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RANDOM ORDERED LATTICE PATHS GENERATED

BY OPERATORS SATISFYING THE CUNTZ ALGEBRA

Abstract. The technique based on operators satisfying the Cuntz
algebra is used for the enumeration of Dyck, Motzkin and  Lukasiewicz
lattice paths. It is shown that the weighted paths may be considered
as the generators of master �elds of the quantum �eld theory.

�1. Introduction

The discrete mathematics of the directed lattice paths are widely stud-
ied. For the enumeration of these paths many methods are often used.
In literature, Dyck, Motzkin and  Lukasiewicz paths are the most often
considered (see e.g.) [1�10].

In the papers [11, 12] the master �eld in a number of cases including
QCD2 was explicitly ñonstructed. The master �eld was generated by a col-
lection of creation and annihilation operators satisfying the Cuntz algebra.

We shall demonstrate that the vacuum expectations of the generators
constructed by the elements of Cunst algebra give an alternative approach
to the calculation of the directed lattice paths. These weighted lattice
paths allow to construct the master �elds and to �nd the coe�cients of
the Voiculescu polynomials [13].

The paper is organized as follows. We begin with some preliminaries in
Section 2. In particular, we introduce the directed lattice paths , simple
one dimensional lattice steps, Fock space and the Cuntz algebra acting in
this space. The technique developed in the previous Section will be applied
to enumerate directed lattice paths in Section 3. The interpretation of one-
matrix master �elds in terms of lattice paths is the purpose of Section 4.

�2. Lattice paths and the Cuntz algebra

An N -step lattice path or walk is a sequence of a step set

S = {(x1, y1), (x2, y2), . . . , (xN , yN )} , S ⊂ Z .

Key words and phrases: directed lattice paths, generating functions, master �eld,
Cuntz algebra.
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We restrict our attention to directed paths, which are de�ned by the fact,
that for each step (x, y) ∈ S, one has x > 0. Moreover, we will consider
the case, where every element in the step set S is of the form (1, b) which
means that these paths constantly move one step to the right. Thus, they
are essentially one-dimensional objects and can be seen as walks on the
integers along the y-axis.

The spatial coordinates on the y-axis Z+
0 = {0, 1, . . . , n, . . .} can be

thought of as vector states in the Fock space:

FB = {|0〉, |1〉, . . . , |n〉, . . .} (1)

The Fock states |n〉 can be created from the vacuum state |0〉 by operating
by the operators φ, φ†:

|n〉 =
(
φ†
)n|0〉 , 0 6 n , (2)

and
φ†|n〉 = |n+ 1〉 , φ|n〉 = |n− 1〉 , φ|0〉 = 0 . (3)

The introduced operator φ is "one-sided unitary" or an isometric; although

φφ† = I (4)

one has
φ†φ = I − π , (5)

in which π is the vacuum projector π = |0〉〈0|. This implies that [φ, φ†] = π.
The algebra φ and the φ† is called the Cuntz algebra [11].

The operators φ, φ† with the number operator N̂

N̂ |n〉 = n|n〉
give the phase algebra [14] characterized by the commutation relations

[φ, φ†] = π , [N̂ , φ] = −φ , [N̂ , φ†] = φ† . (6)

The matrix representation of operators φ and φ†

φ†≡



0 0 0 0 . . . . . .
1 0 0 0 . . . . . .
0 1 0 0 . . . . . .
0 0 1 0 . . . . . .
...

...
...

. . .
. . . . . .

...
...

...
...

. . .
. . .


, φ≡



0 1 0 0 . . . . . .
0 0 1 0 . . . . . .
0 0 0 1 . . . . . .

0 0 0 0
. . . . . .

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .


, (7)

were introduced and studied by V. Fock in [15].
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�3. Ordered lattice paths

3.1. Dyck paths. A Dyck path is a lattice path of 2N in the �rst quad-
rant N2 with up steps U = (1, 1), rises, and down steps D = (1,−1), falls,
that starts at the origin (0, 0), ends at (2N, 0), and never passes below the
x-axis (see Fig. 1).

x

y

14

Figure 1. Example of a Dyck path in 14 steps correspond-
ing to the word UUDDUUUUDDUDDD.

Let us associate the Dyck steps to the following operators

φ† −→ (1, 1) ≡ U ; φ −→ (1,−1) ≡ D . (8)

Then the number of Dyck paths in 2N steps may be written in the form

D2N ≡ 〈0|Ĥ2N
D |0〉 , D0 = 1 , (9)

where

ĤD = φ+ φ† . (10)

Applying the commutation relation

φĤD = ĤDφ+ π

and the property that 〈0|φ† = 0, we can derive the expression

〈0|Ĥ2(N+1)
D |0〉 = 〈0|φĤDĤ2N

D |0〉 = 〈0|ĤDφĤ2N
D |0〉+ 〈0|Ĥ2N

D |0〉

= 〈0|Ĥ3
DφĤ

2(N−2)
D |0〉+ 〈0|Ĥ2

DπĤ
2(N−2)
D |0〉+ 〈0|Ĥ2N

D |0〉 . (11)
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The condition 〈0|Ĥ2n+1
D |0〉 = 0 , n > 0 leads then to the quadratic recur-

rence on number of Dyck paths for n > 1:

〈0|Ĥ2(N+1)
D |0〉 =

N∑
k=0

〈0|Ĥ2k
D |0〉〈0|Ĥ

2(N−k)
D |0〉 ,

D2(N+1) =

N∑
k=0

D2kD2(N−k) . (12)

The Catalan numbers are given by the explicit formula CN = 1
N+1

(
2N
N

)
and satisfy the numeric recurrence

CN+1 =

N∑
k=0

CkCN−k , C0 = 1 . (13)

From (12) and (13) it follows that

D2N = CN . (14)

The operator (10) was introduced in [16] in connection with the study
of the phase problem in quantum mechanics and is known as the cosine
operator. Consider the eigenvalue equation

ĤD| cos θ〉 = E| cos θ〉 . (15)

The coe�cients in decomposition

| cos θ〉 =

∞∑
n=0

Sn|n〉 (16)

satisfy the di�erence relations

ES0 =S1 ,

ESn+1 =Sn + Sn+2 . (17)

The solution of these relations gives the answer to eigenvalue problem of
the equation (15):

E =2 cos θ ,

| cos θ〉 =

√
2

π

∞∑
n=0

sin
(
(n+ 1)θ

)
|n〉 . (18)
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The eigenstates satisfy the conditions

〈cos θ| cos θ′〉 =δ(θ − θ′) ,
π∫

0

dθ| cos θ〉〈cos θ| =
∞∑
n=0

|n〉〈n| = 1 . (19)

This mentioned approach gives the analytical proof thatD2N = CN . Really

D2N = 〈0|Ĥ2N
D |0〉 =

22N+1

π

π∫
0

sin2(θ) cos2N (θ)dθ

=
22N+1

π

π∫
0

cos2N (θ)dθ − 22N+1

π

π∫
0

cos2(N+1)(θ)dθ

= 2

(
2N

N

)
− 1

2

(
2N + 2

N + 1

)
=

1

N + 1

(
2N

N

)
= CN . (20)

The generating function of the Dyck paths is de�ned as

D(z) = 〈0| 1

1− zĤD
|0〉 =

∞∑
n=0

z2n〈0|Ĥ2n
D |0〉 =

∞∑
n=0

z2nCn . (21)

It is straightforward to derive that

D(z) =
2

π

π∫
0

sin2 θ

1− 2z cos θ
dθ =

1−
√

1− 4z2

2z2
. (22)

The integral in this expression was calculated in [17].

3.2.  Lukasiewicz paths. A  Lukasiewicz path of length N is a lattice
path in N2 starting at the origin (0, 0), ending on the x-axis at (N, 0),
which are made using steps into the set D = (1,−1), F = (1, 0) and
Uk = (1, k) for k > 1 (see Fig. 2).

The introduced set of steps correspond to the following operators:

(φ†)k −→ (1, k) ≡ Uk ; φ −→ (1,−1) ≡ D ; I −→ (1, 0) ≡ F .
(23)

The number of  Lukasiewicz paths in N steps is given by

LN ≡ 〈0|ĤN
L |0〉 , L0 = 1 , (24)
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x

y

15

Figure 2. A  Lukasiewicz path in 15 steps corresponding
to the word U2DFDU1U3DDDU2FDFDD.

where

ĤL = φ+
∑
k>0

(
φ†
)k ≡ φ+ Φ† . (25)

The commutation relations

φΦ† = Φ†φ+ Φ†π, φĤL = ĤLφ+ Φ†π = ĤL
(
φ+ π

)
, (26)

allows us to derive the following recurrence relation

〈0|ĤN+1
L |0〉 = 〈0|(1 + φ)ĤN

L |0〉

= 〈0|ĤN
L |0〉+ 〈0|ĤLφĤN−1

L |0〉+ 〈0|ĤLπĤN−1
L |0〉

=〈0|ĤN
L |0〉+〈0|ĤLπĤN−1

L |0〉+〈0|Ĥ2
LπĤ

N−2
L |0〉+〈0|Ĥ2

LφĤ
N−2
L |0〉. (27)

This expression yields the following quadratic recurrence

〈0|ĤN+1
L |0〉 =

N∑
k=0

〈0|Ĥk
L|0〉〈0|ĤN−k

L |0〉 ,

LN+1 =

N∑
k=0

LkLN−k . (28)

Comparing the obtained recurrence with the (13) we can derive that the
number of  Lukasiewicz paths in N steps is given by the Catalan number:

LN = CN . (29)
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The generating function of the  Lukasiewicz paths is

L(z)=〈0| 1

1−zĤL
|0〉=

∞∑
n=0

zn〈0|Ĥn
L|0〉=

∞∑
n=0

znLn=
1−
√

1−4z

2z
. (30)

3.3. Motzkin paths. A Motzkin path is a lattice path of 2N in the
�rst quadrant N2 with up steps U = (1, 1), down steps D = (1,−1), and
forward steps F = (1, 0) that starts at the origin (0, 0), ends at (2N, 0),
and never passes below the x-axis (see Fig. 3).

The set of Motzkin steps are given by

(φ†) −→ (1, 1) ≡ U ; φ −→ (1,−1) ≡ D ; I −→ (1, 0) ≡ F . (31)

x

y

15

Figure 3. A Motzkin path in 15 steps corresponding to
the word UFFUDUUDDDUUFDD.

The number of Motzkin paths in N steps is

MN = 〈0|ĤN
M|0〉 , M0 = 1 , (32)

where

ĤM = φ+ φ† + I ≡ ĤD + I . (33)

Using the above de�nition we can write

〈0|ĤN
M|0〉 =

[N/2]∑
k=0

(
N

2k

)
〈0|Ĥk

D|0〉 , (34)

and hence the number of Motzkin paths in N steps is equal to

MN =

[N/2]∑
k=0

(
N

2k

)
Ck . (35)



RANDOM ORDERED LATTICE 87

The eigenvalue di�erence equations of the operator (33) are similar to
(17):

(E − 1)S0 =S1 ,

(E − 1)Sn+1 =Sn + Sn+2 . (36)

With these eigenvalue equations the generating function of the Motzkin
paths is

M(z) =
2

π

π∫
0

sin2 θ

(1− z)− 2z cos θ
dθ =

1− z −
√

1− 2z − 3z2

2z2
. (37)

�4. Master field

The operator construction of the master �eld for the one-matrix model
was constructed in [11,13]. This operator is expandable in a basis of Cuntz
operators φ and φ†:

M̂(φ, φ†) = φ+

∞∑
k=0

Mk(φ†)k (38)

with an appropriate choice of the scalar coe�cients Mk.
Applying the representation of operators (7) one obtains the matrix

form of M̂(φ, φ†):

M̂(φ, φ†) =



M0 1 0 0 . . . . . .
M1 M0 1 0 . . . . . .
M2 M1 M0 1 . . . . . .

M3 M2 M1 M0
. . . . . .

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .


. (39)

The operator (38) may be considered as the generator of the weighted
 Lukasiewicz paths (25) � the step (φ†)k carries the weightMk (k > 0). One
can compute Voiculescu polynomials [13] of the N -th order enumerating
the weighted  Lukasiewicz paths in N steps. The �rst such polynomials are
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of the form (See Fig. 4)

〈0|M̂(φ, φ†)|0〉 =M0 ,

〈0|M̂2(φ, φ†)|0〉 =M2
0 +M1 ,

〈0|M̂3(φ, φ†)|0〉 =M3
0 + 3M0M1 +M2 ,

〈0|M̂4(φ, φ†)|0〉 =M4
0 + 6M2

0M1 + 2M2
1 + 4M2M0 +M3 . (40)

M0M0

M0 M0

M0

M0

M2

M1 M1 M1

Figure 4.  Lukasiewicz paths and the graphical represen-

tation of Voiculescu polynomial: 〈0|M̂3(φ, φ†)|0〉 = M3
0 +

3M0M1 +M2.

The explicit operator of the Gaussian master �eld [11,12]

M̂G(φ, φ†) = φ+ αφ† . (41)
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can be made explicitly Hermitian by a similarity transformation:

SM̂G(φ, φ†)S−1 =
√
α(φ+ φ†) =

√
αĤD , (42)

using S = exp(− N̂2 logα) , where N̂ is the the number operator (6). The
coe�cients

〈0|M̂2N
G (φ, φ†)|0〉 = αN 〈0|Ĥ2N

D |0〉 = αNCN , (43)

were CN are the Catalan numbers. The Gaussian generating function is
equal to generating function of the Dyck paths (22).

The "Motzkin" master �eld may be de�ned as

M̂M (φ, φ†) = φ+ αφ† +
√
αI , (44)

which is operator (33) after the similarity transformation

SM̂M (φ, φ†)S−1 =
√
αĤM ,

and hence

〈0|M̂N
M (φ, φ†)|0〉 = α

1
2MN ,

whereMN are the Motzkin numbers (35).
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