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CORRELATION FUNCTIONS OF TWO
3-DIMENSIONAL TRANSVERSE POTENTIALS WITH
POWER SINGULARITIES

Abstract. We study convolutions of two localized transverse po-
tentials with−5/2-power singularities with the Green function of the
Laplace operator in the 3-dimensional space. These potentials cor-
respond to the electromagnetic field with −1/2-power singularities
which resides at a minimum distance to the domain of the quadratic
form of the Laplacian, but does not belong to the latter. The dis-
cussed correlation functions can be used as the Nevanlinna functions
for the closable extensions of quadratic form of the Laplace operator
for the electromagnetic field with −1/2-power singularities, and in
this way they are important for studying of perturbed Hamiltonians.

§1. Introduction

Electromagnetic fields with −1/2-power singularities at isolated points
xn of the 3-dimensional space

Al(x)=
1

|x−xn|1/2
(
Cnl+C

1
nlj

(xj−xjn)

|x−xn|
+C2

nljk

(xj−xjn)(xk−xkn)

|x−xn|2
)

+O(1), x→ xn,

(1)

represent examples of fields residing at minimum distance to the domain
of the functional of the potential energy

H(A) =

∫
R3

(
∂kAl(x)

)2
d3x.

Indeed, the derivative of the field with a weaker singularity

Aεl (x)=
1

|x−xn|1/2−ε
(
Cnl+C

1
nlj

(xj−xjn)

|x−xn|
+C2

nljk

(xj−xjn)(xk−xkn)

|x−xn|2
)

+O(1), x→ xn,

Key words and phrases: extensions of closed semi-bounded quadratic forms, qua-
dratic form of transverse Laplace operator, transverse (solenoidal) subspace.
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after being squared gives 2ε− 3-power singularity(
∂kA

ε
l (x)

)2
= O(|x− xn|2ε−3), x→ xn,

and this expression is integrable in vicinity of the points xn or in the whole
space R3 for a field appropriately vanishing at infinity

H(Aε) =

∫
R3

(
∂kA

ε
l (x)

)2
d3x <∞, ε > 0. (2)

But when ε is zero, then the integral (2) diverges logarithmically and thus
we can say that the field (1) resides close to the boundary of the domain
of H.

The theory of extensions of symmetric operators and quadratic forms
[1, 2] allows us to extend the functional H(A) to a set of fields in the
vicinity of its domain. From the physical point of view, this corresponds
to introduction of interaction with some singular potential into the free
electromagnetic field model. In the literature, see, e.g., [3–5], one can find
discussion of the interaction with the δ-potentials, but this is not the case
of our interest: in 3 dimensions fields generated by the presence of the
δ-interaction have −1-power singularities and thus are too far from the
domain of H(A). Extensions of the quadratic form of Laplacian to the
fields close to its domain, that is of type (1), are used for construction of
solutions for the eigenfunctional equation of the quantum field theory in
the Schrödinger representation [6].

An important component of the extension theory is calculation of con-
volutions of singular potentials with the Green function R(µ) of the un-
perturbed operator. These integrals represent examples of the Nevanlinna
(Herglotz, Pick)1 functions [7] and they are meromorphic with respect
to µ on the complex plane without the positive semi-axis. We call them
“correlators” in the sense of integrals of Green functions enveloped with
δ-potentials.

Closable extension Hκ of the quadratic form H is defined by the set, in
the index j and points xn, of singular potentials V jn,l(x) and the matrix
of extension parameters κ. Domain of Hκ is represented by a direct sum

1More precisely, the Nevanlinna function is the value of quadratic form of convolution
matrix of singular potentials calculated with some (any) vector.
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of the domain of H and the linear span of vectors R(ρ)V jn,l

D(Hκ) = D(H) u
{∑
n,j

αnjR(ρ)V jn,l

}
, αnj ∈ C. (3)

Here, we imply that the functions R(ρ)V jn,l(x) are square-integrable, so
that, due to the resolvent identity, the domain D(Hκ) does not depend on
the choice of ρ,

R(ρ1)V jn,l −R(ρ2)V jn,l = (ρ1 − ρ2)R(ρ1)R(ρ2)V jn,l ∈ D(H).

The action of Hκ on functions from D(H) coincides with the action of H,

Hκ(A) = H(A) =

∫
R3

(
∂kAl(x)

)2
d3x, A ∈ D(H),

and the action of Hκ on the vectors R(ρ)V jn,l is defined in some way by the
matrix of extension parameters κ. The latter connection is not important
in what follows so we will not dwell on it.

It is easy to see that for the vectors R(ρ)V jn,l having at the points
xn expansions of type (1), the potentials V jn,l should have −5/2-power
singularities,

V jn,l(x)=
1

|x−xn|5/2
(
Cnjl+C

1
njlk

(xk−xkn)

|x−xn|
+C2

nljkk′
(xk−xkn)(xk

′−xk′n )

|x−xn|2
)

+O(|x− xn|−3/2), x→ xn.

(4)

The matrix generating the Nevanlinna functions for the extension Hκ is
defined as the matrix of correlation functions of the potentials V jn,l(x) for
the points xn and xm with the Green function (resolvent of the Laplace
operator) R(µ),

Γmknj (µ) =

∫
R3

V jn,l(x)R(µ,x− y)V km,l(y) d3x d3y. (5)

Calculation of such functions for potentials of type (4) satisfying the trans-
versality condition

∂

∂xl
V jn,l(x) = 0,

is the goal of the present work.
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One may note that finiteness of the integral in (5) for n = m and j = k
implies finiteness of the integral

Γnjnj(ρ) = −
∫
R3

(R(ρ)V jn,l)(x)(∂2 + ρ)(R(ρ)V jn,l)(x) d3x, ρ < 0,

and the latter means that the vectors R(ρ)V jn,l belong to D(H), which
contradicts the condition (1). Thus for the case n = m and j = k it is
necessary to calculate first the integral

Γnjnj(µ)−Γnjnj(ν) =

∫
R3

V jn,l(x)(R(µ,x−y)−R(ν,x−y))V jn,l(y) d3x d3y, (6)

and next fix the function Γnjnj(µ) choosing the separation point.

§2. Correlation functions for potentials localized in
one point

In order to calculate integrals (5) and (6) we will use Fourier transforms
of the functions A and potentials V jn,l,

Â(p) =
1

(2π)3/2

∫
R3

A(x)e−ip·x d3x.

In this case the Laplace operator acts as multiplication by the square of
the modulus of p,

L : Â(p)→ p2Â(p),

and its resolvent — as multiplication by (p2 − µ)−1,

R(µ) : Â(p)→ R(µ)Â(p) =
1

p2 − µ
Â(p).

The transverse singular potential V jn,l with the expansion (4) corresponds
to the Fourier preimage of the following function:

V̂ jn,l(p) =
e−ip·xn

p1/2

(
δlj −

plpj
p2

)
.

Indeed, the function V̂ jn,l(p) satisfies the transversality condition

plV̂
j
n,l(p) = pl

e−ip·xn

p1/2

(
δlj −

plpj
p2

)
= 0,
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and its Fourier preimage has −5/2-power singularity

V jn,l(x) =
1

(2π)3/2

∫
R3

V̂ jn,l(p)eip·x d3p

=
1

(2π)3/2

∫
R3

(
δlj −

plpj
p2
)
eip·(x−xn)

d3p

p1/2

=
δlj

(2π)3/2

∫
R3

eip·(x−xn)
d3p

p1/2
+

∂

∂xl
∂

∂xj
1

(2π)3/2

∫
R3

eip·(x−xn)
d3p

p5/2

= − δlj
2|x− xn|5/2

+
5

2

(xj − xjn)(xl − xln)

|x− xn|9/2
.

Let us calculate integral (6) for potentials localized around the same point
xn, and we also include the case j 6= k. After the Fourier transform the
convolutions in (6) turn into multiplications and we can write

Γnjnk(µ)− Γnjnk(λ) =

∫
R3

V̂ jn,l

( 1

p2 − µ
− 1

p2 − λ

)
V̂ kn,l d

3p

=

∫
R3

(
δlj −

plpj
p2

)(
δlk −

plpk
p2

)( 1

p2 − µ
− 1

p2 − λ

)d3p
p

=

∫
R3

(
δjk −

pjpk
p2

)( 1

p2 − µ
− 1

p2 − λ

)d3p
p

= δjk

∫
R3

(∑
j′ 6=j pj′pj′

p2

)( 1

p2 − µ
− 1

p2 − λ

)d3p
p

=
2

3
δjk

∫
R3

( 1

p2 − µ
− 1

p2 − λ

)d3p
p

=
4π

3
δjk(ln(−λ)− ln(−µ)),

where the branching of the logarithm goes along the negative semi-axis.
Finally, we choose the main branch of the logarithm

=(ln ρ) = 0, ρ > 0,
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and choose a positive separation constant κ̃ to define Γnjnk(µ),

Γnjnk(µ) =
4π

3
δjk ln

κ̃

−µ
. (7)

Here, we can see that the logarithmic behavior of Γnjnk(µ) coincides up
to a coefficient with the Nevanlinna function of an interaction of the 2-
dimensional particle with the δ-potential (correlation function of the 2-
dimensional δ-potentials localized at the same point) [8].

§3. Correlation functions for potentials localized at
different points

Let us turn to the integral (5) for potentials localized at different spatial
points. To simplify the notation we will assume that the first potential is
localized at the coordinate origin and the second one is attached to the
point x. We get the following two terms for the function Γ2k

1j (µ):

Γ2k
1j (µ) =

∫
R3

V̂ j1,l
1

p2 − µ
V̂ k2,l d

3p =

∫
R3

(δjk −
pjpk
p2

)
e−ip·x

p2 − µ
d3p

p
. (8)

The first term is δjk multiplied by the integral which depends only on the
product µx2,

J(µx2) =

∫
R3

e−ip·x

p2 − µ
d3p

p
.

Our goal is to write the latter integral in terms of special functions and
further use it to re-express the second term in (8), which evidently will
also depend on coordinates of x.

Let us calculate the integral over the angular variable between the vec-
tors p and x,

J(µx2) =

∫
R3

−eip·x

p2 − µ
d3p

p
= 4π

∞∫
0

sin px

x

dp

p2 − µ
.

Using the table expression [9, eq. 3.723.8], we get

J(µx2) =
4π
√
µx

(
cos
√
µx Si

√
µx− sin

√
µx C̃i

√
µx
)
, (9)
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where the integral sine and cosine are defined as follows

Si(
√
µx) =

√
µx∫

0

sin t

t
dt, (10)

C̃i(
√
µx) = γ +

1

2
ln(−µx2)−

√
µx∫

0

1− cos t

t
dt, (11)

and γ is the Euler constant. One may note that the expression (9) is a
combination of even functions and the logarithm, thus it is not important
how the square root of µ is defined.

Now let us calculate the second term in the right-hand side of (8),

−
∫
R3

pjpk
p2

e−ip·x

p2 − µ
d3p

p
=

∂

∂xj

∂

∂xk

∫
R3

(e−ip·x − 1)

(p2 − µ)p3
d3p

p3

= 4π
∂

∂xj

∂

∂xk

∞∫
0

( sin px

x
− p
) dp

(p2 − µ)p2

= 4π
∂

∂xj

xk
x

∞∫
0

∂

∂x

( sin px

x

) dp

(p2 − µ)p2

= 4π
(δjk
x
− xjxk

x3

) ∞∫
0

∂

∂x

( sin px

x

) dp

(p2 − µ)p2

+ 4π
xjxk
x2

∞∫
0

∂2

∂x2

( sin px

x

) dp

(p2 − µ)p2
.

Here, in order to regularize the formal divergence at the coordinate origin
we have added the term independent of x to the right-hand side of the
first line and terminate it at the third line.

Further, we can write the first derivative with respect to x in the integral
as

∂

∂x

( sin px

x

)
= p

cos px

x
− sin px

x2
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and group it together with the second-order derivative,

∂2

∂x2

( sin px

x

)
− 1

x

∂

∂x

( sin px

x

)
= 3
( sin px

x3
− pcos px

x2

)
− p2 sin px

x

= − 3

x

∂

∂x

( sin px

x

)
− p2 sin px

x
.

Now one can observe that
1

p

∂

∂x

sin px

px
=

1

x

∂

∂p

sin px

px

and use this relation to transform the integral with the first derivative

4π

x

∞∫
0

∂

∂x

( sin px

x

) dp

(p2 − µ)p2
=

4π

x2

∞∫
0

∂

∂p

( sin px

px

) dp

p2 − µ

= 4π
( sin px

px3

) 1

p2 − µ

∣∣∣∞
p=0

+
4π

x2

∞∫
0

sin px

px

2p dp

(p2 − µ)2

=
4π

µx2
+

8π

x2
∂

∂µ

∞∫
0

sin px

x

dp

p2 − µ
=

4π

µx2
+ 2J′(µx2).

Gathering the above equations we obtain the following expression:

−
∫
R3

pjpk
p2
−eip·x

p2 − µ
d3p

p
= −4π

xjxk
x2

∞∫
0

sin px

x

dp

p2 − µ

+ 4π
(δjk
x
− 3

xjxk
x3

) ∞∫
0

∂

∂x

( sin px

x

) dp

(p2 − µ)p2

=−xjxk
x2

J(µx2)+
(
δjk−3

xjxk
x2

)( 4π

µx2
+2J′(µx2)

)
.

Adding the first term of (8), we get

Γ2k
1j (µ) =

(
δjk −

xjxk
x2

)
J(µx2) +

(
δjk − 3

xjxk
x2

)( 4π

µx2
+ 2J′(µx2)

)
.

This equation together with (7) can be combined in the following 6 × 6

matrix generating the Nevanlinna functions for singular potentials V j1,l and
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V k2,l localized at the points x1 and x2, such that x2 − x1 = x,

Γmknj (µ)

=

( 4π
3 δjk ln κ

−µ Px
jkJ(µx2)+Qx

jk( 4π
µx2 +2J′(µx2))

Px
jkJ(µx2)+Qx

jk( 4π
µx2 +2J′(µx2)) 4π

3 δjk ln κ
−µ

)
.

Here m,n = 1, 2 and we denote by Px
jk and Qx

jk matrices which depend on
the coordinates of the vector x

Px
jk = δjk −

xjxk
x2

, Qx
jk = δjk − 3

xjxk
x2

.

The Nevanlinna functions themselves are represented by the quadratic
form of the matrix Γmknj (µ) calculated with 6-dimensional vectors, corre-
sponding to particular extension subspaces.

§4. Conclusion

We have calculated the matrix generating the Nevanlinna functions for
extensions of the quadratic form of the transverse Laplace operator to
functions with −1/2-power singularities in isolated points of 3-dimensional
space. Matrix elements have logarithmic branching across the positive
semi-axis, and squares of distances between the potentials enter the non-
diagonal terms in dimensionless combinations with the spectral parameter.
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