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SEMI-INFINITE HEISENBERG XX0 CHAIN AND

RANDOM WALKS

Abstract. Heisenberg XX0 chain on semi-in�nte interval enables
modelling of random walks restricted by presence of impenetra-
ble wall. The state vectors of the Hamiltonian are represented in
terms of symplectic Schur functions. The transition amplitudes of
the model are obtained in the integral form and are estimated in
the case of unlimited increasing of the number of steps of random
walks.

�1. Introduction

Exactly solvable lattice systems are playing an important role in the
development of statistical mechanics, enumerative combinatorics and rep-
resentation theory in modern mathematics. The XX0 chain is the zero
anisotropy limit of the prominent Heisenberg XXZ model, and it also
may be considered as a special free fermion case [1,2]. Connection between
the XX0 chain and the low-energy QCD, as well as a possibility of third
order phase transition in the spin chain, are discussed in [3�6].

One of the most interesting properties of the model under considera-
tion is that the answers can be obtained exactly. In particular dynamical
correlators, transition amplitudes, o�-shell wave functions are represented
in the determinantal form. Mathematical methods used are based on the
theory of Schur functions, of plane partitions, of Young diagrams and of
random walks. The scalar products of the state-vectors, of the generating
functions may be naturally modelled as vicious (non-intersecting) random
walkers on the two-dimensional square lattice [7�15]. Vicious walkers de-
scribe the situation in which two or more walkers arriving at the same
lattice site annihilate one another [16].

In this paper, we show how some results from the theory of symmetric
functions can be used to examine the Heisenberg XX0 model on a semi-
in�nte chain and describe the more di�cult case of walkers in the presence
of impenetrable wall. We shall demonstrate that the exchange matrix of the
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model can be represented as the sum of two matrices that are generators of
the Cuntz algebra [17]. In turn, this algebra can be considered as a special
case of the phase algebra [18]. The two standard topologies of interest for
random walks are that of a star and a random turns. The state vectors are
written in terms of symplectic Schur functions and are described as sets of
stars. The transition amplitudes of the model are obtained in the integral
form and are expressed as random turns. The answers are estimated in
case of unlimited increasing of the number of steps.

Organization of the paper is as follows. After introductory Section 1, we
present in Section 2 outline of the Heisenberg XX0 model on semi-in�nite
chain. In Section 3 we introduce the even symplectic Schur function, discuss
the combinatorial description of the symmetric functions and the eigen-
functions of the model. In Section 4 we de�ne the generating function of
random vicious walks and discuss its asymptotical behavior in Section 5.
The asymptotics calculated for the in�nite chain in the Section 6 allows us
to compare it with the result obtained for the impenetrable wall. Section
7 concludes the paper.

�2. Outline

Open ends Heisenberg XX0 model describing 1
2 -spins on sites of a semi-

im�nite chain is described by the Hamiltonian

Ĥ =

∞∑
n,m=0

∆nmσ
−
n σ

+
m =

∞∑
n=0

σ−n σ
+
n+1 + σ−n+1σ

+
n , (1)

where the local spin operators σ±n = 1
2 (σxn ± iσyn) and σzn depend on the

lattice argument n ∈ N̄, and N̄ is a union of zero and of all natural numbers:
N̄ ≡

{
0
}
∪ N =

{
0, 1, 2, . . .

}
. The commutation relations are valid:

[σ+
n , σ

−
m] = σznδnm , [σzn, σ

±
m] = ±2σ±n δnm . (2)

The coupling of spins in (1) is expressed by the entries ∆nm constituting
the exchange matrix ∆:

∆nm = δ|n−m|,1 , (3)

where δn,l(≡ δnl) is the Kronecker symbol.
Spin �up� and �down� states on nth site, |↑〉n and |↓〉n, are de�ned so

that the rising/lowering operators σ±n act on them as follows:

σ+
n |↓〉n = |↑〉n , σ−n |↑〉n = |↓〉n , σ−n |↓〉n = σ+

n |↑〉n = 0 . (4)
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The ferromagnetic state with all spins �up�,

|⇑〉 ≡
⊗
n∈N̄

|↑〉n ≡
⊗
n∈N̄

(
1
0

)
n

, (5)

is an eigen-vector of σzm: σ
z
m| ⇑〉 = | ⇑〉, and it is chosen as the reference

state (i.e., pseudovacuum). The state (5) is annihilated by σ+
m, σ

+
m| ⇑〉 = 0,

and, therefore, it is annihilated by the Hamiltonian (1):

Ĥ |⇑〉 = 0 .

The state (5) is normalized 〈⇑ | ⇑〉 = 1.
The exchange matrix ∆ is of the form:

∆ =


0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 0 1 0 1 0 . . .
...

...
. . .

. . .
. . .

. . . . . .

 ,

and a couple of special matrices,

S ≡


0 0 0 . . . . . .
1 0 0 . . . . . .

0 1 0
. . .

...
...

...
. . .

. . . . . .


and its transpose ST, enables to express ∆:

∆ = S + ST . (6)

Let us identify a spin �down� state on jth site | j〉 as the �coordinate�
column,

| j〉 ∼



0
...
0
1
0
...



(0)
...

(j − 1)
(j)

(j + 1)
...

,
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whereas a row 〈j | as transpose | j〉. Then, the relations are valid for S and
ST (6):

S | j〉 = δr−j,1 | r〉 , r > j > 0 ,

ST | j〉 = δj−r,1 | r〉 , j > r > 0 .

In other words, S looks like �creation operator�, ST is analogous to �anni-
hilation operator�, and | 0〉 is �vacuum vector� since ST | 0〉 = 〈0 |S = 0 and
S | 0〉 = | 1〉. The algebra given by S and ST is called the Cuntz algebra [17]:

ST S = I , S ST = I− P , (7)

where I is the identity operator, and P is the vacuum projector:

P ≡


1 0 0 . . . . . .
0 0 0 . . . . . .

0 0 0
. . .

...
...

...
. . .

. . . . . .

 ,

since P| j〉 = δj0| j〉, j > 0. The matrices S and ST were introduced and
studied by V. Fock in [19]. Due to the property (7), the exchange matrix∆
under consideration signi�cantly di�ers from that de�ned on a ring, which
is expressed analogously to (6), but in terms of the circulant matrices

[13, 14].
Let us introduce strict partition, i.e., N -tuple µ = (µ1, µ2, . . . , µN )

consisting of strictly decreasing integers µk ∈ N̄, 1 6 k 6 N called parts

of µ, where

µ1 > µ2 > . . . > µN > 0 . (8)

Since the operators σ±n act on |↑〉n and |↓〉n according to (4), we de�ne the
state |µ〉 corresponding to N �ipped (i.e., �down�) spins (�particles�) on
the sites labelled by the parts (�coordinates�) µk, and the corresponding
conjugate state 〈ν|:

|µ〉 ≡ |µ1, µ2, . . . , µN 〉 ≡
(

N∏
k=1

σ−µk

)
|⇑〉 , (9)

〈ν| = 〈ν1, ν2, . . . , νN | ≡ 〈⇑|
(

N∏
k=1

σ+
νk

)
, (10)
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where |⇑〉 is given by (5). The states (9), (10) provide a complete orthogonal
base:

〈ν|µ〉 = δνµ ≡
N∏
n=1

δνnµn .

Let us introduce the state |Ψ(pN )〉 as the linear combination of |µ〉 (9)
with the coe�cients χµ(eipN ):

|Ψ(pN )〉 =
∑

{µ, µN>0}

χµ(eipN ) |µ〉 . (11)

Under the exponential parameterization:

χµ(eipN ) ≡ χµ(e±ip1 , e±ip2 , . . . , e±ipN ) = det
16j,k6N

(
sin(µk + 1)pj

)
, (12)

where e±ipk is a shorthand notation for eipk , e−ipk , and pk ∈ [0, π] ⊂ R,
∀k. Solving the eigenvalue problem

Ĥ | Ψ(pN )〉 = EN (pN ) | Ψ(pN )〉
leads to the following identity

N∑
k=1

(
χµ+ek

(e±ip1 , e±ip2 , . . . , e±ipN ) + χµ−ek
(e±ip1 , e±ip2 , . . . , e±ipN )

)
=

N∑
k=1

(
eipk + e−ipk

)
× χµ(e±ip1 , e±ip2 , . . . , e±ipN ) .

Here ek, 1 6 k 6 N , are N -tuples consisting of zeros except of a unity at
kth place, say, from the left. The state |Ψ(pN )〉 (11) provides us N -particle
eigen-vector of the Hamiltonian (1) with

EN (pN ) =

N∑
k=1

(
eipk + e−ipk

)
= 2

N∑
k=1

cos pk . (13)

�3. Star of lattice paths

Let us discuss the combinatorial interpretation of the function intro-
duced in (12). Consider an r-tuple λ = (λ1, λ2, . . . , λN ) consisting of
weakly decreasing non-negative integers:

λ1 > λ2 > . . . > λN > 0 . (14)

The number of non-trivial parts of λ is the length of partition l(λ) = r.
The Ferrers board of λ is an array of cells with l(λ) left-justi�ed rows and
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λi cells in row i. The conjugate of λ is the partition λ′ = (λ′1, λ
′
2, . . . , λ

′
N ),

where λ′j is the length of jth column in the Ferrers board of λ.
Let λ be a partition of length r 6 N . A tableau T of shape λ is called

a 2N -symplectic tableau [20] which is �lled with entries in (1 < 1̄ <
2 < 2̄ < . . . < N < N̄) such that entries are weakly increasing along
rows, strictly increasing along columns, and obeys the additional constraint
Tij > i (Tij denotes the entry in cell (i, j) of T ). For the symplectic case,

let xN = (x±1
1 , x±1

2 , . . . , x±1
N ) be a sequence of 2N variables, where x±1

k

is a shorthand notation for xk, x
−1
k (xk ∈ C,∀k), [21]. The weight of a

symplectic tableau is de�ned as

xTN ≡
N∏
i=1

x# of i′s inT
i

(
x−1
i

)# of ī′s inT
.

The even symplectic Schur function associated to λ is de�ned by

spλ(xN ) ≡
∑
T

xTN , (15)

where the sum is over all symplectic tableau T of shape λ.
The even symplectic Schur functions (15) can be expressed as [20]:

spλ(xN ) =

det
16j,k6N

(
xλk+N−k+1
j − x−(λk+N−k+1)

j

)
det

16j,k6N

(
xN−k+1
j − x−(N−k+1)

j

) . (16)

This function is symmetric with respect to the variables x1, x2, . . . , xN and
is invariant under the exchange xi ←→ x−1

i , 1 6 i 6 N . The denominator
in this expression is an analog of the Vandermonde identity calculated
in [22]:

det
16j,k6N

(
xN−k+1
j − x−(N−k+1)

j

)
=

N∏
j=1

(
xj − x−1

j

) ∏
16k<j6N

(
xk + x−1

k − xj − x
−1
j

)
. (17)

The rth order elementary symmetric function er = er(xN ) of N vari-
ables, xN = (x1, x2, . . . , xN ), is de�ned by

er(xN ) ≡
∑

16i1<i2<···<ir6N

xi1xi2 . . . xir .



SEMI-INFINITE HEISENBERG XX0 CHAIN 97

x-1
1x1

1 x-1
2x1

2 x-1
4x1

4x-1
3x1

3

S1

S2

S3

S4

S5

E1

E2

E3

E4

E5

x

11 1 1 2 4
32

4 4
2
4
4

22
3 3

44

__

_ _
_
_

_

_

_






Figure 1. A symplectic tableau of shape λ = (5, 4, 4, 2)
(left), and the corresponding nest of lattice paths with
weight xT4 = x1(x−1

1 )2x2
2(x−1

2 )2x3x
−1
3 x2

4(x−1
4 )4 = x−1

1 x−2
4 .

The identity for the symplectic character was proved in [23]:

spλ(xN ) = det
16i,j6λ1

(
eλ′i−i+j(xN )− eλ′i−i−j(xN )

)
,

where λ′ is the partition conjugate to λ.
A symplectic tableau may be expressed by a nest of lattice paths [21].

A nest of lattice paths is called non-intersecting if no two paths in the
nest to cross the same lattice site. A nest of lattice paths associated with
the shape λ is a collection of non-intersecting lattice paths from starting
points Si = (0, i) to Ei = (2N, ei), i = 1, 2, . . . , λ1; 0 < ei 6 2N + λ1,
which are characterized by a set {(1, 1), (1,−1)} of up and down steps,
and which never go below x-axis. The weight of a nest is the product of
the weights of its steps. The weight of an up-step is unity, while either
xn or x−1

n is the weight of a down-step, provided that either (2n− 1)st or
(2n)th step of a path is respectively considered. This type of collection of
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lattice paths is known as a star (Figure 1). The number of stars with �xed
end points and with wall restriction is given by [21]:

spλ(1) ≡ spλ(1, . . . , 1)

=
∏

16k<l6N

λk − k − λl + l

l − k
∏

16k6l6N

λk + λl +N − k − l + 2

N − k − l + 2
(18)

The relationship between the parts of µ (8) and λ (14) is expressed as

λj = µj + j −N , 1 6 j 6 N , (19)

or λ = µ− δN , where δN is the staircase partition

δN ≡ (N − 1, N − 2, . . . , 0) . (20)

The volume |λ| of partition λ is the sum of its parts: |λ| ≡
∑N
i=1 λi. The

volumes of µ, λ, and δ are connected: |µ| = |λ|+ N
2 (N − 1).

The eigenfunction (11), (12) is related to the symplectic Schur function
(16) under the exponential parametrization provided that (19) holds:

χµ(eipN ) = spλ(e±ip1 , e±ip2 , . . . , e±ipN ) det
16j,k6N

(sin(N − k + 1)pj)

≡ spλ(pN ) det
16j,k6N

(sin(N − k + 1)pj) . (21)

This representation gives the enumerative interpretation of eigenfunctions
(11), (12), (16) in terms of stars. The asymptotic behavior of stars when
N tends to in�nity was studied in [21].

�4. The generating function

We shall consider the generating function G(µ;ν |K), which provides
the number of nests of non-intersecting lattice paths of N random turns
vicious walkers performing K steps [7]. It is given by N -particle transition
amplitude between the states |µ〉 (9) and 〈ν| (10) parameterized by strict
partitions µ and ν (see (8)), which are interpreted as initial and �nal
positions of random walks [7, 14] (Figure 2):

G(µ;ν |K) ≡ 〈ν | ĤK | µ〉 , (22)

where Ĥ is the Hamiltonian (1). This generating function is interpreted in
the following way.
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Figure 2. A nest of lattice paths of random turns vicious
walkers for N = 4, K = 8

Really, applying the commutation relation (2), one obtains at N = 1:

G(µ; ν |K) ≡ 〈⇑| σ+
ν Ĥ

Kσ−µ |⇑〉

= 〈⇑| σ+
ν Ĥ

K−1[−Ĥ, σ−µ ] |⇑〉 = 〈⇑| σ+
ν Ĥ

K−1
∑
n1

∆n1µσ
−
n1
|⇑〉

= 〈⇑| σ+
ν

∑
n1,n2,...,nK

∆nKnK−1
· · ·∆n2n1∆n1µσ

−
nK
|⇑〉

=
∑

n1,n2,...,nK−1

∆νnK−1
· · ·∆n2n1

∆n1µ=
(
∆K

)
νµ

=
(
(S + ST)K

)
νµ
. (23)

The position of a single particle on a lattice is labeled by the spin down
state, while the spin up states correspond to the empty sites. The particle
starts at randomly chosen initial site l, at �rst step it moves to one of the
sites de�ned by the matrix element ∆nm (3), namely one step up (S)nm or
down (ST)nm: {(1, 1), (1,−1)}. The di�erence equation of the generating
function (22) for N = 1 follows from the equation (23):

G(µ, ν |K + 1) = G(µ+ 1; ν |K) +G(µ− 1; ν |K) (24)

for the �xed ν and a similar equation for the �xed µ. Equation (24) is
supplied with the condition G(µ; 0 |K) = G(0; ν |K) = 0.

After K steps all admissible paths of the particle starting from the
site l and ending at j are given by the matrix product (23). Using the
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commutation relation

[Ĥ, σ−µ1
σ−µ2

...σ−µN
] =

N∑
k=1

σ−µ1
...σ−µk−1

[Ĥ, σ−µk
]σ−µk+1

...σ−µN
, (25)

we see that the average (22) is equal to the number of con�gurations that
have the N random turns walkers being initially located on the lattice
sites µ1 > µ2 > . . . > µN > 0 and after K steps arrived at the positions
ν1 > ν2 > . . . > νN > 0. The vicious walk condition, the condition that
paths does not touch each other up to K steps, is guaranteed by the
property of the Pauli matrices (σ±k )2 = 0. The additive form of the equation
(25) means that under the action of Hamiltonian the only one walker jumps
up or down {(1, 1), (1,−1)}, while the rest are staying {(0, 1)}.

Taking into account the equation (25), we shall obtain the di�erence
equation for the generating function (22):

G(µ,ν |K + 1) =

N∑
k=1

G(µ + ek;ν |K) +G(µ− ek;ν |K) (26)

for the �xed µ, and a similar equation is found for the �xed ν. The non-
intersection condition means that G(µ,ν |K) = 0 if µk = µp or νk = νp
for any 1 6 k, p 6 N , and the boundary conditions are G(µ,ν |K) = 0 if
µk = 0 or νk = 0 for any 1 6 k 6 N .

�5. Asymptotics

5.1. First way. Knowing the eigen-functions (12), (21) of the Hamilton-
ian (1), we may write the solution of the di�erence equation (26) in the
following form:

G(µ;ν |K) =
1

πNN !

N∏
n=1

∫ π

−π
dpn

(
2

N∑
k=1

cos pk

)K
χµ(eipN )χν(eipN )

=
1

πNN !

N∏
n=1

∫ π

−π
dpn

(
2

N∑
k=1

cos pk

)K
× det

16j,k6N
(sin pj µ̄k) det

16j,k6N
(sin pj ν̄k) . (27)

Here the notations µ̄k ≡ µk + 1, ν̄k ≡ νk + 1 are introduced for the parts
of auxiliary partitions µ̄ = µ+1, where µ is given by (8) and 1 is N -tuple
(1, 1, . . . , 1):

µ̄1 > µ̄2 > . . . > µ̄N > 1 . (28)
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Using (21), one obtains:

G(µ;ν |K) =
1

πNN !

N∏
n=1

∫ π

−π
dpn

(
2

N∑
k=1

cos pk

)K
×

(
det

16j,k6N

(
sin kpj

))2

spλL(pN ) spλR(pN ) , (29)

where λR = ν − δN , λ
L = µ − δN (see (19)). The determinant in the

integrand of (29) is obtained using the identity (17) (see [21]):

det
16r,s6N

(sin sθr) = 2N(N−1)
N∏
r=1

sin θr

×
∏

16j<k6N

sin

(
θj − θk

2

)
sin

(
θj + θk

2

)
. (30)

We are interested here in the large K limit with µ and ν kept �xed. In
order to apply the standard saddle-point approximation, we express the
�rst factor of integrand in the above equations (29) in the form

exp{K log
∑
k

cos pk},

and thereby obtain the following system of saddle point-equations [9]:

sin pr∑N
k=1 cos pk

= 0 , r ∈ {1, 2, . . . , N} . (31)

It is obvious that the solutions to this system of equations satisfy sin pr = 0
(1 6 r 6 N) with the restriction that

∑
k cos pk 6= 0. Requiring that the

matrix of second derivatives

∂2

∂pr∂ps
log

(
N∑
k=1

cos pk

)
=

cos pr∑N
k=1 cos pk

δrs −
sin pr sin ps(∑N
k=1 cos pk

)2

for the solution of (31) is a negative de�nite matrix, we �nd that the
steepest descent corresponds to the solution for which cos pr = 1, 1 6 r 6
N , i.e., the main contribution to the integrals in (29) comes from near the
points pr = 0, 1 6 r 6 N . Therefore, we may replace the �rst factor of the
integrand in (29) by its approximation(

2

N∑
k=1

cos pk

)K
∝ (2N)K exp

{
− K

2N

N∑
k=1

p2
k

}
. (32)
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As K → ∞, the main contributions to the integrals in (29) come from
near the origin of the integration variables. Using (30) under integration
in (29), we �nd in the leading order:

G(µ;ν |K) w spλL(1)spλR(1)
(2N)K

πNN !

×
N∏
j=1

(∫ ∞
−∞

dpj p
2
j

)
e−(K/2N)

∑N
k=1 p

2
k

∏
16i<l6N

(
p2
i − p2

l

)2
, (33)

where the symplectic Schur polynomials spλL,R(1) are associated with the
combinatorial interpretation of the eigen-functions (18). The integral (33)
is the Mehta integral [24], which is evaluated:

G(µ;ν |K) = spλL(1)spλR(1)
(2N)K

∏N
m=1(2m)!

(2π)
N
2 N !

(N
K

)N(2N+1)
2

, (34)

where λR = ν − δN , λ
L = µ− δN .

5.2. Second way. Making use of the symmetry of the integrand with
respect to permutations of p1, p2, . . . , pN , the determinant in (27) can be
transformed as

1

N !
det

16j,k6N

(
sin(pj µ̄k)

)
det

16j,k6N

(
sin(pj ν̄k)

)
−→ det

16j,k6N

(
sin(pj µ̄k)

) N∏
k=1

sin(pkν̄k)

−→ det
16j,k6N

(
sin(pj µ̄k) sin(pj ν̄j)

)
. (35)

Using (35) we get an alternative expression for the generating function
(29):

G(µ;ν |K) =
2K

πN

N∏
n=1

∫ π

−π
dpn

( N∑
m=1

cos pm

)K
× det

16j,k6N

(
sin(pj µ̄k) sin(pj ν̄j)

)
, (36)

where the partitions (28) are used.
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The answer for large K may be obtained started from (36). Indeed,
applying (32) we obtain:

G(µ;ν |K) w
(2N)K

(2π)N

N∏
j=1

∫ ∞
−∞

dpj exp
(−K

2N

∑N
k=1 p

2
k

)
× det

16j,k6N

{
cos
(
pj(µ̄k − ν̄j)

)
− cos

(
pj(µ̄k + ν̄j)

)}
.(37)

The matrix Gaussian integral (37) is evaluated explicitly, and one �nds:

G(µ;ν |K) ' (2N)K

(2π)N/2

(N
K

)N/2
q(|µ̄|2+|ν̄|2)/2 det

16j,k6N

(
q−µ̄j ν̄k − qµ̄j ν̄k

)
,

(38)

where q ≡ e−N/K , and |µ̄|2 ≡
∑N
j=1 µ̄

2
j (the same for |ν̄|2).

Knowing the de�nition of the symplectic Schur function (16) we re-
express (38):

G(µ;ν) ' (2N)K

(2π)N/2

(N
K

)N/2
q(|µ̄|2+|ν̄|2)/2

× spλL(q−ν̄1 , q−ν̄2 , . . . , q−ν̄N ) det
16r,s6N

(
q−ν̄sδ̄r − qν̄sδ̄r

)
, (39)

where λL ≡ λLN = µN − δN , and the parts δ̄i = N − i+ 1 of the partition
δ̄N = δN + 1 (see δN (20)) are used. Another representation equivalent to
(39) is due to the identity

spλR(q−N , q−(N−1), . . . , q) =
det16r,s6N

(
q−ν̄sδ̄r − qν̄sδ̄r

)
det16j,k6N

(
q−jk − qjk

) , (40)

where λR ≡ λRN = νN − δN , and

det
16r,s6N

(
q−δ̄sδ̄r − qδ̄sδ̄r

)
= det

16r,s6N

(
q−sr − qsr

)
is accounted for. One obtains:

G(µ;ν |K) ' (2N)K

(2π)N/2

(N
K

)N/2
q(|µ̄|2+|ν̄|2)/2 det

16j,k6N

(
q−jk − qjk

)
× spλL(q−ν̄1 , q−ν̄2 , . . . , q−ν̄N ) spλR(q−N , q−(N−1), . . . , q) . (41)

Equations (39) and (41) provide �exact� expressions for the generating
function G(µ;ν |K).
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Let us obtain using (17) the asymptotics at q ≈ 1−N/K:

det
16r,s6N

(
q−ν̄sδ̄r − qν̄sδ̄r

)
≈ 2N

(N
K

)N2 N∏
i=1

ν̄i
∏

16k<l6N

(ν̄2
l − ν̄2

k) . (42)

Consider the parts δ̄i = N − i+ 1, 1 6 i 6 N :

N∏
i=1

δ̄i = N ! ,
∏

16k<l6N

(δ̄2
l − δ̄2

k) =

∏N
k=1(2k − 1) !

N !
,

and, therefore, (42) at ν̄ −→ δ̄, i.e., ν −→ δ results in

det
16r,s6N

(
q−rs − qrs

)
≈ 2N

(N
K

)N2 N∏
k=1

(2k − 1) !

=
(N
K

)N2 ∏N
k=1(2k) !

N !
. (43)

The limiting form of (40) results from (42) and (43) in agreement with
(18):

spλR(1) =
( N∏
k=1

(2k − 1) !
)−1 N∏

i=1

ν̄i
∏

16k<l6N

(ν̄2
l − ν̄2

k) .

Using the approximation of expression (42) we get the �nal answer for
(39):

G(µ;ν |K) ' spλL(1)

N∏
i=1

(1 + νi)
∏

16k<l6N

(νl − νk) (νl + νk + 2)

× (2N)K
( 2

π

)N/2 (N
K

)N2+N/2

. (44)

When ν −→ δ, one obtains

G(µ; δ |K) ' spλL(1)

∏N
k=1(2k) !

(2π)N/2N !
× (2N)K

(N
K

)N2+N/2

. (45)

With the help of (43) the equation (41) acquires the form:

G(µ;ν |K) ' spλR(1) spλL(1)
( 2

π

)N/2 N∏
k=1

(2k − 1) !

× (2N)K
(N
K

)N2+N/2

. (46)
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This answer coincides with (34) and (44). Equation (46) is reduced at
ν −→ δ to (45) since spλR(1) = 1.

�6. Infinite chain

Let us turn to it in the limit of in�nite chain, where the analogue of the
integral representation G(µ;ν |K) (36) acquires the form [14] (notice that
µj − νk = µ̄j − ν̄k):

G(µ;ν |K) =
2K

(2π)
N

N∏
n=1

∫ π

−π
dpn

( N∑
m=1

cos pm

)K
det

16j,k6N

(
e−i(µj−νk)pj

)
.

(47)
Provided that the approximation (32) valid at K � 1 is used in (47), one
obtains:

G(µ;ν |K) ' (2N)K

(2π)N/2

(N
K

)N/2
q(|µ|2+|ν|2)/2 det

16j,k6N
(q−µjνk) , (48)

where q ≡ e−N/K , and |µ|2 ≡
∑N
j=1 µ

2
j (the same for |ν|2). Besides, the

relation

det
16j,k6N

(q(µj−νk)2/2) = q(|µ|2+|ν|2)/2 det
16j,k6N

(q−µjνk) ,

valid both for (8) and (28), is taken into account. The latter is convenient
to compare with the approximate expressions (38) and (48).

Let us remind the de�nition of the Schur functions Sλ [25]:

Sλ(xN ) ≡ Sλ(x1, x2, . . . , xN ) ≡
det(xλk+N−k

j )16j,k6N

V(xN )
. (49)

Here V(xN ) is the Vandermonde determinant

V(xN ) ≡ det(xN−kj )16j,k6N =
∏

16m<l6N

(xm − xl) . (50)

Using (49) we re-express (48) (compare with (39)):

G(µ;ν |K) ' (2N)K

(2π)N/2

(N
K

)N/2
q(|µ|2+|ν|2)/2

× SλL(q−ν1 , q−ν2 , . . . , q−νN ) det
16r,s6N

(
q−νs(N−r)) ,

where λL ≡ λLN = µN − δN .
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Applying the asymptotics of (50) at q ≈ 1−N/K:

det
16r,s6N

(
q−νs(N−r)) ≈ (N

K

)N(N−1)/2 ∏
16k<l6N

(νk − νl) , (51)

and the limiting value of the Schur functions (49) [26]:

SλL(1) =

∏
16k<l6N (µk − µl)∏N

k=1(k − 1) !
, (52)

one obtains the dependence of the asymptotics of the generating function
on the growing number of steps K in the case of in�nite chain:

G(µ;ν |K) ' (2N)K

(2π)N/2

(N
K

)N2/2

SλL(1)
∏

16k<l6N

(νk − νl)

=

∏
16k<l6N (µl − µk)(νl − νk)∏N

k=1(k − 1) !

(2N)K

(2π)N/2

(N
K

)N2/2

.(53)

The asymptotics (53) should be compared with that for the generating
function (46) corresponding to impenetrable wall.

�7. Discussion

The number of nests of paths of N walkers is growing mainly as (2N)K

provided that the number of steps K is increasing both in the cases of
semi-in�nite and in�nite chains, however critical exponent N2 + N

2 and

N2/2 are di�erent respectively. As a result, the growth of the number
of nests, governed mainly by (2N)K , is slowly for the semi-in�nite chain
in comparison with that of in�nite chain. The combinatorial factors are
di�erent in both cases.
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