
2 γ̂δ̂(γ̂δ̂−(1+ia)), w2 := γ̂(γ̂δ̂−(1−ia)),

w3 := δ̂(γ̂δ̂−(1+ia)), w4 :=
1
2 γ̂δ̂(γ̂δ̂−(1−ia)).

Evaluate, now, the leading-order, O(ξ−2), and the next-to-leading-order,
O(ξ−3), terms. From equation (A.14) and the asymptotic expansion (A.15),
one writes

C̃1(z) =
z→∞

arg z=0

C̃†
1(z)+C̃

‡
1(z)+· · · , (A.16)

where

C̃†
1(z)=

(
(C̃†

1(z))11 (C̃†
1(z))12

(C̃†
1(z))21 −(C̃†

1(z))11

)
, (A.17)

C̃‡
1(z)=

(
(C̃‡

1(z))11 (C̃‡
1(z))12

(C̃‡
1(z))21 −(C̃‡

1(z))11

)
, (A.18)
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with

(C̃†
1(z))11 :=

iτ2

2

√
−A(τ)B(τ) lim

t→+∞




zˆ

t

ξ−2


=− iτ2

√
−A(τ)B(τ)

2z
,

(A.19)

(
C̃†

1(z)
)
12
:=

i

2
τ2(1−ia)A(τ) lim

t→+∞




zˆ

t

e2iξξia−2 dξ


 , (A.20)

(
C̃†

1(z)
)
21
:=

i

2
τ2(1+ia)B(τ) lim

t→+∞




zˆ

t

e−2iξξ−ia−2 dξ


 , (A.21)

and

(C̃‡
1(z))11 :=

τ 2

4

(
A(τ )δ̂+B(τ )γ̂

)
lim

t→+∞




zˆ

t

ξ−3



=−
τ 2

(
A(τ )δ̂+B(τ )γ̂

)

8z2
,

(A.22)

(C̃‡
1(z))12 :=−

1

2
γ̂τ 2(1−ia)

(√
−A(τ )B(τ )+A(τ )δ̂

)
lim

t→+∞




zˆ

t

e2iξξia−3 dξ



 ,

(A.23)

(C̃‡
1(z))21 :=

1

2
δ̂τ 2(1+ia)

(
B(τ )γ̂−

√
−A(τ )B(τ )

)
lim

t→+∞




zˆ

t

e−2iξξ−ia−3 dξ



 .

(A.24)

Via the well-known integral inequality |
´
f dz| 6

´
|f | |dz|, one shows,

after a straightforward integration argument, that the improper integrals
appearing in equations (A.20) and (A.21) converge for Im(a)+1> 0 and
Im(a)−1<0, respectively; therefore, the parameter of formal monodromy,
a, must satisfy the inequality |Im(a)|< 1 (cf. conditions (A.9)). Without
loss of generality, consider, say, the integral appearing in equation (A.20):

I12 :=
zˆ

t

e2iξξia−2 dξ. (A.25)
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From Euler’s formula and the integrals 2.632 (2. and 4.) and 3.761 (2.
and 7.) on pp. 226 and 458, respectively, of [12], one shows that

I12=2−µ1eiπµ1/2
(
Γ(µ1, 2e

−iπ/2t)−Γ(µ1, 2e
−iπ/2z)

)
, µ1 :=ia−1, (A.26)

where Γ(α, z) is the complementary incomplete gamma function. From
equation 6.5.3 on p. 260 of [1] relating Γ(α, z) and the incomplete gamma
function, γ(α, z), that is, Γ(α, z)=Γ(α)−γ(α, z), where Γ(∗∗∗) is the gamma
function, and equation 6.5.12 on p. 262 of [1] relating γ(∗∗∗, z) and the
confluent hypergeometric function, M(a, b, z),18 that is,

γ(α, z)=α−1zαM(α, 1+α,−z),
one shows that equation (A.26) can be presented in the form

I12=
1

µ1

(
zµ1M(µ1, 1+µ1, 2e

iπ/2z)−tµ1M(µ1, 1+µ1, 2e
iπ/2t)

)
; (A.27)

thus, via equation (A.20), it follows that

(
C̃†

1(z)
)
12
=

i

2µ1
τ2(1−ia)A(τ)

(
zµ1M(µ1, 1+µ1, 2e

iπ/2z)

− lim
t→+∞

tµ1M(µ1, 1+µ1, 2e
iπ/2t)

)
. (A.28)

Using, now, the large-z asymptotic expansion for M(a, b, z) given in equa-
tion 13.5.1 on p. 508 of [1], that is,

M(a, b, z)

Γ(b)
=

z→∞

z−ae±πia

Γ(b−a)

(
R−1∑

n=0

(a)n(1+a−b)n
n!(−z)n +O

(
|z|−R

)
)

+
za−bez

Γ(a)

(
S−1∑

n=0

(b−a)n(1−a)n
n!zn

+O
(
|z|−S

)
)
, (R, S)∈N × N,

where the upper (resp., lower) sign is taken if −π/2<arg z<3π/2 (resp.,
−3π/2 < arg z 6 −π/2), and (α)n is the Pochhammer symbol, namely,
(α)0=1 and (α)n=α(α+1)(α+2) · · · (α+n−1)=Γ(α+n)/Γ(α), n∈N, one
shows that

tµ1M(µ1, 1+µ1, 2e
πi/2t) =

t→+∞

µ1e
−πi/2

2

e2ittia

t2

(
1− i(2−ia)

2t
+O(t−2)

)
;

(A.29)

18Note: M(a, b, z) is also denoted as 1F1(a; b; z).
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thus, via the inequality |Im(a)|<1, the Squeeze Lemma, and the inequality
t−3<t−(2+Im(a))<t−1, it follows that

lim
t→+∞

tµ1M(µ1, 1+µ1, 2e
πi/2t)=0,

whence

(
C̃†

1(z)
)
12

=
z→∞

arg z=0

1

4
τ2(1−ia)A(τ)

ziae2iz

z2

(
1− i(2−ia)

2z
+O(z−2)

)
. (A.30)

Analogously, one shows that (cf. equation (A.21)), with µ2 :=−ia−1,

(
C̃†

1(z)
)
21

=
i

2µ2
τ2(1+ia)B(τ)zµ2M(µ2, 1+µ2, 2e

−πi/2z)

=
z→∞

arg z=0

− 1

4
τ2(1+ia)B(τ)

z−iae−2iz

z2

(
1+

i(2+ia)

2z
+O(z−2)

)
; (A.31)

thus (cf. equations (A.17), (A.19), (A.30), and (A.31)),

C̃†
1(z) =

z→∞
arg z=0

− iτ2
√
−A(τ)B(τ)

2z
σ3

+ τ2(1−ia)A(τ)
ziae2iz

4z2

(
1− i(2−ia)

2z
+O(z−2)

)
σ+

− τ2(1+ia)B(τ)
z−iae−2iz

4z2

(
1+

i(2+ia)

2z
+O(z−2)

)
σ−, (A.32)

where σ+=( 0 1
0 0 ) and σ−=( 0 0

1 0 ).

Consider, now, the expression for C̃‡
1(z) given in equation (A.18) (cf.

equations (A.22), (A.23), and (A.24)). Proceeding as delineated above, one
shows that, with µ3 :=ia−2,

(C̃‡
1(z))12=−

1

2µ3
γ̂τ 2(1−ia)

(√
−A(τ )B(τ )+A(τ )δ̂

)
zµ3M(µ3, 1+µ3, 2e

πi/2z)

=
z→∞

arg z=0

iγ̂τ 2(1−ia)
(√

−A(τ )B(τ )+A(τ )δ̂
) ziae2iz

4z3

(
1−

i(3−ia)

2z
+O(z−2)

)
,

(A.33)
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and, with µ4 :=−ia−2,

(C̃‡
1(z))21=

1

2µ4
δ̂τ 2(1+ia)

(
B(τ )γ̂−

√
−A(τ )B(τ )

)
zµ4

M(µ4, 1+µ4, 2e
−πi/2z)

=
z→∞

arg z=0

iδ̂τ 2(1+ia)
(
B(τ )γ̂−

√
−A(τ )B(τ )

) z−iae−2iz

4z3

(
1+

i(3+ia)

2z
+O(z−2)

)
,

(A.34)

thus,

C̃‡
1(z) =

z→∞
arg z=0

−τ
2(A(τ)δ̂+B(τ)γ̂)

8z2
σ3

+iτ2(1−ia)γ̂
(√

−A(τ)B(τ)+A(τ)δ̂
)ziae2iz

4z3
(
1+O(z−1)

)
σ+

−iτ2(1+ia)δ̂
(√

−A(τ)B(τ)−B(τ)γ̂
)z−iae−2iz

4z3
(
1+O(z−1)

)
σ−. (A.35)

Hence, via equations (A.16), (A.32), and (A.35), one arrives at

C̃1(z) =
z→∞

arg z=0

−τ
2

2z

(
i
√

−A(τ)B(τ)+
1

4z

(
A(τ)δ̂+B(τ)γ̂

))
σ3

+
τ2(1−ia)

4

e2izzia

z2

(
A(τ)

(
1− i(2−ia)

2z
+O(z−2)

)

+iγ̂
(√

−A(τ)B(τ)+A(τ)δ̂
)1
z

(
1+O(z−1)

)
)
σ+

− τ2(1+ia)

4

e−2izz−ia

z2

(
B(τ)

(
1+

i(2+ia)

2z
+O(z−2)

)

+iδ̂
(√

−A(τ)B(τ)−B(τ)γ̂
)1
z

(
1+O(z−1)

)
)
σ−+· · · . (A.36)

Since the sought-after class of functions is the one for which the τ -depen-
dent coefficients in the asymptotic expansion (A.36) tend to zero as τ→0+,

one must impose certain conditions on A(τ), B(τ), C(τ), D(τ), γ̂, and δ̂;
in particular, from the off-diagonal elements of the expansion (A.36), one
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demands that, for |Im(a)|<1 and some ǫ1>0,

τ2(1−ia)A(τ) =
τ→0+

O(τ ǫ1 ), τ2(1+ia)B(τ) =
τ→0+

O(τ ǫ1),

γ̂ :=τC(τ) =
τ→0+

O
(
τ2ia

)
, δ̂ :=τD(τ) =

τ→0+
O
(
τ−2ia

)
,

which, in conjunction with the definitions (A.7), imply that

ρ̂ =
τ→0+

O(1), τ2
√
−A(τ)B(τ) =

τ→0+
O(τ ǫ1 ),

τ2(1−ia)γ̂
(√

−A(τ)B(τ)+A(τ)δ̂
)

=
τ→0+

O(τ ǫ1 ),

τ2(1+ia)δ̂
(√

−A(τ)B(τ)−B(τ)γ̂
)

=
τ→0+

O(τ ǫ1 ),

τ2
(
A(τ)δ̂+B(τ)γ̂

)
=

τ→0+
O(τ ǫ1 );

hence, one arrives at the conditions (A.9). �

The modifications of Propositions A.1 and A.2 given in this appendix
suggest the following changes to the connection matrix, G, and the isomon-

odromy deformations A(τ), B(τ), C(τ), D(τ), γ̂ :=τC(τ), and δ̂ :=τD(τ):

G→Gτ
ia
2 σ3 ,

(
A(τ), B(τ), C(τ), D(τ), γ̂ , δ̂

)

→
(
A(τ)τ−ia, B(τ)τ ia, C(τ)τ−ia, D(τ)τ ia, γ̂τ−ia, δ̂τ ia

)
.

(A.37)

The transformations (A.37) imply, in particular, that in Lemmata 5.1 and
5.2 of [16], and on the left-hand sides of the τ→0+ asymptotic expansions
given in Propositions 5.5 and 5.7 of [16],19 the “symbols” A, B, C, D, γ̂,

and δ̂ must be replaced by Aτ−ia, Bτ ia, Cτ−ia, Dτ ia, γ̂τ−ia, and δ̂τ ia,
respectively.

19Since the product γ̂ δ̂ remains invariant with respect to this transformation, it
follows from equations (A.7) that, for either choice of the branch of the square root
function, ρ̂, too, is invariant; consequently, Proposition 5.6 of [16] remains unchanged.
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Appendix §B. Numerical visualisation of the
connection formulae for the small-τ

logarithmic asymptotics: a = 0

In [21], we studied, both analytically and numerically, a special alge-
broid solution of the DP3E for a = 0. In this appendix, we verify nu-
merically the connection results for asymptotics of solutions of the DP3E
for a = 0 possessing logarithmic behaviour as τ → 0 (cf. Corollary 3.1).
Since such solutions are specified in terms of the monodromy data, the
simplest scheme for the calculations is as follows: (i) choosing monodromy
data that satisfy the conditions specified in Corollary 3.1, we compute the
corresponding asymptotics of the functions u(τ) and ϕ(τ) by means of the
formulae given in the said corollary; (ii) using these asymptotics, we then
calculate the initial data for the corresponding solutions at some small
enough initial point τ0 and numerically continue the solutions to large
enough values of τ ; and (iii) these numerical solutions are compared with
their large-τ asymptotics constructed with the help of the above-mentioned
monodromy data according to the formulae given in Appendix C of [21].

An often occurring problem with this method is that, in order to get
a better approximation for the solution via its asymptotics, one has to
approach the singular points 0 and ∞ (the closer the approach, the better
the approximation); but, on the other hand, the accuracy of the numerical
calculations near the singular points becomes progressively worse. Nev-
ertheless, for all the solutions we have studied thus far, there is a fairly
large interval in the neighbourhoods of the singular points wherein the
numerics continue to function with a good enough accuracy and for which
the corresponding asymptotics provide a good enough approximation for
the solutions to yield a reliable—for our purposes—result. In this context,
what does “good enough” mean? An essential component of the method-
ology we’ve employed in our previous studies (see, for example, [21]) is to
choose an initial point τ0 that is close enough to τ = 0, which, in most (but
not all!) cases, is τ0 = 10−6 (a reasonable placement for this point), and
construct the corresponding numerical solution; then, we redo the calcu-
lation with τ0 = 10−12, and compare the plots of the numerical solutions
obtained: in the event that the plots are visually indistinguishable, we
consider this plot as a “good enough” approximation for the solution cor-
responding to the chosen monodromy data. For the examples considered
in this appendix, we varied the initial point τ0 from 10−3 to 10−98 and
observed that the plots of the solutions remain stable; but, for τ0 = 10−99,



THE DEGENERATE THIRD PAINLEVÉ EQUATION 203

the numerical procedure failed. In some cases, mainly those related to some
very special solutions, one needs to investigate further the proper choice(s)
for the placement of the initial point τ0 (some examples are given in [22]).

We can not simultaneously visualise in one figure the neighbourhoods
of the origin and the point at infinity, where the asymptotics we study are
compared with the numerical solution, because one neighbourhood is cen-
tred at the origin, with an approximately O(1) radius as τ → 0, and the
other, analogous neighbourhood is centred at the point at infinity, extend-
ing to O(1) values. The first neighbourhood is too small for observing the
behaviour of the solutions; therefore, theoretically, we have two options:
(1) the one described above; or (2) to take initial values in some proper
neighbourhood of τ = ∞ and plot the solution and its small-τ asymp-
totics after making the transformation τ → 1/τ , namely, to interchange
the roles of the singular points τ = 0 and τ = ∞. This plot would reflect
the behaviour of the original solution in the “blown-up neighbourhood” of
τ = 0, whilst the behaviour at the point at infinity would be hidden. In
this appendix, we decided to keep the original variables, that is, we chose
option (1).

We now turn to the description of the calculations presented below. The
coefficients of the DP3E used for all the calculations in this appendix are
chosen as follows:

a = 0, b = 0.02, ε = 1. (B.1)

These calculations are done with the help of Maple, using its standard
programs for solving ODEs and plotting the corresponding results; in par-
ticular, both the absolute and relative errors in the dsolve procedure were
set to 10−12. We checked the stability of our calculations with respect to
both the Maple parameter Digits and the value of τ0; the parameter
Digits was successively set to the values 10, 80, and 160, with the vari-
ation for τ0 discussed above. The first 10 digits for all the calculations
coincided, so that, visually, the final pictures were virtually identical.20

20 It is a matter of interest to compare the times required for these calculations. Our
notebook computer, equipped with a 12th Gen Intel(R) Core(TM) i7-12700H processor,
computed the results presented in Figs. 1–4 in roughly 0.3 seconds for the 10-digit
calculation, 39 seconds for the 80-digit calculation, and 47 seconds for the 160-digit
calculation.
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For the calculation of the initial data of the solution presented in Figs. 1–
4, we used equations (3.19)–(3.21), where we set

c1 = 2− i and g21 = 2. (B.2)

As a result, we obtained the following initial data for the numerical solution
at τ0 = 10−12:

u(τ0) = −1.570796327 . . .× 10−14 − i 6.441875074 . . .× 10−13,

u′(τ0) = −0.01570796327 . . .− i 0.6241875074 . . . ,
(B.3)

ϕ(τ0) = 6.258805991 . . .− i 0.941530528 . . . . (B.4)

The digits that are displayed explicitly in equations (B.3) and (B.4) rep-
resent the initial values that are actually used in the 10-digit calculations.
We draw the reader’s attention to the fact that we plot the mole function
ϕ(τ) which is defined modulo 2π. Our definition of the function ϕ(τ) sug-
gests that we substitute eπi in lieu of the minus sign on the right-hand
side of equation (3.21) and then apply the formal ln-operation to the both
sides of the resulting equation.

The large-τ asymptotic formulae for the functions u(τ) and ϕ(τ) plotted
in Figs. 1–4 are constructed with the help of Theorem C.1 in Appendix
C of [21] by using the monodromy data (3.19) with c1 and g21 given in
equations (B.2). Taking into consideration that the large-τ asymptotics
for the function ϕ(τ) is defined up to 2πk, for some k ∈ Z (cf. Remark
C.4 in [21]), the value of k in Fig. 3, which is determined by comparing
numerical plots, is equal to +1.

The initial data for the solution presented in Figs. 5–8 are obtained
with the help of equations (3.22)–(3.24) for the following values of the
parameters,

c2 = 1 + 2i and g12 = 2. (B.5)

Via the asymptotics (3.23) and (3.24), we calculate the initial data at the
point τ0 = 10−12:

u(τ0) = 1.570796326 . . .× 10−14 + i 5.499397276 . . .× 10−13,

u′(τ0) = 0.01570796326 . . .+ i 0.5299397276 . . . ,
(B.6)

ϕ(τ0) = 0.02855529941 . . .+ i 0.7834599236 . . . . (B.7)

In equations (B.6) and (B.7), the digits that are explicitly shown define
the initial data that are used in the 10-digit calculations. In this case, we
define the mole function ϕ(τ) by substituting e−πi in lieu of the minus sign
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Figure 1. The brown (higher extrema) and black plots
are, respectively, the real parts of the numeric and large-τ
asymptotic values of the function u(τ) for τ > 0.1 cor-
responding to the initial values defined by the small-τ
asymptotics (3.20) for c1 = 2− i.

Figure 2. The brown (lower extrema) and blue plots are,
respectively, the imaginary parts of the numeric and large-
τ asymptotic values of the function u(τ) for τ > 0.1 cor-
responding to the initial values defined by the small-τ
asymptotics (3.20) for c1 = 2− i.
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Figure 3. The brown and black plots (virtually coinci-
dent) are, respectively, the real parts of the numeric and
large-τ asymptotic values of the function ϕ(τ) for τ > 0.1
corresponding to the initial values defined by the small-τ
asymptotics (3.21) for c1 = 2− i.

Figure 4. The brown (lower extrema) and blue plots are,
respectively, the imaginary parts of the numeric and large-
τ asymptotic values of the function ϕ(τ) for τ > 0.1 cor-
responding to the initial values defined by the small-τ
asymptotics (3.21) for c1 = 2− i.
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on the right-hand side of equation (3.24) and then applying the formal ln-
operation to both sides of the resulting equation. The large-τ asymptotics
in Figs. 5–8 are obtained, once again, using the formulae stated in Theorem
C.1 of [21] with winding parameter k = 0 for the function ϕ(τ).

Figure 5. The brown and black plots (virtually coinci-
dent) are, respectively, the real parts of the numeric and
large-τ asymptotic values of the function u(τ) for τ > 0.1
corresponding to the initial values defined by the small-τ
asymptotics (3.23) for c2 = 1 + 2i.

By varying the values of the parameters c1 and c2, one can obtain
more interesting large-τ behaviours (cf. Theorems C.2–C.4 in [21]) of the
solutions that are studied in this appendix. Our numerical experiments de-
scribed at the beginning of this appendix demonstrate that the solutions
are calculated with an error that does not exceed 10−12, so that the dis-
crepancy between the numerics and the asymptotics visible in Figs. 1–8 is
related to the accuracy of the approximation of the solution by the leading
term of its large-τ asymptotics. As delineated in our work [21], the conver-
gence of the leading term of the large-τ asymptotics to the corresponding
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Figure 6. The brown (lower extrema) and blue plots are,
respectively, the imaginary parts of the numeric and large-
τ asymptotic values of the function u(τ) for τ > 0.1 cor-
responding to the initial values defined by the small-τ
asymptotics (3.23) for c2 = 1 + 2i.

Figure 7. The brown and black plots (virtually coinci-
dent) are, respectively, the real parts of the numeric and
large-τ asymptotic values of the function ϕ(τ) for τ > 0.1
corresponding to the initial values defined by the small-τ
asymptotics (3.24) for c2 = 1 + 2i.
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Figure 8. The brown (slightly lower extrema) and blue
plots are, respectively, the imaginary parts of the numeric
and large-τ asymptotic values of the function ϕ(τ) for
τ > 0.1 corresponding to the initial values defined by the
small-τ asymptotics (3.24) for c2 = 1 + 2i.

numerical solution is very slow. In most, but not all, cases, this approxi-
mation can be improved with the help of the correction terms which are
given in Appendix C of [21].
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