
Записки научных
семинаров ПОМИ

Том 531, 2024 г.

R. Preusser

WEIGHTED LEAVITT PATH ALGEBRAS – AN
OVERVIEW

Abstract. Weighted Leavitt path algebras were introduced in 2013
by Roozbeh Hazrat. These algebras generalise simultaneously the
usual Leavitt path algebras and William Leavitt’s algebras L(m,n).
In this paper we try to give an overview of what is known about
the weighted Leavitt path algebras. We also prove some new re-
sults (in particular on the graded K-theory of weighted Leavitt path
algebras) and mention open problems.

§1. Introduction

Leavitt path algebras are algebras associated to directed graphs. They
were introduced by G. Abrams and G. Aranda Pino in 2005 [1] and inde-
pendently by P. Ara, M. Moreno and E. Pardo in 2007 [7]. The Leavitt
path algebras turned out to be a very rich and interesting class of algebras,
whose studies so far have comprised over 150 research papers and counting.
A comprehensive treatment of the subject can be found in the book [2].
The definition of the Leavitt path algebras was inspired by the algebras
L(m,n) studied by W. Leavitt in the 1950’s and 60’s [19–22]. Recall that
for positive integers m < n, the Leavitt algebra L(m,n) is universal with
the property that L(m,n)m ∼= L(m,n)n as left L(m,n)-modules.

Weighted Leavitt path algebras are algebras associated to weighted
graphs, i.e. directed graphs with a weight map associating to each edge a
positive integer. These algebras were introduced by R. Hazrat in 2013 [13].
If all the weights are equal to 1, then the weighted Leavitt path algebras
reduce to the usual Leavitt path algebras. While their unweighted cousins
only include the Leavitt algebras L(1, n) (n > 1) as special cases, the
weighted Leavitt path algebras embrace all Leavitt algebras (see [29]).

In [15] Gröbner bases for weighted Leavitt path algebras were obtained.
Using these bases it was shown that a simple or graded simple weighted
Leavitt path algebra is isomorphic to an unweighted Leavitt path algebra.
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Moreover, the weighted Leavitt path algebras that are domains were clas-
sified, and it was shown that there is a huge class of weighted Leavitt path
algebras having a “local” valuation.

Recall that for a unital ring R, the V-monoid V(R) of R is the set of
isomorphism classes of finitely generated projective left R-modules, which
becomes an abelian monoid by defining [P ] + [Q] := [P ⊕ Q] for any
[P ], [Q] ∈ V(R). This definition can be extended to nonunital rings. For
a ring R with local units the Grothendieck group K0(R) is the group
completion of V(R). In [25] the V-monoid and the Grothendieck group of
a weighted Leavitt path algebra were computed.

In [26] the Gelfand-Kirillov dimension of a weighted Leavitt path algebra
was determined. Moreover, it was shown that a finite-dimensional weighted
Leavitt path algebra is isomorphic to an unweighted Leavitt path algebra.

Recall that a group graded K-algebra A =
⊕

g∈GAg is called locally
finite if dimK Ag <∞ for every g ∈ G. In [27] the weighted graphs (E,w)
for which the weighted Leavitt path algebra L(E,w) is locally finite with
respect to its standard grading were characterised. It was also shown that
the locally finite weighted Leavitt path algebras are precisely the Noe-
therian ones, and that a locally finite weighted Leavitt path algebra is
isomorphic to an unweighted Leavitt path algebra.

In [28] Leavitt path algebras of hypergraphs were introduced, which in-
clude as special cases the vertex-weighted Leavitt path algebras, i.e. weighted
Leavitt path algebras of weighted graphs having the property that any two
edges emitted by the same vertex have the same weight. Moreover, the
graded V-monoid (see Section 10) of a Leavitt path algebra of a hyper-
graph was computed, covering the case of a vertex-weighted Leavitt path
algebra.

In [29] the weighted graphs (E,w) having the property that the weighted
Leavitt path algebra L(E,w) is isomorphic to an unweighted Leavitt path
algebra were characterised. Moreover, it was shown that if a weighted
Leavitt path algebra is Artinian, or von Neumann regular, or has finite
Gelfand-Kirillov dimension, then it is isomorphic to an unweighted Leavitt
path algebra.

In [16] modules for weighted Leavitt path algebras were obtained by
introducing the notion of a representation graph for a weighted graph. It
was shown that each connected component of the category RG(E,w) of
representation graphs for a weighted graph (E,w) contains a unique object
yielding a simple L(E,w)-module, and a “universal” object, yielding an
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indecomposable L(E,w)-module. It was also shown that specialising to
unweighted graphs, one recovers the simple modules for the usual Leavitt
path algebras constructed by X. Chen via infinite paths [12].

In the remainder of this paper we depict the above-mentioned results on
weighted Leavitt path algebras in more detail. We sometimes state results
without giving a proof, or we only give a Sketch of Proof. In either case
we provide a reference to a formal proof. The paper also contains some
new results, for which we of course provide formal proofs. In Section 2
we recall some graph-theoretical notions and moreover the definition of
the Leavitt algebras L(m,n). In Section 3 we recall the definitions of the
unweighted and weighted Leavitt path algebras. In Section 4 we present
the Gröbner basis result from [15] and the computation of the Gelfand-
Kirillov dimension from [26]. Section 5 contains the characterisation of
weighted Leavitt path algebras that are isomorphic to unweighted Leav-
itt path algebras from [29]. In Section 6 we give graph-theoretical criteria
for finite-dimensionality, Noetherianness and von Neumann regularity of
weighted Leavitt path algebras. The criteria for finite-dimensionality and
Noetherianness were obtained in [27], the criterion for von Neumann reg-
ularity is new. In Section 7 we introduce the notion of a generalised corner
skew Laurent polynomial ring, generalising the notion of a corner skew
Laurent polynomial ring (see e.g. [4]). The definition of a generalised cor-
ner skew Laurent polynomial ring already appeared in an early version
of [15], but is not contained in the final version of that article. We prove
that a weighted Leavitt path algebra of a finite weighted graph without
sinks is graded isomorphic to a generalised corner skew Laurent polyno-
mial ring. In Section 8 we describe the local valuations for weighted Leavitt
path algebras found in [15]. Section 9 contains the computation of the V -
monoid and the Grothendieck group of a weighted Leavitt path algebra
from [25]. In Section 10, we compute the graded V -monoid and the graded
Grothendieck group of a weighted Leavitt path algebra using the Leavitt
path algebras of bi-separated graphs, which were recently introduced by
R. Mohan and B. Suhas [23]. By doing so, we generalise the graded V-
monoid result for vertex-weighted Leavitt path algebras obtained in [28]
to arbitrary weighted Leavitt path algebras. In Section 11 we present the
modules for weighted Leavitt path algebras found in [16]. In Section 12 we
list some open problems.
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§2. Preliminaries

Throughout the paper K denotes a fixed field. Rings and algebras are
associative but not necessarily commutative or unital. By an ideal we mean
a two-sided ideal. N denotes the set of positive integers, N0 the set of
nonnegative integers, Z the set of integers and R+ the set of positive real
numbers.

2.1. Graphs. A (directed) graph is a quadruple E = (E0, E1, s, r) where
E0 and E1 are sets and s, r : E1 → E0 maps. The elements of E0 are called
vertices and the elements of E1 edges. If e is an edge, then s(e) is called
its source and r(e) its range. If v is a vertex and e an edge, we say that v
emits e if s(e) = v, and v receives e if r(e) = v. A vertex is called a source
if it receives no edges, a sink if it emits no edges, an infinite emitter if it
emits infinitely many edges and regular if it is neither a sink nor an infinite
emitter. The subset of E0 consisting of all regular vertices is denoted by
E0

reg. The graph E is called row-finite if no vertex is an infinite emitter,
finite if E0 and E1 are finite sets, and empty if E0 = E1 = ∅.

Let E and F be graphs. A graph homomorphism φ : E → F consists of
two maps φ0 : E0 → F 0 and φ1 : E1 → F 1 such that s(φ1(e)) = φ0(s(e))
and r(φ1(e)) = φ0(r(e)) for any e ∈ E1. A graph G is called a subgraph of
a graph E if G0 ⊆ E0, G1 ⊆ E1, sG = sE |G0 and rG = rE |G0 .

Let E be a graph. The graph Ed = (E0
d , E

1
d , sd, rd) where E0

d = E0,
E1
d = {e, e∗ | e ∈ E1}, and sd(e) = s(e), rd(e) = r(e), sd(e∗) = r(e),

rd(e
∗) = s(e) for any e ∈ E1 is called the double graph of E. Sometimes

the edges in the graph E are called real edges and the additional edges in
Ed ghost edges.

A path in a graph E is a finite, nonempty word p = x1 . . . xn over the
alphabet E0 ∪ E1 such that either xi ∈ E1 (i = 1, . . . , n) and r(xi) =
s(xi+1) (i = 1, . . . , n− 1) or n = 1 and x1 ∈ E0. By definition, the length
|p| of p is n in the first case and 0 in the latter case. p is called nontrivial
if |p| > 0 and trivial otherwise. We set s(p) := s(x1) and r(p) := r(xn)
using the convention s(v) = r(v) = v for any v ∈ E0. A closed path (based
at v) is a nontrivial path p such that s(p) = r(p) = v. A cycle (based at v)
is a closed path p = x1 . . . xn based at v such that s(xi) 6= s(xj) for any
i 6= j. An edge e ∈ E1 is called an exit of a cycle x1 . . . xn if there is an
i ∈ {1, . . . , n} such that s(e) = s(xi) and e 6= xi.

If u, v ∈ E0 and there is a path p such that s(p) = u and r(p) = v, then
we write u > v. If u ∈ E0, then T (u) := {v ∈ E0 | u > v} is called the tree
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of u. If X ⊆ E0, we define T (X) :=
⋃
v∈X T (v). A subset H ⊆ E0 is called

hereditary if T (H) ⊆ H. Two edges e, f ∈ E1 are called in line if e = f or
r(e) > s(f) or r(f) > s(e). The graph E is called connected if u > v in Ed
for any u, v ∈ E0

d = E0.
Let E be a graph. The K-algebra P (E) presented by the generating set

E0 ∪ E1 and the relations
(i) uv = δuvu for any u, v ∈ E0 and
(ii) s(e)e = e = er(e) for any e ∈ E1

is called the path algebra of E. The paths in E form a linear basis for P (E).
In order to simplify the exposition we make the following assumption.

STANDING ASSUMPTION: In this paper all graphs are assumed
to be nonempty, row-finite and connected.

2.2. Weighted graphs. A weighted graph is a pair (E,w) where E is
a graph and w : E1 → N is a map. If e ∈ E1, then w(e) is called the
weight of e. An edge e ∈ E1 is called unweighted if w(e) = 1 and weighted
otherwise. The subset of E1 consisting of all unweighted edges is denoted
by E1

uw and the subset consisting of all weighted edges by E1
w. We set

w(v) := max{w(e) | e ∈ s−1(v)} for any regular vertex v and w(v) := 0
for any sink v. A weighted graph (E,w) is called finite if the graph E is
finite.

A homomorphism of weighted graphs is a graph homomorphism that
preserves the weights. A weighted graph (G,wG) is called a weighted sub-
graph of a weighted graph (E,wE) if G is a subgraph of E and wG(g) =
wE(g) for any g ∈ G1.

Let (E,w) be a weighted graph. The graph Ê = (Ê0, Ê1, ŝ, r̂) where
Ê0 = E0, Ê1 := {e1, . . . , ew(e) | e ∈ E1}, ŝ(ei) = s(e) and r̂(ei) = r(e) for
any e ∈ E1 and 1 6 i 6 w(e) is called the unweighted graph associated to
(E,w).

WARNING: Let (E,w) be a weighted graph. In [13] and [15], the set
E1 was denoted by Est. The set Ê1 = {e1, . . . , ew(e) | e ∈ E1} was de-
noted by E1.

2.3. Leavitt algebras. Fix positive integers m < n. If F is a field,
then Fm 6∼= Fn as F -vector spaces (by the dimension theorem for vec-
tor spaces). One can ask if there is a unital ring R such that Rm ∼= Rn
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as left R-modules. Suppose we have found a unital ring R such that there
are matrices X ∈Mm×n(R) and Y ∈Mn×m(R) such that

XY = Idm and Y X = Idn . (1)

Then X and Y will define left R-module homomorphisms Rm → Rn re-
spectively Rn → Rm which are inverse to each other, whence Rm ∼= Rn. It
is easy to construct such a ring R: Let R be the unital K-algebra presented
by the generating set {xij , yji | 1 6 i 6 m, 1 6 j 6 n} and the relations

n∑
j=1

xkjyjl = δkl (1 6 k, l 6 m) and
m∑
i=1

ykixil = δkl (1 6 k, l 6 n). (2)

Let X ∈ Mm×n(R) be the matrix whose entry at position (i, j) is xij ,
and Y ∈ Mn×m(R) the matrix whose entry at position (j, i) is yji. It
follows from the relations (2) that X and Y satisfy (1), and therefore we
have Rm ∼= Rn. The K-algebra R constructed above is called the Leavitt
algebra of type (m,n) and is denoted by L(m,n).

§3. Unweighted and weighted Leavitt path algebras

3.1. Unweighted Leavitt path algebras.

Definition 3.1.1. Let E be a graph. The K-algebra L(E) = LK(E)
presented by the generating set {v, e, e∗ | v ∈ E0, e ∈ E1} and the relations
(i) uv = δuvu (u, v ∈ E0),

(ii) s(e)e = e = er(e), r(e)e∗ = e∗ = e∗s(e) (e ∈ E1),

(iii)
∑
e∈s−1(v) ee

∗ = v (v ∈ E0
reg) and

(iv) e∗f = δefr(e) (v ∈ E0
reg, e, f ∈ s−1(v))

is called the (unweighted) Leavitt path algebra of E.

Remark 3.1.2. Recall from Section 2 that Ed denotes the double graph
of E. The Leavitt path algebra L(E) is isomorphic to the quotient of the
path algebra P (Ed) by the ideal generated by the relations (iii) and (iv)
in Definition 3.1.1.

Remark 3.1.3. The relations (iii) and (iv) in Definition 3.1.1 can be
expressed using matrices: Let K〈X〉 be the free K-algebra on the set
X = {v, e, e∗ | v ∈ E0, e ∈ E1}. For any v ∈ E0

reg write s−1(v) =

{ev,1, . . . , ev,n(v)} and define the matrices

Xv :=
(
ev,1 . . . ev,n(v)

)
∈M1×n(v)(K〈X〉)
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and

Yv :=

 (ev,1)∗

...
(ev,n(v))∗

 ∈Mn(v)×1(K〈X〉).

Then
(iii)⇔

(
XvYv = v ∀v ∈ E0

reg

)
and

(iv)⇔
(
YvXv = diag(r(ev,1), . . . , r(ev,n(v))) ∀v ∈ E0

reg

)
.

Example 3.1.4. Let n > 1 and E be the graph

• e(1)dd

e(2)

QQ

e(3)

DD

e(n)

��

with one vertex and n loops. Then there is an isomorphism from the Leavitt
algebra L(1, n) to the Leavitt path algebra L(E) mapping x1j to e(j) and
yj1 to (e(j))∗ for any 1 6 j 6 n.

3.2. Weighted Leavitt path algebras.

Definition 3.2.1. Let (E,w) be a weighted graph. The K-algebra
L(E,w) = LK(E,w) presented by the generating set {v, ei, e∗i | v ∈ E0, e ∈
E1, 1 6 i 6 w(e)} and the relations
(i) uv = δuvu (u, v ∈ E0),

(ii) s(e)ei = ei = eir(e), r(e)e
∗
i = e∗i = e∗i s(e) (e ∈ E1, 1 6 i 6 w(e)),

(iii)
∑
e∈s−1(v) eie

∗
j = δijv (v ∈ E0

reg, 1 6 i, j 6 w(v)) and

(iv)
∑

16i6w(v) e
∗
i fi = δefr(e) (v ∈ E0

reg, e, f ∈ s−1(v))

is called the weighted Leavitt path algebra of (E,w). In relations (iii) and
(iv) we set ei and e∗i zero whenever i > w(e).

Remark 3.2.2. Recall from Section 2 that Ê denotes the unweighted
graph associated to (E,w). We denote by Êd the double graph of Ê. The
weighted Leavitt path algebra L(E,w) is isomorphic to the quotient of the
path algebra P (Êd) by the ideal generated by the relations (iii) and (iv)
in Definition 3.2.1.
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Remark 3.2.3. The relations (iii) and (iv) in Definition 3.2.1 can be
expressed using matrices: Let K〈X〉 be the free K-algebra on the set X =
{v, ei, e∗i | v ∈ E0, e ∈ E1, 1 6 i 6 w(e)}. For any v ∈ E0

reg write s−1(v) =

{ev,1, . . . , ev,n(v)} and define the matrices

Xv :=


ev,11 . . . e

v,n(v)
1

...
...

ev,1w(v) . . . e
v,n(v)
w(v)

 ∈Mw(v)×n(v)(K〈X〉)

and

Yv :=


(ev,11 )∗ . . . (ev,1w(v))

∗

...
...

(e
v,n(v)
1 )∗ . . . (e

v,n(v)
w(v) )∗

 ∈Mn(v)×w(v)(K〈X〉).

Here we set ev,ji and (ev,ji )∗ zero whenever i > w(ev,j). Then

(iii)⇔
(
XvYv = diag(v, . . . , v) ∀v ∈ E0

reg

)
and

(iv)⇔
(
YvXv = diag(r(ev,1), . . . , r(ev,n(v))) ∀v ∈ E0

reg

)
.

Example 3.2.4. If (E,w) is a weighted graph such that w(e) = 1 for all
e ∈ E1, then L(E,w) is isomorphic to the unweighted Leavitt path algebra
L(E).

Example 3.2.5. Let 1 6 m < n and (E,w) be the weighted graph

• e(1),mdd

e(2),m

QQ

e(3),m

DD

e(n),m

��

with one vertex and n loops e(1), . . . , e(n) each of which has weightm. Then
there is an isomorphism from the Leavitt algebra L(m,n) to the weighted
Leavitt path algebra L(E,w) mapping xij to e

(j)
i and yji to (e

(j)
i )∗ for any

1 6 i 6 m and 1 6 j 6 n.

Recall that a ring R is said to have a set of local units X in case X is
a set of idempotents in R having the property that for each finite subset
S ⊆ R there exists an x ∈ X such that xsx = s for any s ∈ S. If (E,w) is
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a weighted graph, then L(E,w) has a set of local units, namely the set of
all finite sums of distinct elements of E0. If E is finite, then L(E,w) is a
unital ring with

∑
v∈E0 v = 1.

There is an involution ∗ on L(E,w) mapping k 7→ k, v 7→ v, ei 7→ e∗i and
e∗i 7→ ei for any k ∈ K, v ∈ E0, e ∈ E1 and 1 6 i 6 w(e). Moreover, one
can define a grading on L(E,w) as follows. Set λ := sup{w(e) | e ∈ E1}
if this supremum is finite and otherwise λ := ω where ω is the smallest
infinite ordinal. Let Zλ denote the sum of λ-many copies of Z. There is a
Zλ-grading on L(E,w) such that deg(v) := 0, deg(ei) := αi and deg(e∗i ) :=
−αi for any v ∈ E0, e ∈ E1 and 1 6 i 6 w(e). Here αi denotes the element
of Zλ whose i-th component is 1 and whose other components are 0. We will
refer to this grading as the standard grading of L(E,w). For proofs of the
claims made in this and the previous paragraph see [13, Proposition 5.7].

§4. Linear bases and the Gelfand-Kirillov dimension

4.1. Linear bases for weighted Leavitt path algebras. Let (E,w)
be a weighted graph and set X := {v, ei, e∗i | v ∈ E0, e ∈ E1, 1 6 i 6
w(e)}. Let 〈X〉 denote the set of all finite, nonempty words over X and
set 〈X〉 := 〈X〉∪{empty word}. Together with juxtaposition of words 〈X〉
becomes a semigroup and 〈X〉 a monoid. If A,B ∈ 〈X〉, then B is called a
prefix of A if there is a D ∈ 〈X〉 such that A = BD, a suffix of A if there is
a C ∈ 〈X〉 such that A = CB, and a subword of A if there are C,D ∈ 〈X〉
such that A = CBD.

For any v ∈ E0
reg we fix an edge ev ∈ s−1(v) such that w(ev) = w(v).

The edges ev (v ∈ E0
reg) are called special edges. The words evi (evj )∗ (v ∈

E0
reg, 1 6 i, j 6 w(v)) and e∗1f1 (v ∈ E0

reg, e, f ∈ s−1(v)) in 〈X〉 are called
forbidden. Recall from Section 2 that Ê denotes the unweighted graph
associated to (E,w) and Êd the double graph of Ê. We call a path in Êd
a d-path. A normal d-path or nod-path is a d-path such that none of its
subwords is forbidden.

Let K〈X〉 be the free K-algebra on X (i.e. the semigroup K-algebra of
〈X〉). Then L(E,w) is the quotient K〈X〉/I where I is the ideal generated
by the relations (i)-(iv) in Definition 3.2.1. Let K〈X〉nod be the linear
subspace of K〈X〉 spanned by the nod-paths.

Theorem 4.1.1 ( [15, Theorem 16]). The canonical map K〈X〉nod →
L(E,w) is an isomorphism of K-vector spaces. In particular the images of
the nod-paths under this map form a linear basis for L(E,w).
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Sketch of Proof. Consider the relations (i’)-(v’) below.
(i’) For any u, v ∈ E0,

uv = δuvu.

(ii’) For any v ∈ E0, e ∈ E1 and 1 6 i 6 w(e),

vei = δvs(e)ei,

eiv = δvr(e)ei,

ve∗i = δvr(e)e
∗
i ,

e∗i v = δvs(e)e
∗
i .

(iii’) For any e, f ∈ E1, 1 6 i 6 w(e) and 1 6 j 6 w(f),

eifj = 0 if r(e) 6= s(f),

e∗i fj = 0 if s(e) 6= s(f),

eif
∗
j = 0 if r(e) 6= r(f),

e∗i f
∗
j = 0 if s(e) 6= r(f).

(iv’) For any v ∈ E0
reg and 1 6 i, j 6 w(v),

evi (e
v
j )
∗ = δijv −

∑
e∈s−1(e)\{ev}

eie
∗
j .

(v’) For any v ∈ E0
reg and e, f ∈ s−1(v),

e∗1f1 = δefr(e)−
∑

26i6w(v)

e∗i fi.

In relations (iv’) and (v’), we set ei and e∗i zero whenever i > w(e). Clearly
the relations (i’)-(v’) generate the same ideal I of K〈X〉 as the relations
(i)-(iv) in Definition 3.2.1. Let S be the set of all pairs σ = (Wσ, fσ)
where Wσ equals the left hand side of an equation in (i’)-(v’) and fσ the
corresponding right hand side. For any σ ∈ S and A,B ∈ 〈X〉 let rAσB
denote the endomorphism of the K-vector space K〈X〉 that maps AWσB
to AfσB and fixes all other elements of 〈X〉. The set S is called a reduction
system and the maps rAσB are called reductions.
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One can show that there is a semigroup partial ordering on 〈X〉 com-
patible with S and having the descending chain condition. Moreover, all
ambiguities of S are resolvable (cf. [11, Section 1] or [15, Section 2]). Now
G. Bergman’s Diamond Lemma implies the following. Let a ∈ L(E,w) =
K〈X〉/I and b ∈ K〈X〉 a representative of a. If one successively applies
reductions to b (not leaving the given element of K〈X〉 invariant), then
eventually one will obtain an element c ∈ K〈X〉nod. It follows from the
Diamond Lemma that the element c does not depend on the choice of the
representative or the reductions. We call NF(a) := c the normal form of a.
The map NF : L(E,w)→ K〈X〉nod is an isomorphism of K-vector spaces.
Its inverse is the canonical map K〈X〉nod → L(E,w). �

4.2. The Gelfand-Kirillov dimension of a weighted Leavitt path
algebra. First we recall some facts about the growth of algebras. Let
A be a nonzero, finitely generated K-algebra and V a finite-dimensional
subspace of A that generates A as an algebra. For n > 1 let V n denote the
linear span of the set {v1 . . . vk | k 6 n, v1, . . . , vk ∈ V }. Then

V = V 1 ⊆ V 2 ⊆ V 3 ⊆ . . . , A =
⋃
n∈N

V n and dV (n) := dimV n <∞.

Given functions f, g : N → R+, we write f 4 g if there is a c ∈ N such
that f(n) 6 cg(cn) for all n. If f 4 g and g 4 f , then the functions f, g
are called asymptotically equivalent and we write f ∼ g. If W is another
finite-dimensional subspace that generates A, then dV ∼ dW . The Gelfand-
Kirillov dimension or GK dimension of A is defined as

GKdimA := lim sup
n→∞

logn dV (n).

The definition of the GK dimension does not depend on the choice of the
finite-dimensional generating space V . If dV 4 nm for some m ∈ N, then A
is said to have polynomial growth and we have GKdimA 6 m. If dV ∼ an
for some real number a > 1, then A is said to have exponential growth and
we have GKdimA =∞. If A is not finitely generated as a K-algebra, then
the GK dimension of A is defined as

GKdim(A) :=sup{GKdim(B) | B is a finitely generated subalgebra of A}.

Let (E,w) be a weighted graph. A nod2-path in (E,w) is a nod-path p
such that p2 is a nod-path. A quasicycle is a nod2-path p such that none
of the subwords of p2 of length < |p| is a nod2-path. If p = x1 . . . xn is a
quasicycle, then xi 6= xj for all i 6= j by [26, Remark 16(a)]. It follows that
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there is only a finite number of quasicycles if (E,w) is finite. Note that if
p = x1 . . . xn is a nod2-path (resp. quasicycle), then p∗ := x∗n . . . x

∗
1 is a

nod2-path (resp. quasicycle).
In general it is not so easy to read off the quasicycles from a weigthed

graph. But there is the following algorithm for finding all the quasicycles in
a finite weigthed graph: For any vertex v list all the d-paths p = x1 . . . xn
starting and ending at v and having the property that xi 6= xj for any i 6= j
(there are only finitely many d-paths with this property). Now delete from
that list any p such that p2 is not a nod-path. Next delete from the list
any p such that p2 has a subword q of length |q| < |p| such that q2 is a
nod-path. The remaining d-paths on the list are precisely the quasicycles
starting (and ending) at v.

Example 4.2.1. Suppose (E,w) is the weighted graph

(E,w) : u
e,2 // v

f,1

��

g,1

CCx .

Then the associated unweighted graph Ê and its double graph Êd are given
by

Ê : u

e1

��

e2

CCv

f1

��

g1

CCx and Êd : u

e1

��

e2

CCv
e∗1||
e∗2

bb

f1

��

g1

CCx
f∗1||
g∗1

bb .

One checks easily that p := e2f1g
∗
1e
∗
2 and q := e2f1g

∗
1e
∗
1 are quasicycles

independent of the choice of the special edge ev.

If x1 . . . xn is a finite, nonempty word over some alphabet, then we
call the words xm+1 . . . xnx1 . . . xm (1 6 m 6 n) shifts of x1 . . . xn. One
checks easily that any shift of a quasicycle is a quasicycle. If p and q are
quasicycles, then we write p ≈ q iff q is a shift of p. Then≈ is an equivalence
relation on the set of all quasicycles.

Let p and q be nod-paths. If there is a nod-path o such that p is not a
prefix of o and poq is a nod-path, then we write p nod

=⇒ q. If pq is a nod-path
or p nod

=⇒ q, then we write p =⇒ q. A nod-path p is called selfconnected
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if p nod
=⇒ p. A sequence p1, . . . , pk of quasicycles such that pi 6≈ pj for any

i 6= j is called a chain of length k if p1 =⇒ p2 =⇒ · · · =⇒ pk.
If (E,w) is a weighted graph, we denote by E′ the subset of {ei, e∗i | e ∈

E1, 1 6 i 6 w(e)} consisting of all the elements which are not a letter of a
quasicycle. We denote by P ′ the set of all nod-paths which are composed
from elements of E′. If (E,w) is finite, then |P ′| <∞ by [26, Lemma 21].

Lemma 4.2.2 ( [26, Lemma 22]). Let (E,w) be a weighted graph. If there
is no selfconnected quasicycle, then any nontrivial nod-path α can be writ-
ten as

α = o1p
l1
1 q1o2p

l2
2 q2 . . . okp

lk
k qkok+1

where k > 0, oi is the empty word or oi ∈ P ′ (1 6 i 6 k+ 1), p1, . . . , pk is
a chain of quasicycles, li is a nonnegative integer (1 6 i 6 k), and qi 6= pi
is a prefix of pi (1 6 i 6 k).

Theorem 4.2.3 ( [26, Lemma 19, Theorem 23]). Let (E,w) be a finite
weighted graph. Then:
(i) If there is a selfconnected quasicycle, then L(E,w) has exponential

growth and hence

GKdimL(E,w) =∞.

(ii) If there is no selfconnected quasicycle, then L(E,w) has polynomial
growth. In this case

GKdimL(E,w) = d

where d is the maximal length of a chain of quasicycles.

Sketch of Proof. Let V denote the finite-dimensional subspace
of L(E,w) spanned by {v, ei, e∗i | v ∈ E0, e ∈ E1, 1 6 i 6 w(e)}. By
Theorem 4.1.1 and its proof, the nod-paths of length 6 n form a basis
for V n (since reductions shorten the length of words). Hence dV (n) =
dimV n = #{nod-paths of length 6 n}.

First suppose that there is a selfconnected quasicycle p. Let o be a nod-
path such that p is not a prefix of o and pop is a nod-path. For a fixed
n ∈ N consider the nod-paths

pi1opi2 . . . opik (3)

where k, i1, . . . , ik ∈ N satisfy

(i1 + · · ·+ ik)|p|+ (k − 1)|o| 6 n. (4)
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One can show that different solutions (k, i1, . . . , ik) of inequality (4) define
different nod-paths in (3). Since the number of solutions of (4) is ∼ 2n, we
obtain 2n 4 dV . Thus L(E,w) has exponential growth.

Suppose now that there is no selfconnected quasicycle. Fix an n ∈ N.
By Lemma 4.2.2 we can write any nontrivial nod-path α of length 6 n as

α = o1p
l1
1 q1o2p

l2
2 q2 . . . okp

lk
k qkok+1 (5)

where k > 0, oi is the empty word or oi ∈ P ′ (1 6 i 6 k + 1), p1, . . . , pk is
a chain of quasicycles, li is a nonnegative integer (1 6 i 6 k), and qi 6= pi
is a prefix of pi (1 6 i 6 k). Clearly

l1|p1|+ · · ·+ lk|pk| 6 n (6)

since |α| 6 n. Now fix a chain p1, . . . , pk of quasicycles and further oi’s
and qi’s as above. The number of solutions (l1, . . . , lk) of inequality (6) is
∼ nk. This implies that the number of nod-paths α of length 6 n that can
be written as in (5) (corresponding to the choice of the pi’s, oi’s and qi’s)
is 4 nk 6 nd. Since there are only finitely many quasicycles and finitely
many choices for the oi’s and qi’s (note that |P ′| <∞), we obtain dV 4 nd.

It remains to show that nd 4 dV . Choose a chain p1, . . . , pd of length
d. Then p1o1p2 . . . od−1pd is a nod-path for some o1, . . . , od−1 such that for
any i ∈ {1, . . . , d− 1}, oi is either the empty word or a nod-path such that
pi is not a prefix of oi. Consider the nod-paths

pl11 o1p
l2
2 . . . od−1p

ld
d (7)

where l1, . . . , ld ∈ N satisfy

l1|p1|+ · · ·+ ld|pd|+ |o1|+ · · ·+ |od−1| 6 n. (8)

One can show that different solutions (l1, . . . , ld) of inequality (8) define
different nod-paths in (7). The number of solutions of (8) is ∼ nd and thus
nd 4 dV . �

Example 4.2.4. Let 1 6 m < n and (E,w) be the weighted graph

v e(1),mdd

e(2),m

QQ

e(3),m

DD

e(n),m

��
.

As mentioned in Example 3.2.5, L(E,w) is isomorphic to the Leavitt al-
gebra L(m,n). Clearly p := e

(1)
1 is a quasicycle. Since e(1)

1 e
(2)
1 e

(1)
1 is a
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nod-path, p is selfconnected. Hence GKdimL(E,w) = ∞ by Theorem
4.2.3.

Example 4.2.5. Consider the weighted graph

(E,w) :

u

g,1

!!

e,2 // v

f,1

��
x .

We leave it to the reader to check that up to ≈-equivalence the only qua-
sicycles are p = e2f1g

∗
1 and p∗ = g1f

∗
1 e
∗
2. Moreover, there is no selfcon-

nected quasicycle and the maximal length of a chain of quasicycles is 2,
see [26, Example 31]. Thus GKdimL(E,w) = 2 by Theorem 4.2.3.

Next we want to determine the GK dimensions of weighted Leavitt
path algebras of non-finite weighted graphs. In order to that we need the
following definition.

Definition 4.2.6. A homomorphism φ : (Ẽ, w̃) → (E,w) of weighted
graphs is called complete if φ0 is injective and

φ1|s̃−1(v) : s̃−1(v)→ s−1(φ0(v))

is a bijection for any v ∈ Ẽ0
reg. A weighted subgraph (Ẽ, w̃) of a weighted

graph (E,w) is called complete if s̃−1(v) = s−1(v) for any v ∈ Ẽ0
reg.

Note that if (Ẽ, w̃) is a complete weighted subgraph of a weighted graph
(E,w), then the inclusion homomorphism φ : (Ẽ, w̃)→ (E,w) is complete.
We denote by WG the category whose objects are the weighted graphs
and whose morphisms are the complete weighted graph homomorphisms.
If φ : (Ẽ, w̃) → (E,w) is a morphism in WG, then it induces an alge-
bra homomorphism L(φ) : L(Ẽ, w̃) → L(E,w). Since one can choose the
special edges in (Ẽ, w̃) and (E,w) in such a way that L(φ) maps distinct
nod-paths in L(Ẽ, w̃) to distinct nod-paths in L(E,w), the homomorphism
L(φ) is injective. Let ALG denote the category of K-algebras. Then we
obtain a functor L : WG→ ALG which commutes with direct limits.

Lemma 4.2.7 ( [13, Lemma 5.19]). Let (E,w) be a weighted graph and
{(Ei, wi)} the direct system of all finite complete weighted subgraphs of
(E,w). Then (E,w) = lim−→i

(Ei, wi) and therefore L(E,w) = lim−→i
L(Ei, wi).
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We need the following result by J. Moreno-Fernandez and M. Molina.

Theorem 4.2.8 ( [24, Theorem 3.1]). Let A =
⋃
iAi be a directed union

of algebras. Then GKdimA = supi GKdimAi.

The theorem below follows from Lemma 4.2.7 and Theorem 4.2.8.

Theorem 4.2.9 ( [26, Remark 24]). Let (E,w) be a weighted graph and
{(Ei, wi)} the direct system of all finite complete weighted subgraphs of
(E,w). Then GKdimL(E,w) = supi GKdimL(Ei, wi).

§5. Weighted Leavitt path algebras that are isomorphic
to unweighted Leavitt path algebras

Throughout this section (E,w) denotes a weighted graph.

5.1. Condition (LPA). Recall from Section 2 that an edge in (E,w) is
unweighted if its weight is 1 and weighted otherwise. E1

w denotes the set of
all weighted edges in (E,w). If X is a set of vertices in (E,w), then T (X)
denotes the union of all the trees of the elements of X. Two edges e and f
are in line if they are equal or there is a path from r(e) to s(f) or there is
a path from r(f) to s(e). Consider the following conditions:

(LPA1) Any vertex v ∈ E0 emits at most one weighted edge.

(LPA2) Any vertex v ∈ T (r(E1
w)) emits at most one edge.

(LPA3) If two weighted edges e, f ∈ E1
w are not in line, then T (r(e)) ∩

T (r(f)) = ∅.
(LPA4) If e ∈ E1

w and c is a cycle based at some vertex v ∈ T (r(e)), then
e belongs to c.

Each of the conditions above “forbids” a certain constellation in the weigh-
ted graph (E,w). The pictures below illustrate these forbidden constella-
tions. Symbols above or below edges indicate the weight. A dotted arrow
stands for a path.

(LPA1)

•
•

>1 ((

>1 66

•.
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(LPA2)
•

• >1 // • // •
((

66

•.
(LPA3)

• >1 // • // • •oo •.>1oo

(LPA4)
• // •

##
• >1 // • // •

;;

•.
{{•

cc

•
We say that (E,w) satisfies Condition (LPA) if it satisfies Conditions
(LPA1)-(LPA4).

5.2. Presence of Condition (LPA).

Theorem 5.2.1 ( [29, Theorem 1]). If (E,w) satisfies Condition (LPA),
then there is a graph F such that L(E,w) ∼= L(F ) as K-algebras.

Sketch of Proof. In [29] the theorem was proved in two steps.

Step 1 Suppose (E,w) satisfies Condition (LPA) and set Z := T (r(E1
w)).

Let (Ẽ, w̃) be the weighted graph one obtains by replacing in (E,w) each
edge e ∈ s−1(Z) by w(e) unweighted edges with reversed orientation. More
formally, (Ẽ, w̃) is the weighted graph defined by

Ẽ0 = E0,

Ẽ1 = Ẽ1
Z t Ẽ1

Zc where

Ẽ1
Z = {e(1), . . . , e(w(e)) | e ∈ E1, s(e) ∈ Z},

Ẽ1
Zc = {e | e ∈ E1, s(e) 6∈ Z},

s̃(e(i)) = r(e), r̃(e(i)) = s(e), w̃(e(i)) = 1 for any e(i) ∈ Ẽ1
Z ,

s̃(e) = s(e), r̃(e) = r(e), w̃(e) = w(e) for any e ∈ Ẽ1
Zc .

The weighted graph (Ẽ, w̃) has the property that ranges of weighted edges
are sinks and no vertex emits or receives two distinct weighted edges.
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Moreover, there is a K-algebra isomorphism L(E,w)→ L(Ẽ, w̃) mapping

v 7→ v (v ∈ E0),

ei 7→ (e
(i)
1 )∗ (e ∈ E1, s(e) ∈ Z, 1 6 i 6 w(e)),

e∗i 7→ e
(i)
1 (e ∈ E1, s(e) ∈ Z, 1 6 i 6 w(e)),

ei 7→ ei (e ∈ E1, s(e) 6∈ Z, 1 6 i 6 w(e)),

e∗i 7→ e∗i (e ∈ E1, s(e) 6∈ Z, 1 6 i 6 w(e)).

For details see [29, Proof of Lemma 9]. For example suppose that (E,w)
is the weighted graph

(E,w) : u v
e,1oo f,2 // x

g,1 // y
h,3 // z

which satisfies Condition (LPA). Then Z = T (r(E1
w)) = {x, y, z}. If one

replaces any edge i in s−1(Z) by w(i) unweighted edges with reversed
orientation, one obtains the weighted graph

(Ẽ, w̃) : u v
e,1oo f,2 // x y

g(1),1oo z

h(1),1

�� h(2),1oo

h(3),1
\\

which has the property that ranges of weighted edges are sinks and no
vertex emits or receives two distinct weighted edges. There is a K-algebra
isomorphism L(E,w) → L(Ẽ, w̃) mapping u 7→ u, . . . , z 7→ z, e1 7→ e1,
e∗1 7→ e∗1, fi 7→ fi and f∗i 7→ f∗i for any i ∈ {1, 2}, g1 7→ (g

(1)
1 )∗, g∗1 7→ g

(1)
1 ,

hi 7→ (h
(i)
1 )∗ and h∗i 7→ h

(i)
1 for any i ∈ {1, 2, 3}.

Step 2. Suppose now that (E,w) is a weighted graph having the property
that ranges of weighted edges are sinks and no vertex emits or receives two
distinct weighted edges. Let v ∈ r(E1

w). Then there is a unique edge gv ∈
E1
w such that r(gv) = v. We replace v by w(gv) vertices v(1), . . . , v(w(gv)).

We replace gv by w(gv) unweighted edges (gv)(1), . . . , (gv)(w(gv)) such that
(gv)(1) starts in s(gv) and ends in v(1), and (gv)(i) starts in v(i) and ends
in s(gv) for any 2 6 i 6 w(gv). Moreover, we replace any unweighted edge
e such that r(e) = v by w(gv) unweighted edges e(1), . . . , e(w(gv)) such that
e(i) starts in s(e) and ends in v(i) for any 1 6 i 6 w(gv). By doing this
for any v ∈ r(E1

w) we obtain an unweighted graph Ẽ. More formally, Ẽ is
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defined by

Ẽ0 = M tN where

M = E0 \ r(E1
w),

N = {v(1), . . . , v(w(gv)) | v ∈ r(E1
w)},

Ẽ1 = A tB t C tD where

A = {e | e ∈ E1
uw, r(e) 6∈ r(E1

w)},

B = {e(1), . . . , e(w(gr(e))) | e ∈ E1
uw, r(e) ∈ r(E1

w)},

C = {e(1) | e ∈ E1
w},

D = {e(2), . . . , e(w(e)) | e ∈ E1
w},

s̃(e) = s(e), r̃(e) = r(e) (e ∈ A),

s̃(e(i)) = s(e), r̃(e(i)) = r(e)(i) (e(i) ∈ B),

s̃(e(1)) = s(e), r̃(e(1)) = r(e)(1) (e(1) ∈ C),

s̃(e(i)) = r(e)(i), r̃(e(i)) = s(e) (e(i) ∈ D).

There is a K-algebra isomorphism φ : L(E,w)→ L(Ẽ) such that

φ(v) =

{
v, if v 6∈ r(E1

w),∑w(gv)
i=1 v(i), if v ∈ r(E1

w),

φ(ei) =


e, if e ∈ E1

uw, r(e) 6∈ r(E1
w), i = 1,∑w(gr(e))

j=1 e(j), if e ∈ E1
uw, r(e) ∈ r(E1

w), i = 1,

e(1), if e ∈ E1
w, i = 1,

(e(i))∗, if e ∈ E1
w, i > 1,

φ(e∗i ) =


e∗, if e ∈ E1

uw, r(e) 6∈ r(E1
w), i = 1,∑w(gr(e))

j=1 (e(j))∗, if e ∈ E1
uw, r(e) ∈ r(E1

w), i = 1,

(e(1))∗, if e ∈ E1
w, i = 1,

e(i), if e ∈ E1
w, i > 1
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for any v ∈ E0, e ∈ E1 and 1 6 i 6 w(e). For details see [29, Proof of
Lemma 11]. For example if (E,w) is the weighted graph

(E,w) : u v
e,1oo f,2 // x y

g(1),1oo z

h(1),1

�� h(2),1oo

h(3),1
\\ ,

then the unweighted graph Ẽ define above is given by

Ẽ : u v
eoo f(1)

// x(1) y
(g(1))(1)oo

(g(1))(2)zz

z

h(1)

�� h(2)
oo

h(3)

\\

x(2)

f(2)

dd

and we have L(E,w) ∼= L(Ẽ).

The theorem follows from Steps 1 and 2 above. �

Example 5.2.2. Suppose (E,w) is the weighted graph

(E,w) : t

a,2

��
u

b,1

[[ v
c,1oo

d,1

��

e,1

""f,2 //

g,1

CCx
h,1 // y

k,2 // z ,

which satisfies Condition (LPA). Let (Ẽ, w̃) be the weighted graph

(Ẽ, w̃) : t

b(1),1

CCu

a(1),1

��
a(2),1{{

v
c,1oo

d,1

��

e,1

""f,2 //

g,1

CCx y
h(1),1oo z

k(1),1

��

k(2),1

[[
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and F the unweighted graph

F : t

b(1)

CCu

a(1)

��
a(2){{

v
coo

d

��

e

��f(1)

//

g(1)

55

g(2)
55

x(1) y
(h(1))(1)oo

(h(1))(2)zz

z

k(1)

��

k(2)

[[

x(2)f(2)

YY .

Then L(E,w) ∼= L(Ẽ, w̃) and L(Ẽ, w̃) ∼= L(F ) by Steps 1 and 2 in the
proof of Theorem 5.2.1, respectively.

5.3. Abscence of Condition (LPA). The following lemma plays a cru-
cial role in the proofs of Theorems 5.3.2 and 5.3.4.

Lemma 5.3.1 ( [29, Lemma 17]). Suppose that (E,w) does not satisfy
Condition (LPA). Then there is a nod-path whose first letter is e2 and
whose last letter is e∗2 for some e ∈ E1

w.

Sketch of Proof. We only consider the case that (E,w) does not satisfy
(LPA1). So suppose there is a vertex v ∈ E0 which emits at least two
weighted edges. Then we can choose a weighted edge e ∈ s−1(v) such that
e 6= ev. Clearly e2e

∗
2 is a nod-path since e is not special. �

Theorem 5.3.2 ([29, Corollary 18 and Theorem 3]). If (E,w) does not sat-
isfy Condition (LPA), then L(E,w) is infinite-dimensional as a K-vector
space, not simple, not graded simple with respect to its standard grading,
not locally finite with respect to its standard grading, not Noetherian, not
Artinian, not von Neumann regular, and has infinite Gelfand-Kirillov di-
mension.

Sketch of Proof. We only prove that L(E,w) is not Noetherian. By
Lemma 5.3.1, we can choose a nod-path p = x1 . . . xn whose first letter
is e2 and whose last letter is e∗2 for some e ∈ E1

w. Let q be the nod-path
one obtains by replacing the first letter of p by e1. For any n ∈ N let In
be the left ideal generated by the nod-paths p, pq, . . . , pqn. One directly
checks that In equals the linear span of all nod-paths o such that one of
the words p, pq, . . . , pqn is a suffix of o. It follows that In ( In+1 (clearly
none of the words p, pq, . . . , pqn is a suffix of pqn+1 since p and q have the
same length but are distinct; hence pqn+1 6∈ In). �
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Lemma 5.3.3 ([29, Lemma 19]). Let p be a nod-path starting with e2 and
ending with e∗2 for some e ∈ E1

w. Then the ideal I of L(E,w) generated by
p contains no nonzero idempotent.

Theorem 5.3.4 ([29, Theorem 2]). If (E,w) does not satisfy Condition
(LPA), then there is no field K ′ and graph F (row-finite or not) such that
LK(E,w) ∼= LK′(F ) as rings.

Sketch of Proof. Assume there is a field K ′, a graph F and a ring iso-
morphism φ : LK(E,w) → LK′(F ). By Lemma 5.3.1, there is a nod-path
p whose first letter is e2 and whose last letter is e∗2 for some e ∈ E1

w. Let
q be the nod-path one obtains by replacing the last letter of p by e∗1. By
Lemma 5.3.3, the ideal I of LK(E,w) generated by p contains no nonzero
idempotent. Similarly, for any n ∈ N, the ideal In of LK(E,w) generated
by qpn contains no nonzero idempotent. It follows from [2, Proposition
2.7.9], that φ(I), φ(In) ⊆ I(Pc(F )) (n ∈ N) where I(Pc(F )) is the ideal of
LK′(F ) generated by all vertices in F 0 which belong to a cycle without
an exit. Hence φ(p), φ(qpn) ∈ I(Pc(F )) (n ∈ N). By [2, Theorem 2.7.3] we
have

I(Pc(F )) ∼=
⊕
i∈Γ

MΛi(K
′[x, x−1]) (9)

as a K ′-algebra and hence also as a ring. The sets Γ and Λi (i ∈ Γ) in (9)
might be infinite if F is not finite.
It follows from the previous paragraph that there is a subringA of LK(E,w)
such that p, qpn ∈ A (n ∈ N) and A ∼=

⊕
i∈ΓMΛi(K

′[x, x−1]). For any
n ∈ N let Jn be the left ideal of A generated by qp2, . . . , qpn+1. Then Jn is
contained in the linear span of all nod-paths o such that one of the words
qp2, . . . , qpn+1 is a suffix of o. It follows that Jn ( Jn+1 (clearly none of the
words qp2, . . . , qpn+1 is a suffix of qpn+2 since p and q have the same length
but are distinct). If the sets Γ and Λi (i ∈ Γ) are finite, then we already
have a contradiction since it is well-known that

⊕
i∈ΓMΛi(K

′[x, x−1]) is
Noetherian in this case. If one of the sets Γ and Λi (i ∈ Γ) is infinite, then
one can use [29, Lemma 20] to obtain a contradiction. �

§6. Finite-dimensionality, Noetherianness and von
Neumann regularity

Throughout this section (E,w) denotes a weighted graph. Suppose we
would like to know if L(E,w) is finite-dimensional (respectively Noether-
ian, von Neumann regular). Then one could first check if (E,w) satisfies
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Condition (LPA). If not, then L(E,w) is neither finite-dimensional nor
Noetherian nor von Neumann regular by Theorem 5.3.2. If (E,w) does
satisfy Condition (LPA), then one could apply Steps 1 and 2 in the proof of
Theorem 5.2.1 to obtain an unweighted graph F such that L(E,w) ∼= L(F ).
Having done that one could use the well-known graph-theoretical criteria
for finite-dimensionality, Noetherianess and von Neumann regularity of
unweighted Leavitt path algebras, see [2].

In this section we present graph-theoretical criteria which allow us to
determine directly, without the detour via the unweighted graph F men-
tioned above, if L(E,w) is finite-dimensional (respectively Noetherian, von
Neumann regular). Consider Conditions (W1) and (W2) below.

(W1) No cycle in (E,w) is based at a vertex v ∈ T (r(E1
w)).

(W2) There is no n > 1 and paths p1, . . . , pn, q1, . . . , qn in (E,w) such that
r(pi) = r(qi) (1 6 i 6 n), s(p1) = s(qn), s(pi) = s(qi−1) (2 6 i 6 n)
and for any 1 6 i 6 n, the first letter of pi is a weighted edge, the
first letter of qi is an unweighted edge and the last letters of pi and
qi are distinct.

Condition (W2) is based on an idea by N. T. Phuc. Each of the Conditions
(W1) and (W2) above “forbids" a certain constellation in the weighted
graph (E,w). The pictures below illustrate these forbidden constellations.

(W1)

• // •
##•

>1 ;;

•
{{•

cc

•

resp.

• // •
##

• >1 // • // •

;;

•.
{{•

cc

•



180 R. PREUSSER

(W2)

•
1
��

>1 // • // • // • •oo •oo •1oo
>1��
•
��
•
��
•

•

OO

•

OO

•
>1

OO

1
// • // • // • •oo •oo •.

1
OO

>1
oo

(E,w) is called well-behaved if Conditions (LPA1), (LPA2), (LPA3), (W1)
and (W2) are satisfied. Note that Condition (W1) is stronger than Con-
dition (LPA4). Hence a well-behaved weighted graph satisfies Condition
(LPA).

6.1. Finite-dimensional weighted Leavitt path algebras.

Lemma 6.1.1 ([27, Corollary 23]). Suppose (E,w) is well-behaved. Then
{c, c∗ | c is a cycle in Ê} is the set of all quasicycles.

(E,w) is called acyclic if there is no cycle in (E,w), and aquasicyclic if
there is no quasicycle.

Theorem 6.1.2 ([26, Theorem 47], [27, Theorem 25]). The following are
equivalent:
(i) L(E,w) is finite-dimensional.
(ii) (E,w) is finite, acyclic and well-behaved.
(iii) (E,w) is finite and aquasicyclic.
(iv) (E,w) is finite and GKdimL(E,w) = 0.
(v) L(E,w) ∼=

⊕m
i=1 Mni(K) for some m,n1, . . . , nm ∈ N.

Proof. (i)⇒ (ii). Suppose that L(E,w) is finite-dimensional. It follows
from Theorem 4.1.1 that (E,w) is finite and acyclic. One checks easily
that if one of the Conditions (LPA1), (LPA2), (LPA3), (W1) and (W2)
was not satisfied, then there would be a nod2-path (cf. Lemma 5.3.1) and
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hence L(E,w) would have infinite dimension, again by Theorem 4.1.1.
Hence (E,w) is well-behaved.

(ii)⇒ (iii). Suppose that (E,w) is finite, acyclic and well-behaved. Then
Ê is acyclic since a cycle in Ê would lift to a cycle in (E,w). It follows
from Lemma 6.1.1 that there is no quasicycle.

(iii)⇒ (iv). Suppose that (E,w) is finite and aquasicyclic. Then
GKdimL(E,w) = 0 by Theorem 4.2.3.

(iv)⇒ (i). Follows from the fact that a finitely generated K-algebra A
is finite-dimensional as a K-vector space if and only if GKdimA = 0.

(i)⇒(v). Suppose that L(E,w) is finite-dimensional. Since (i)⇒ (ii),
(E,w) is well-behaved and therefore satisfies Condition (LPA). Hence, by
Theorem 5.2.1, L(E,w) is isomorphic to an unweighted Leavitt path al-
gebra. By [2, Theorem 2.6.17] any finite-dimensional unweighted Leavitt
path algebra is isomorphic to a finite direct sum of matrix rings over K.

(v)⇒ (i). This implication is obvious. �

6.2. Noetherian weighted Leavitt path algebras. A left adhesive
nod-path or lenod-path is a nod-path p such that the juxtaposition op is
a nod-path for any nontrivial nod-path o such that r(o) = s(p). A right
adhesive nod-path or rinod-path is a nod-path p such that the juxtaposition
po is a nod-path for any nontrivial nod-path o such that s(o) = r(p). A left-
right adhesive nod-path or lerinod-path is a nod-path that is left adhesive
and right adhesive. If A,B are nonempty words over the same alphabet,
then we write A ∼ B if A is a suffix of B or B is a suffix of A, and A 6∼ B
otherwise.

Lemma 6.2.1 ([27, Lemma 48]). If L(E,w) is Noetherian, then there is
no lenod-path p and nod2-path q such that p 6∼ q and pq is a nod-path.

Sketch of Proof. Assume there is a lenod-path p and nod2-path q such
that p 6∼ q and pq is a nod-path. For any n ∈ N let In be the left ideal
of L(E,w) generated by p, pq, . . . , pqn. Then one can show that I1 ( I2 (
I3 ( . . . . �

Lemma 6.2.2 ( [27, Lemma 50]). If L(E,w) is Noetherian, then there is
no nod2-path p based at a vertex v such that pp∗ is a nod-path and p∗p = v
in L(E,w).

Sketch of Proof. Assume there is a nod2-path p based at a vertex v such
that pp∗ is a nod-path and p∗p = v in L(E,w). For any n ∈ N let In be
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the left ideal of L(E,w) generated by v−pn(p∗)n. Then one can show that
I1 ( I2 ( I3 ( . . . . �

Recall that a graded K-algebra A =
⊕

g∈GAg is called locally finite if
dimK Ag <∞ for every g ∈ G.

Theorem 6.2.3 ([27, Theorem 52]). The following are equivalent:
(i) L(E,w) is Noetherian.
(ii) (E,w) is finite, well-behaved and no cycle has an exit.
(iii) (E,w) is finite and GKdimL(E,w) 6 1.
(iv) L(E,w) is locally finite with respect to its standard grading.
(v) L(E,w) ∼=

(⊕l
i=1 Mmi(K)

)
⊕
(⊕l′

j=1 Mnj (K[x, x−1])
)
for some in-

tegers l, l′ > 0 and mi, nj > 1.

Sketch of Proof. First we show that (ii)⇒ (iii)⇒ (iv)⇒(ii) (and hence
(ii)⇔ (iii) ⇔(iv)).

(ii)⇒ (iii). Suppose that (E,w) is finite, well-behaved and no cycle
has an exit. Using Lemma 6.1.1 one can show that no quasicycle is self-
connected. Moreover, if q and q′ are quasicycles such that q 6≈ q′, then
q =⇒ q′ cannot hold, see [27, Corollary 32]. Hence GKdimL(E,w) 6 1 by
Theorem 4.2.3.

(iii)⇒ (vi). Suppose that (E,w) is finite and GKdimL(E,w) 6 1. By
Lemma 4.2.2 and Theorem 4.2.3 any nontrivial nod-path is of the form
o1p

lqo2 where o1 and o2 are either the empty word or nod-paths in P ′, p is
a quasicycle, l > 0 and q 6= p is a prefix of p. By [26, Remark 16(a)] there
are only finitely many quasicycles and, by [27, Lemma 34], none of them
is of homogeneous degree 0. Further we have |P ′| <∞ by [26, Lemma 21].
It follows that L(E,w) is locally finite (for fixed o1, p, q and o2 as above
there can at most be one nod-path of the form o1p

lqo2 in each homogeneous
component).

(iv)⇒ (ii). Suppose L(E,w) is locally finite. Assume that (E,w) is not
finite. Then |E0| =∞. But E0 ⊆ L(E,w)0 and E0 is a linearly independent
set by Theorem 4.1.1, which contradicts the assumption that (E,w) is
locally finite. Hence (E,w) is finite. Assume now that one of the Conditions
(LPA1), (LPA2), (LPA3), (W1) and (W2) is not satisfied. Then there is
a nod2-path p starting with e2 for some e ∈ E1

w. Clearly for any n ∈ N,
(p∗)npn is a nod-path in the homogeneous 0-component of L(E,w). But
this contradicts the assumption that (E,w) is locally finite. Hence (E,w)
is well-behaved. It remains to show that no cycle has an exit. Assume
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there is a cycle c = e(1) . . . e(n) in (E,w) with an exit f ∈ E1. Clearly
e(1), . . . , e(n) ∈ E1

uw because Condition (W1) is satisfied. Without loss of
generality assume that s(f) = s(e(n)) and f 6= e(n). Since w(e(n)) = 1,
we can choose the special edge es(e

(n)) 6= e(n). Set ĉ := e
(1)
1 . . . e

(n)
1 . Then

for any n ∈ N, ĉn(ĉ∗)n is a nod-path in the homogeneous 0-component of
L(E,w). But this contradicts the assumption that (E,w) is locally finite.
Hence no cycle in (E,w) has an exit.

Next we show that (i)⇒(ii) and (iii)⇒ (i) (and hence (i)⇔(ii)⇔ (iii)
⇔(iv)).

(i)⇒ (ii). Suppose that L(E,w) is Noetherian. It follows from Theo-
rem 5.3.2 that (E,w) satisfies Condition (LPA). Moreover, (E,w) is fi-
nite (otherwise taking a sequence (vn)n>1 of pairwise distinct vertices one
would have I1 ( I2 ( . . . where for any n ∈ N, In is the left ideal of
L(E,w) generated the set {v1, . . . , vn}). It remains to show that (E,w)
satisfies (W1) and (W2), and that no cycle has an exit. Assume that Con-
dition (W1) is not satisfied. Then, since (E,w) satisfies Condition (LPA4),
there is a cycle e(1) . . . e(n) where e(1) ∈ E1

w. Set p := e
(1)
2 e

(2)
1 . . . e

(n)
1 and

q := e
(1)
1 e

(2)
1 . . . e

(n)
1 . Then p is a lenod-path and q is a nod2-path such

that p 6∼ q and pq is a nod-path. But this contradicts Lemma 6.2.1. Hence
Condition (W1) is satisfied. Assume that Condition (W2) is not satisfied.
Then there is a nod2-path p based at a vertex v such that p∗p is a nod-
path and pp∗ = v in L(E,w) (see the proof of [27, Theorem 51]). But
that contradicts Lemma 6.2.2. Hence Condition (W2) is satisfied. Assume
now that there is a cycle c = e(1) . . . e(n) in (E,w) with an exit f ∈ E1.
Clearly e(1), . . . , e(n) ∈ E1

uw because Condition (W1) is satisfied. Without
loss of generality assume that s(f) = s(e(n)) and f 6= e(n). Clearly we can
choose es(e

(n)) 6= e(n) since w(e(n)) = 1. Set v := s(c) and ĉ := e
(1)
1 . . . e

(n)
1 .

Then ĉ is a nod2-path based at v, ĉĉ∗ is a nod-path and ĉ∗ĉ = v. But that
contradicts Lemma 6.2.2. Hence no cycle in (E,w) has an exit.

(iii)⇒ (i). Suppose that (E,w) is finite and GKdimL(E,w) 6 1. Then
(E,w) is well-behaved and therefore satisfies Condition (LPA), since we
already proved that (iii) ⇒ (ii). Hence, by Theorem 5.2.1 and its proof,
there is a finite graph F such that L(E,w) ∼= L(F ) as K-algebras. It
follows from [3, Theorem 5] that no cycle in F has an exit (otherwise one
would have GKdimL(F ) > 2). Thus, by [2, Theorem 4.2.17], L(E,w) is
Noetherian (note that L(E,w) is left Noetherian iff it is right Noetherian
iff it is Noetherian since L(E,w) has an involution).
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Finally we show that (i)⇔ (v) (and thus (i)⇔ (ii)⇔(iii) ⇔ (iv) ⇔ (v)).
(i)⇒ (v). Suppose that L(E,w) is Noetherian. Then (E,w) is well-

behaved and therefore satisfies Condition (LPA), since we already proved
that (i)⇒ (ii). Hence, by Theorem 5.2.1, there is a graph F such that
L(E,w) ∼= L(F ) as K-algebras. Thus, by [2, Theorem 4.2.17], L(E,w) is
isomorphic to

(⊕l
i=1 Mmi(K)

)
⊕
(⊕l′

j=1 Mnj (K[x, x−1])
)
for some inte-

gers l, l′ > 0 and mi, nj > 1.
(v)⇒(i). Follows from the fact that finite matrix rings over K or

K[x, x−1] are Noetherian. �

6.3. Von Neumann regular weighted Leavitt path algebras.

Lemma 6.3.1. Suppose that (E,w) satisfies Condition (LPA). If (E,w)
contains a cycle or is not well-behaved, then L(E,w) ∼= L(F ) for some
unweighted graph F containing a cycle.

Proof. Assume (E,w) contains a cycle c. Since (E,w) satisfies Condition
(LPA), we can apply Steps 1 and 2 in the proof of Theorem 5.2.1 to
obtain a graph F such that L(E,w) ∼= L(F ) as K-algebras. The weighted
graph (Ẽ, w̃) one obtains by applying Step 1 to (E,w) clearly contains a
cycle c̃ = ẽ(1) . . . ẽ(n) (since either all the edges of c get reversed or none
of them). Since the ranges of weighted edges in (Ẽ, w̃) are sinks, we have
r̃(ẽ(i)) 6∈ r̃(Ẽ1

w) for any 1 6 i 6 n (and hence ẽ(i) ∈ Ẽ1
uw for any 1 6 i 6 n).

Hence c̃ = ẽ(1) . . . ẽ(n) is also a cycle in the graph F one gets by applying
Step 2 to (Ẽ, w̃).

Assume now that (E,w) is acyclic but not well-behaved. Then (E,w)
does not satisfy Condition (W2). Hence there are paths pi = ei,1 . . . ei,li ,
qi = f i,1 . . . f i,mi (1 6 i 6 n) such that r(pi) = r(qi) (1 6 i 6 n),
s(p1) = s(qn), s(pi) = s(qi−1) (2 6 i 6 n) and for any 1 6 i 6 n, ei,1
is a weighted edge, f i,1 is an unweighted edge and ei,li 6= f i,mi . Since
(E,w) satisfies Condition (LPA), we can apply Steps 1 and 2 in the proof
of Theorem 5.2.1 to obtain a graph F such that L(E,w) ∼= L(F ) as K-
algebras. Set Z := T (r(E1

w)). We need the claim below.
Claim Let 1 6 i 6 n, 1 6 j 6 li and 1 6 k 6 mi. Then s(ei,j) ∈ Z ⇔

j > 1, and s(f i,k) 6∈ Z.
Proof Clearly s(ei,j) ∈ Z for any j > 1 because ei,1 is a weighted edge.

Since s(ei,1) = s(fn,1) if i = 1 respectively s(ei,1) = s(f i−1,1) if i > 1, it
only remains to show that s(f i,k) 6∈ Z. Assume s(f i,k) ∈ Z. We will show
that this assumption leads to a contradiction. Since Z is hereditary, it
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follows that s(f i,mi) ∈ Z. If li > 1, then s(ei,li) ∈ Z. But this contradicts
[29, Lemma 8] (since ei,li and f i,mi are distinct, s(ei,li), s(f i,mi) ∈ Z and
r(ei,li) = r(f i,mi)). Hence li = 1. Since s(f i,mi) ∈ Z, there is an h ∈ E1

w

and a path p from r(h) to s(f i,mi). Since (E,w) satisfies Condition (LPA3),
h and ei,1 are in line, i.e. h = ei,1 or there is a path from r(h) to s(ei,1) or
there is a path from r(ei,1) to s(h). Assume that h = ei,1. Then pf i,mi is
a closed path at r(h) = r(ei,1) = r(f i,mi). But that is not possible since
(E,w) is acyclic. Assume now that there is a path from r(h) to s(ei,1).
Then s(ei,1) ∈ Z, which contradicts [29, Lemma 8] (see above). Finally
assume that there is a path q from r(ei,1) to s(h). Then qhpf i,mi is a
closed path at r(ei,1) = r(f i,mi). But that is not possible since (E,w) is
acyclic. Hence the assumption s(f i,k) ∈ Z leads to a contradiction. Thus
s(f i,k) 6∈ Z, which finishes the proof of the claim. �

It follows from the claim above that if one applies Step 1 in the proof of
Theorem 5.2.1 to (E,w), then out of the edges ei,j , f i,k (1 6 i 6 n, 1 6 j 6
li, 1 6 k 6 mi) only the edges ei,j where j > 1 get reversed (to be more
precise, the edges ei,j where j > 1 are replaced by one ore more unweighted
edges with reversed orientation). Hence there are ẽ(1), . . . , ẽ(n) ∈ Ẽ1

w and
paths q̃i = f̃ i,1 . . . f̃ i,ti (1 6 i 6 n) in the resulting weighted graph (Ẽ, w̃)
such that r̃(ẽ(1)) = r̃(q̃i) (1 6 i 6 n), s̃(ẽ(1)) = s̃(q̃n), s̃(ẽ(i)) = s̃(q̃i−1) (2 6
i 6 n), f̃ i,1 ∈ Ẽ1

uw (1 6 i 6 n) and ẽ(i) 6= f̃ i,ti (1 6 i 6 n). Since the
ranges of weighted edges in (Ẽ, w̃) are sinks, we have f̃ i,k ∈ Ẽ1

uw for any
1 6 i 6 n and 1 6 k < ti. Since no vertex in (Ẽ, w̃) receives two distinct
weighted edges, we also have f̃ i,ti ∈ Ẽ1

uw for any 1 6 i 6 n. Hence all
the f̃ i,k are unweighted. The picture below illustrates the situation (the
weights are omitted).

•
f̃n,1

��

ẽ(1) // • •
f̃1,t1
oo •oo •

f̃1,1

oo

ẽ(2)��
•

•
f̃2,t2

OO

•

OO

•
ẽ(4)

OO

f̃3,1

// • // •
f̃3,t3

// • •.
f̃2,1

OO

ẽ(3)
oo
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Now we apply Step 2 to (Ẽ, w̃). That has the following effect on the
weighted subgraph S of (Ẽ, w̃) displayed above. Let 1 6 i 6 n and set
ui := s(ẽ(i)), vi := r̃(ẽ(i)) and ni := w̃(ẽ(i)). Then Step 2 replaces vi
by ni vertices v

(1)
i , . . . , v

(ni)
n . The edge ẽ(i) is replaced by an unweighted

edge (ẽ(i))(1) from ui to v
(1)
i and unweighted edges (ẽ(i))(j) (2 6 j 6 ni)

from v
(j)
i to ui. Moreover, the edge f̃ i,ti is replaced by unweighted edges

(f̃ i,ti)(j) (1 6 j 6 ni) from s̃(f i,ti) to v(j)
i . The other vertices and edges

of S are not changed (since ranges of weighted edges in (Ẽ, w̃) are sinks).
The picture below illustrates the situation.

•

(ẽ(1))(n1)

��
•

f̃n,1

��
(ẽ(1))(1)

��

•
(ẽ(1))(2)oo •

(f̃1,t1 )(1)

��

(f̃1,t1 )(2)oo

(f̃1,t1 )(n1)

__

•oo •
f̃1,1

oo

(ẽ(2))(1)

~~
• • •

(ẽ(2))(2)

OO

•

(ẽ(2))(n2)

``

•

(f̃2,t2 )(1)

``

(f̃2,t2 )(2)

OO

(f̃2,t2 )(n2)

>>

• •

OO

•
f̃3,1

// • // •

(f̃3,t3 )(1)

??

(f̃3,t3 )(2)
//

(f̃3,t3 )(n3)

��

•
(ẽ(3))(2)

// •.

f̃2,1

OO

(ẽ(3))(1)

``

•

(ẽ(3))(n3)

>>

One checks easily that
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(
f̃n,1 . . . f̃n,tn−1(f̃n,tn)(2)(ẽ(n))(2)

)(
f̃n−1,1 . . . (f̃n−1,tn−1)(2)(ẽ(n−1))(2)

)
. . .
(
f̃1,1 . . . (f̃1,t1)(2)(ẽ(1))(2)

)
is a closed path in the graph F one gets by applying Step 2 to (Ẽ, w̃).
Thus F contains a cycle. �

Recall that a ring R is called von Neumann regular if for any x ∈ R
there is a y ∈ R such that xyx = x. A K-algebra is called matricial if it is
isomorphic to a finite direct sum of full finite-dimensional matrix algebras
over K, and locally matricial if it is a direct limit of matricial K-algebras.

Theorem 6.3.2. The following are equivalent:
(i) L(E,w) is von Neumann regular.
(ii) (E,w) is acyclic and well-behaved.
(iii) L(E,w) is locally matricial.

Proof. (i)⇒ (ii). Suppose L(E,w) is von Neumann regular. Then (E,w)
satisfies Condition (LPA) by Theorem 5.3.2 (if (E,w) did not satisfy Con-
dition (LPA), then there would be a lerinod-path p by Lemma 5.3.1; but
for such a p there is no a ∈ L(E,w) such that pap = p). Assume that
(E,w) contains a cycle or is not well-behaved. Then, by Lemma 6.3.1,
L(E,w) ∼= L(F ) for some unweighted graph F containing a cycle. But this
contradicts [2, Theorem 3.4.1]. Thus (E,w) is acyclic and well-behaved.

(ii)⇒ (iii). Suppose that (E,w) is acyclic and well-behaved. By Lem-
ma 4.2.7 we have L(E,w) = lim−→i

L(Ei, wi) where {(Ei, wi)} is the direct
system of all finite complete weighted subgraphs of (E,w). It is easy to
see that the subgraphs (Ei, wi) are also acyclic and well-behaved. By The-
orem 6.1.2 each L(Ei, wi) is matricial. Thus L(E,w) is locally matricial.

(iii)⇒(i). Suppose that L(E,w) is locally matricial. It is well known
that every matricialK-algebra is von Neumann regular and hence so is any
direct union of such algebras. Therefore L(E,w) is von Neumann regular.

�

§7. Realisation as generalised corner skew Laurent
polynomial rings

7.1. Generalised corner skew Laurent polynomial rings. Let R
be a unital ring and p an idempotent in R. Let φ : R → pRp be a corner
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isomorphism, i.e. a ring isomorphism with φ(1) = p. A corner skew Laurent
polynomial ring with coefficients in R, denoted by R[t+, t−, φ], is a unital
ring which is constructed as follows: The elements of R[t+, t−, φ] are the
formal expressions

tj−r−j + tj−1
− r−j+1 + · · ·+ t−r−1 + r0 + r1t+ + · · ·+ rit

i
+,

where r−n ∈ pnR and rn ∈ Rpn for any n > 0, where p0 = 1 and
pn = φn(p0). The addition is component-wise, and the multiplication is
determined by the distributive law and the following rules:

t−t+ = 1, t+t− = p, rt− = t−φ(r), t+r = φ(r)t+.

The corner skew Laurent polynomial rings are studied in [4], where
their K1-groups are calculated. This construction is a special case of the
so-called fractional skew monoid rings constructed in [5]. Assigning 1 to t+
and −1 to t− makes A := R[t+, t−, φ] a Z-graded ring with A =

⊕
i∈ZAi,

where

Ai = Rpit
i
+, for i > 0,

Ai = t−i− p−iR, for i < 0,

A0 = R,

see [5, Proposition 1.6]. Clearly, when p = 1 and φ is the identity map, then
R[t+, t−, φ] reduces to the familiar ring R[t, t−1]. As it was shown in [5,
Example 2.5] (see also [14, Example 1.6.14]), Leavitt path algebras of finite
graphs with no sources are examples of corner skew Laurent polynomial
rings. This was used to prove that Leavitt path algebras are graded von
Neumann regular rings [14, Corollary 1.6.17].

In this section we introduce the notion of a generalised corner skew
Laurent polynomial ring. A corner skew Laurent polynomial ring is char-
acterised as a Z-graded unital ring A =

⊕
i∈ZAi with an s ∈ A−1 and

a t ∈ A1 such that st = 1. A generalised corner skew Laurent polyno-
mial ring is characterised as a Zn-graded unital ring A =

⊕
i∈Zn Ai with

s1, . . . , sn ∈M1×m(Aαi) and t1, . . . , tn ∈Mm×1(A−αi), wherem ∈ N, such
that s1t1 = · · · = sntn = 1. Here {αi | 1 6 i 6 n} is the standard basis
of Zn.

Definition 7.1.1. Let G be a group, written multiplicatively, and A =
{Ag | g ∈ G} a family of abelian groups, written additively. Furthermore,
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let for any g, h ∈ G,

φg,h : Ag ×Ah → Agh

be a biadditive map. If a ∈ Ag and b ∈ Ah, we sometimes write a.b instead
of φg,h(a, b). Suppose that
(i) there is an element 1 ∈ A0 such that a.1 = a = 1.a for any g ∈ G

and a ∈ Ag and

(ii) (a.b).c = a.(b.c) for any g, h, k ∈ G and a ∈ Ag, b ∈ Ah, c ∈ Ak.
Define the map

· :
⊕
g∈G

Ag ×
⊕
g∈G

Ag −→
⊕
g∈G

Ag(
(ag)g∈G, (bg)g∈G

)
7−→ (cg)g∈G

where
cg =

∑
hk=g

ah.bk.

Then (
⊕

g∈GAg,+, ·) is a ring which we denote by A[G] and call a gener-
alised group ring.

Remark 7.1.2. (a) If each Ag = R where R is a unital ring and each
φg,h is the multiplication in R, then A[G] is the group ring R[G].

(b) A[G] is a G-graded ring such that its g-component equals Ag for any
g ∈ G (we identify Ag with its image in

⊕
g∈GAg).

Until the end of this subsection n denotes a fixed positive integer. We
define a map ˆ: Zn → Nn0 by ĝ = (max(g1, 0), . . . ,max(gn, 0)). Recall that
{αi | 1 6 i 6 n} denotes the standard basis of Zn.

Definition 7.1.3. Let A[Zn] =
⊕

g∈Zn Ag be a generalised group ring
such that the conditions (i)-(iv) below are satisfied.
(i) There is an m ∈ N, a unital ring R and idempotents

pg ∈Mmg1+···+gn×mg1+···+gn (R) (g ∈ Nn0 )

where p0 = 1 such that Ag = pĝMmĝ1+···+ĝn×m(−̂g)1+···+(−̂g)n (R)p−̂g
for any g ∈ Zn.

(ii) σ.τ = στ for any 1 6 i 6 n, σ ∈ A−αi and τ ∈ Aαi , where στ is the
usual matrix product of σ and τ .
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(iii) 1 ∈ Aαi .A−αi for any 1 6 i 6 n. Here Aαi .A−αi = {
∑k
j=1 aj .bj | k ∈

N, aj ∈ Aαi , bj ∈ A−αi}.
(iv) σ.τ.ω = στω for any g ∈ Zn, σ, ω ∈ Ag and τ ∈ A−g, where στω is

the usual matrix product of σ, τ and ω.
Then A[Zn] is called a generalised corner skew Laurent polynomial ring.

Remark 7.1.4. (a) We usually denote the ring A[Zn] by

R[t1, . . . tn, t−n, . . . , t−1, φ]

and write an element (σg)g∈Zn ∈ A[Zn] in the form∑
g∈Zn

tĝ11 . . . tĝnn σgt
(−̂g)n
−n . . . t

(−̂g)1
−1 .

(b) Let R be a unital ring and p an idempotent of R. Let φ : R → pRp
be a corner isomorphism, i.e., a ring isomorphism with φ(1) = p. Set
pg := φg(1) for any g ∈ N0, Ag := pĝRp−̂g for any g ∈ Z, and A :=

{Ag | g ∈ Z}. Define for any g, h ∈ Z the map φg,h : Ag×Ah −→ Ag+h
by

φg,h(a, b) =



φh(a)b if g, h > 0
φh(ab) if g > 0, h 6 0, g + h > 0
φ−g(ab) if g > 0, h 6 0, g + h 6 0
φg+h(a)b if g 6 0, h > 0, g + h > 0
aφ−(g+h)(b) if g 6 0, h > 0, g + h 6 0
aφ−g(b) if g, h 6 0.

One checks easily that the conditions (i) and (ii) in Definition 7.1.1
are satisfied. Furthermore, the generalised group ring A[Z] satisfies
the conditions (i)-(iv) in Definition 7.1.3. Hence A[Z] = R[t1, t−1, φ]
is a generalised corner skew Laurent polynomial ring. Let R[t+, t−, φ]
be the corner skew Laurent polynomial ring defined by R and φ (see
[14, §1.6.2]). Define the map

ψ : R[t1, t−1, φ] −→ R[t+, t−, φ]∑
g∈Z

tĝ11 σgt
(−̂g)1
−1 7−→

∑
g∈Z

tĝ1− σgt
(−̂g)1
+ .

It is easy to show, that ψ is a ring isomorphism. Defining a grading on
R[t+, t−, φ] by assigning 1 to t− and −1 to t+, we get

ψ((R[t1, t−1, φ])g) = (R[t+, t−, φ])g
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for any g ∈ Z, i.e. ψ is a graded ring isomorphism. Hence corner skew
Laurent polynomial rings are special cases of generalised corner skew
Laurent polynomial rings.

Recall that a G-graded ring A =
⊕

g∈GAg is called strongly graded
if AgAh = Agh for any g, h ∈ G. Here AgAh = {

∑k
j=1 ajbj | k ∈

N, a1, . . . , ak ∈ Ag, b1, . . . , bk ∈ Ah}.

Proposition 7.1.5. Let A = R[t1, . . . tn, t−n, . . . , t−1, φ] denote a gener-
alised corner skew Laurent polynomial ring. Then A is strongly graded if
and only if M1×m(R)pαi Mm×1(R) = R for any 1 6 i 6 n, where

M1×m(R)pαi Mm×1(R)

=
{ k∑
j=1

ujpαivj | k∈N, u1, . . . , uk∈M1×m(R), v1, . . . , vk∈Mm×1(R)
}
.

Proof. (⇒) SupposeA is strongly graded. Let 16 i6n. Then 1∈A−αiAαi .
Hence there is a k ∈ N, u1, . . . , uk ∈M1×m(R) and v1, . . . , vk ∈Mm×1(R)

such that
∑k
j=1(ujpαit−i) · (tipαivj) = 1. But (ujpαit−i) · (tipαivj) =

ujpαivj by Definition 7.1.3(ii). Hence
∑k
j=1 ujpαivj = 1 and therefore

M1×m(R)pαi Mm×1(R) = R.
(⇐) Suppose M1×m(R)pαi Mm×1(R) = R for any 1 6 i 6 n. Since

Zn is generated by the αi’s, it suffices to show that 1 ∈ AαiA−αi and
1 ∈ A−αiAαi for any 1 6 i 6 n in order to prove that A is strongly
graded (see [14, §1.1.3]). Let 1 6 i 6 n. By Definition 7.1.3(iii), 1 ∈
AαiA−αi . Let k ∈ N, u1, . . . , uk ∈ M1×m(R) and v1, . . . , vk ∈ Mm×1(R)

such that
∑k
j=1 ujpαivj = 1. Then

∑k
j=1(ujpαit−i) · (tipαivj) = 1 by

Definition 7.1.3(ii) and thus 1 ∈ A−αiAαi . �

A graded ring A is called graded von Neumann regular if for any ho-
mogeneous a ∈ A there is a b ∈ A such that a = aba. Proposition 7.1.8
determines when a generalised corner skew Laurent polynomial ring is
graded von Neumann regular. We need the following Definition 7.1.6 and
Lemma 7.1.7 for the proof of Proposition 7.1.8.

Definition 7.1.6. Let C be a category. Then C is called von Neumann
regular if for any morphism f ∈ Hom(X,Y ) there is a g ∈ Hom(Y,X) such
that fgf = f .



192 R. PREUSSER

Lemma 7.1.7. Let R denote a unital ring and C the category of finitely
generated free right R-modules. Then C is von Neumann regular if and
only if R is von Neumann regular.

Proof. (⇒) This direction is obvious since (Hom(R,R), ◦) ∼= (R, ·) as a
monoid.

(⇐) This follows from [18, Theorem 24, p. 114] and the following easy
to prove remark: If A is a von Neumann regular ring and e, e′ ∈ A are
idempotents, then for any f ∈ eAe′ there is a g ∈ e′Ae such that fgf = f .

�

Proposition 7.1.8. Let A = R[t1, . . . tn, t−n, . . . , t−1, φ] denote a gener-
alised corner skew Laurent polynomial ring. Then A is graded von Neu-
mann regular if and only if R is von Neumann regular.

Proof. (⇒) If a graded ring is graded von Neumann regular, then it is
easy to see that its zero component ring is von Neumann regular.

(⇐) Suppose R is von Neumann regular. Let g ∈ Zn and σ ∈ Ag ⊆
Mmĝ1+···+ĝn× m(−̂g)1+···+(−̂g)n (R). By Lemma 7.1.7, there is a
τ ′ ∈M

m(−̂g)1+···+(−̂g)n×mĝ1+···+ĝn (R) such that στ ′σ = σ. Set τ := p−̂gτ
′pĝ

∈ A−g. Then clearly στσ = στ ′σ = σ since pĝ and p−̂g are idempotents.
By Definition 7.1.3(iv),

(tĝ11 . . . tĝnn σt
(−̂g)n
−n . . . t

(−̂g)1
−1 )(t

(−̂g)1
1 . . . t(−̂g)nn τtĝn−n . . . t

ĝ1
−1)

× (tĝ11 . . . tĝnn σt
(−̂g)n
−n . . . t

(−̂g)1
−1 )

= tĝ11 . . . tĝnn στσt
(−̂g)n
−n . . . t

(−̂g)1
−1

= tĝ11 . . . tĝnn σt
(−̂g)n
−n . . . t

(−̂g)1
−1 . �

Let R be a unital ring and m ∈ N. Below we define a multiplication on
the set

⋃
i,j∈N0

Mmi×mj (R) which extends the usual matrix multiplication
and makes

⋃
i,j∈N0

Mmi×mj (R) a monoid. This monoid structure will be
used in the proof of Theorem 7.1.10.

Definition 7.1.9. Let R be a unital ring andm ∈ N. SetM = M(m,R) :=⋃
i,j∈N0

Mmi×mj (R). We define a multiplication · on M as follows. Let
A,B ∈ M. Then there are i, j, k, l ∈ N0 such that A ∈ Mmi×mj (R) and
B ∈Mmk×ml(R).
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Case 1 Assume that j 6 k. Let

A′ :=

A . . .
A

 ∈Mmi+k−j×mk(R)

be the matrix with mk−j copies of A on the diagonal and zeros
elsewhere. We define A · B := A′B ∈ Mmi+k−j×ml(R) where A′B
is the usual matrix product of A′ and B.

Case 2 Assume that j > k. Let

B′ :=

B . . .
B

 ∈Mmj×ml+j−k(R)

be the matrix with mj−k copies of B on the diagonal and zeros
elsewhere. We define A ·B = AB′ ∈Mmi×ml+j−k(R) where AB′ is
the usual matrix product of A and B′.

One checks easily that (M, ·) is a monoid whose identity element is
(1) ∈M1×1(R). Further A(B+C) = AB+AC and (B+C)A = BA+CA
whenever B + C is defined, i.e. whenever B and C have the same size.
However, one can show that there is no binary operation + on M such
that (M,+, ·) is a ring.

The theorem below will be used in the next section in order to iden-
tify weighted Leavitt path algebras with generalised corner skew Laurent
polynomial rings.

Theorem 7.1.10. Let A be a Zn-graded unital ring. Assume that there
is an m ∈ N and elements T1, . . . , Tn ∈ M1×m(Aαi) and T−1, . . . , T−n ∈
Mm×1(A−αi) such that TiT−i = 1 for any 1 6 i 6 n. Then A is graded
isomorphic to a generalised corner skew Laurent polynomial ring.

Proof. Set R := A0 and for any g ∈ Nn0 ,

pg := T gn−n . . . T
g1
−1T

g1
1 . . . T gnn ∈Mmg1+···+gn×mg1+···+gn (R)

(where the multiplication is taken in M(m,A)). Moreover, set for any
g ∈ Zn,

Ãg := pĝMmĝ1+···+ĝn×m(−̂g)1+···+(−̂g)n (R)p−̂g



194 R. PREUSSER

and define for any g, h ∈ Zn the map

φg,h : Ãg × Ãh → Ãg+h

(σ, τ) 7→ T
(ĝ+h)n
−n . . . T

(ĝ+h)1
−1 T ĝ11 . . . T ĝnn σT

(−̂g)n
−n . . . T

(−̂g)1
−1

× T ĥ1
1 . . . T ĥnn τT

(−̂h)n
−n . . . T

(−̂h)1
−1 T

(−̂(g+h))1
1 . . . T (−̂(g+h))n

n .

One checks easily that A := {Ãg | g ∈ Zn} is a family of abelian groups
and the φg,h’s are biadditive maps which satisfy the conditions (i) and (ii)
in Definition 7.1.1. Furthermore, the generalised group ring A[Zn] satisfies
the conditions (i)-(iv) in Definition 7.1.3. Hence

A[Zn] = R[t1, . . . tn, t−n, . . . , t−1, φ]

is a generalised corner skew Laurent polynomial ring. We will show that
A is graded isomorphic to A[Zn]. Define the map

ψ : A[Zn] −→ A∑
g∈Zn

tĝ11 . . . tĝnn σgt
(−̂g)n
−n . . . t

(−̂g)1
−1 7−→

∑
g∈Zn

T ĝ11 . . . T ĝnn σgT
(−̂g)n
−n . . . T

(−̂g)1
−1 .

One checks easily that ψ is a graded ring homomorphism. In order to show
that ψ is an isomorphism, it suffices to show that ψ|A[Zn]g : A[Zn]g → Ag
is a bijection for any g ∈ Zn. Let g ∈ Zn. Suppose

T ĝ11 . . . T ĝnn σT
(−̂g)n
−n . . . T

(−̂g)1
−1 = ψ(tĝ11 . . . tĝnn σt

(−̂g)n
−n . . . t

(−̂g)1
−1 ) = 0

for some σ ∈ A[Zn]g. By multiplying T ĝn−n . . . T
ĝ1
−1 from the left and T (−̂g)1

1

. . . T
(−̂g)n
n from the right, it follows that pĝσp−̂g = 0. But clearly pĝσp−̂g =

σ, since σ ∈ A[Zn]g and pĝ and p−̂g are idempotents. Hence σ = 0

and therefore tĝ11 . . . tĝnn σt
(−̂g)n
−n . . . t

(−̂g)1
−1 = 0. Thus we have shown that

ψ|A[Zn]g : A[Zn]g → Ag is injective. Suppose now that a ∈ Ag. Then

T ĝn−n . . . T
ĝ1
−1aT

(−̂g)1
1 . . . T (−̂g)n

n ∈ pĝMmĝ1+···+ĝn×m(−̂g)1+···+(−̂g)n (R)p−̂g.



WEIGHTED LEAVITT PATH ALGEBRAS 195

Clearly

ψ(tĝ11 . . . tĝnn (T ĝn−n . . . T
ĝ1
−1aT

(−̂g)1
1 . . . T (−̂g)n

n )t
(−̂g)n
−n . . . t

(−̂g)1
−1︸ ︷︷ ︸

∈A[Zn]g

)

= T ĝ11 . . . T ĝnn T ĝn−n . . . T
ĝ1
−1aT

(−̂g)1
1 . . . T (−̂g)n

n T
(−̂g)n
−n . . . T

(−̂g)1
−1

= a

since TiT−i = 1 for any i ∈ {1, . . . , n}. Thus we have shown that ψ|A[Zn]g :
A[Zn]g → Ag is surjective as well. This finishes the proof. �

7.2. Weighted Leavitt path algebras as generalised corner skew
Laurent polynomial rings. Let (E,w) be a finite weighted graph and
n the maximal weight of an edge in E. Recall that the standard grading of
L(E,w) is a Zn-grading such that deg(v) = 0, deg(ei) = αi and deg(e∗i ) =
−αi for any v ∈ E0, e ∈ E1 and 1 6 i 6 w(e) (we continue to denote the
standard basis of Zn by {αi | 1 6 i 6 n}).

Theorem 7.2.1. Let (E,w) be a finite weighted graph without sinks. Then
L(E,w) is graded isomorphic (with respect to its standard grading) to a
generalised corner skew Laurent polynomial ring.

Proof. Let n be the maximal weight of an edge in E. Write E0={v1, . . ., vk}
and for any 1 6 j 6 k, s−1(vj) = {ej,1, . . . , ej,nj}. For any 1 6 i 6 n and
1 6 j 6 k set

T ji :=
(
ej,1i . . . e

j,nj
i

)
∈M1×nj (L(E,w)αi)

and

T j−i :=

 (ej,1i )∗

...
(e
j,nj
i )∗

 ∈Mnj×1(L(E,w)−αi)

where ej,li = (ej,li )∗ = 0 if i > w(ej,l). Moreover, for any 1 6 i 6 n set

Ti :=
(
T 1
i . . . T ki

)
∈M1×m(L(E,w)αi)

and

T−i :=

T
1
−i
...
T k−i

 ∈Mm×1(L(E,w)−αi)
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where m = n1 + · · · + nk = |E1|. It follows from Definition 3.2.1(iii) that
TiT−i = v1 + · · ·+ vk = 1 for any i ∈ {1, . . . , n}. Thus, by Theorem 7.1.10,
L(E,w) is graded isomorphic to a generalised corner skew Laurent poly-
nomial ring. �

Theorems 7.2.2 and 7.2.4 below follow directly from Theorem 7.2.1 and
Propositions 7.1.5 and 7.1.8.

Theorem 7.2.2. Let (E,w) be a finite weighted graph without sinks. Then
L(E,w) is strongly graded with respect to its standard grading if and only
if

M1×m(L(E,w)0)T−iTiMm×1(L(E,w)0) = L(E,w)0

for any 1 6 i 6 n where m, n, Ti and T−i are defined as in the proof of
Theorem 7.2.1.

Corollary 7.2.3. Let (E,w) be a finite weighted graph without sinks and
sources such that w ≡ 1. Then L(E,w) is strongly graded with respect to
its standard grading.

Proof. We use the same notation as in the proof of Theorem 7.2.1. Clearly

T−1T1 = diag
(
r(e1,1), . . . , r(e1,n1), r(e2,1), . . . , r(e2,n2),

. . . , r(ek,1), . . . , r(ek,nk)
)

by Definition 3.2.1(iv). Since there are no sources in E, any vertex of E
appears as a diagonal entry in T−1T1. It follows that

M1×m(L(E,w)0)T−1T1 Mm×1(L(E,w)0) = L(E,w)0.

Thus L(E,w) is strongly graded with respect to its standard grading by
Theorem 7.2.2. �

Theorem 7.2.4. Let (E,w) be a finite weighted graph without sinks. Then
L(E,w) is graded von Neumann regular with respect to its standard grading
if and only if L(E,w)0 is von Neumann regular.

It has yet to be worked out whether there is a good description for the
zero component L(E,w)0 (cf. Section 12). When w ≡ 1, this ring is well
understood.

Corollary 7.2.5. Let (E,w) be a finite weighted graph without sinks such
that w ≡ 1. Then L(E,w) is graded von Neumann regular with respect to
its standard grading.
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Proof. By [14, pp. 168-169] (or [2, Corollary 2.1.16]), L(E,w)0, is an
ultramatricial algebra, i.e. it is isomorphic to the union of an increasing
chain of finite products of matrix algebras over a field. Hence L(E,w)0 is
von Neumann regular and thus, by Theorem 7.2.4, L(E,w) is graded von
Neumann regular. �

§8. Local valuations

8.1. General results. In this subsection we recall some notions and re-
sults from [28, §7.1].

Definition 8.1.1. Let R be a ring. A valuation on R is a map ν : R →
N0 ∪ {−∞} such that
(i) ν(x) = −∞⇔ x = 0,
(ii) ν(x− y) 6 max{ν(x), ν(y)} for any x, y ∈ R and
(iii) ν(xy) = ν(x) + ν(y) for any x, y ∈ R.
We use the conventions −∞ < n for any n ∈ N0 and (−∞) + n = n +
(−∞) = −∞ for any n ∈ N0 ∪ {−∞}.

Definition 8.1.2. A ring with enough idempotents is a pair (R,E) where
R is a ring and E is a set of nonzero orthogonal idempotents in R such
that the set of finite sums of distinct elements of E is a set of local units
for R. Note that if (R,E) is a ring with enough idempotents, then R =⊕

e∈E eR =
⊕

f∈E Rf =
⊕

e,f∈E eRf . A ring with enough idempotents
(R,E) is called connected if eRf 6= {0} for any e, f ∈ E.

Definition 8.1.3. Let (R,E) be a ring with enough idempotents. A local
valuation on (R,E) is a map ν : R→ N0 ∪ {−∞} such that
(i) ν(x) = −∞⇔ x = 0,
(ii) ν(x− y) 6 max{ν(x), ν(y)} for any x, y ∈ R and
(iii) ν(xy) = ν(x) + ν(y) for any e ∈ E, x ∈ Re and y ∈ eR.
A local valuation ν on (R,E) is called trivial if ν(x) = 0 for any x ∈ R\{0}
and nontrivial otherwise.

Let R be a ring. Recall that a left ideal I of R is called essential if
I ∩ J = {0} ⇒ J = {0}, for any left ideal J of R. If I is an essential
left ideal of R, then we write I ⊆e R. For any x ∈ R define the left ideal
ann(x) := {y ∈ R | yx = 0}. The ring R is said to be left nonsingular if
for any x ∈ R, ann(x) ⊆e R ⇔ x = 0. A right nonsingular ring is defined
similarly. R is called nonsingular if it is left and right nonsingular.
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Proposition 8.1.4 ( [28, Proposition 37]). Let (R,E) be a ring with
enough idempotents that has a local valuation. Then R is nonsingular.

Proof. We show only left singularity of R and leave the right singularity
to the reader. Let ν be a local valuation on (R,E) and x ∈ R\{0}. Choose
an e ∈ E such that ex 6= 0. Suppose that ye ∈ ann(x) for some y ∈ R.
Then

ν(ye) + ν(ex) = ν(yex) = ν(0) = −∞
and hence ye = 0. This shows that ann(x)∩Re = {0}. But Re 6= {0} since
e ∈ Re. Hence ann(x) is not essential. �

Recall that a nonzero ring R is called a prime ring if IJ = {0} ⇒ (I =
{0} ∨ J = {0}), for any ideals I and J of R. If R has local units, then it is
prime iff xRy = {0} ⇒ (x = 0 ∨ y = 0), for any x, y ∈ R.

Proposition 8.1.5 ( [28, Proposition 38]). Let (R,E) be a nonzero, con-
nected ring with enough idempotents that has a local valuation. Then R is
a prime ring.

Proof. Let ν be a local valuation on (R,E) and x, y ∈ R \ {0}. Clearly
there are e, f ∈ E such that xe, fy 6= 0. Since (R,E) is connected, we can
choose a z ∈ eRf \ {0}. Clearly

ν(xzy) = ν(xezfy) = ν(xe) + ν(z) + ν(fy) > 0.

Hence xzy 6= 0 and thus xRy 6= {0}. �

Recall that a ring is called semiprimitive if its Jacobson radical is the
zero ideal.

Proposition 8.1.6 ( [28, Proposition 40]). Let (R,E) be a connected
ring with enough idempotents. Suppose R is a K-algebra and there is a
local valuation ν on (R,E) such that ν(x) = 0 iff x ∈ span(E) \ {0}
where span(E) denotes the linear subspace of R spanned by E. Then R is
semiprimitive.

Proof. Let ν be the local valuation on (R,E) such that ν(x) = 0 iff
x ∈ span(E) \ {0}. Assume that the Jacobson radical J of R is not zero.
Since R =

⊕
v,w∈E eRf , there are e, f ∈ E and an x′ ∈ J ∩ eRf \ {0}.

Since R is connected, we can choose an element z ∈ fRe \ {0}. Then
x := x′z ∈ J ∩ eRe \ {0} since ν(x) = ν(x′z) = ν(x′) + ν(z) > 0. Since
J does not contain any nonzero idempotents, it follows that ν(x) > 0 (if
ν(x) = 0, then x = ke for some k ∈ K and hence J contains the nonzero
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idempotent e). Since x ∈ J , we have that x is left quasi-regular, i.e. there
is a y ∈ R such that x+ y = yx. By multiplying e from the right and from
the left one gets x + eye = eyex. Hence we may assume that y ∈ eRe. It
follows that

max{ν(x), ν(y)} > ν(x+ y) = ν(yx) = ν(x) + ν(y).

This implies that ν(y) = 0 and hence y = ke for some k ∈ K. It follows
that y = yx − x = kex − x = kx − x = (k − 1)x. But this yields a
contradiction since ν(y) = 0 but either ν((k − 1)x) = −∞, if k = 1, or
ν((k − 1)x) = ν(x) > 0, if k 6= 1 (note that ν((k − 1)x) = ν((k − 1)ex) =
ν((k − 1)e) + ν(x)). Thus the Jacobson radical of R is zero. �

8.2. Applications to weighted Leavitt path algebras. Throughout
this subsection (E,w) denotes a weighted graph. Note that (L(E,w), E0)
is a ring with enough idempotents. We say that (E,w) satisfies Condition
(LV) if w(e) > 2 for any e ∈ E1 and #{e ∈ s−1(v) | w(e) = w(v)} > 2 for
any v ∈ E0

reg.
As in §4.1 let K〈X〉 denote the free K-algebra on the set X = {v, ei, e∗i |

v ∈ E0, e ∈ E1, 1 6 i 6 w(e)} and K〈X〉nod the linear subspace of K〈X〉
generated by the nod-paths. Let NF : L(E,w)→ K〈X〉nod be the isomor-
phism of K-vector spaces defined in the proof of Theorem 4.1.1. For an
a ∈ L(E,w) we define its support supp(a) as the set of all nod-paths which
appear in NF(a) with nonzero coefficient. Recall that the length of a path
p is denoted by |p|.

Theorem 8.2.1 ( [15, Proposition 40]). If (E,w) satisfies Condition (LV),
then the map

ν : L(E,w)→ N0 ∪ {−∞}
a 7→ max{|p| | p ∈ supp(a)}

is a local valuation on (L(E,w), E0). Here we use the convention max(∅) =
−∞.

Corollary 8.2.2 ( [15, Theorem 47]). If (E,w) satisfies Condition (LV),
then L(E,w) is nonsingular.

Proof. Follows from Proposition 8.1.4 and Theorem 8.2.1. �

Corollary 8.2.3 ( [15, Theorem 46]). If (E,w) satisfies Condition (LV),
then L(E,w) is a prime ring.
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Proof. Clearly L(E,w) is not the zero ring since E is nonempty. Let
u, v ∈ E0. Since E is connected, there is a d-path p from u to v. Let ν
be the local valuation on (L(E,w), E0) defined in Theorem 8.2.1. Clearly
ν(p) = |p| > 0 since ν(x) = 0 for any x ∈ E0 and ν(ei) = ν(e∗i ) = 1 for
any e ∈ E1 and 1 6 i 6 w(e). Hence uL(E,w)v 6= {0} for any u, v ∈
E0 and therefore (L(E,w), E0) is a nonzero, connected ring with enough
idempotents. It follows from Proposition 8.1.5 that L(E,w) is a prime
ring. �

Corollary 8.2.4 ([15, Theorem 50]). If (E,w) satisfies Condition (LV),
then L(E,w) is semiprimitive.

Proof. Let ν be the local valuation on (L(E,w), E0) defined in Theo-
rem 8.2.1. Then clearly ν(x) = 0 iff x ∈ span(E0)\{0} where span(E0) de-
notes the linear subspace of L(E,w) spanned by E0. Moreover,
(L(E,w), E0) is connected since E is connected (see the proof of Corollary
8.2.3). It follows from Proposition 8.1.6 that L(E,w) is semiprimitive. �

8.3. Classification of the weighted graphs (E,w) such that L(E,w)
is a domain. Recall that a domain is a nonzero ring without zero divisors.
A weighted graph (E,w) satisfying Condition (LV) is called an LV-rose if
|E0| = 1.

Theorem 8.3.1 ([15, Theorem 41]). Let (E,w) be a weighted graph. Then
L(E,w) is a domain if and only if (E,w) is an LV-rose or the weighted
graph • 1dd .

Proof. One checks easily that L(E,w) has zero divisors if (E,w) is nei-
ther an LV-rose nor the weighted graph • 1dd . On the other hand, if
(E,w) is an LV-rose, then the local valuation ν on (L(E,w), E0) defined
in Theorem 8.2.1 is a valuation and hence L(E,w) is a domain. Moreover,
L( • 1dd ) ∼= K[x, x−1] is a domain. �

§9. The V-monoid and K0

Recall from Section 4 that WG denotes the category whose objects
are the weighted graphs and whose morphisms are the complete weighted
graph homomorphisms, that ALG denotes the category of K-algebras
and that L : WG → ALG is a functor which commutes with direct
limits. In Subsection 9.1 we define functors V : ALG → MON and M :
WG→MON where MON denotes the category of abelian monoids. In
Subsection 9.2 we recall some universal ring constructions by G. Bergman
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which are used in the proof of Theorem 9.3.1. In Subsection 9.3 we sketch
the proof of Theorem 9.3.1 which states that V ◦L ∼=M and that L(E,w)
is left and right hereditary provided (E,w) is finite. In Subsection 9.4 we
compute the Grothendieck group of a weighted Leavitt path algebra.

9.1. The functors V and M.

Definition 9.1.1. Let A be a K-algebra. Let M∞(A) be the directed
union of the rings Mn(A) (n ∈ N), where the transition maps Mn(A) →

Mn+1(A) are given by x 7→
(
x 0
0 0

)
. Let I(M∞(A)) denote the set of all

idempotent elements of M∞(A). If e, f ∈ I(M∞(A)), write e ∼ f iff there
are x, y ∈M∞(A) such that e = xy and f = yx. Then ∼ is an equivalence
relation on I(M∞(A)). Let V(A) be the set of all ∼-equivalence classes,
which becomes an abelian monoid by defining

[e] + [f ] =

[(
e 0
0 f

)]
for any [e], [f ] ∈ V(A). If φ : A → B is a morphism in ALG, let V(φ) :
V(A)→ V(B) be the canonical monoid homomorphism induced by φ. One
checks easily that V : ALG → MON is a functor that commutes with
direct limits.

Remark 9.1.2. For a K-algebra A with local units there is the following
alternative description of the monoid V(A). Recall that a left A-moduleM
is called unital if AM = M . Let V ′(A) denote the set of isomorphism classes
of finitely generated projective unital left A-modules, which becomes an
abelian monoid by defining [P ] + [Q] := [P ⊕Q] for any [P ], [Q] ∈ V ′(A).
Then V ′(A) ∼= V(A) as abelian monoids, see [8, Subsection 4A].

Definition 9.1.3. Let (E,w) be a weighted graph. For any v ∈ E0

write w(s−1(v)) = {w1(v), . . . , wkv (v)} where kv > 0 and w1(v) < · · · <
wkv (v) (hence kv is the number of different weights of edges in s−1(v)).
Let M(E,w) be the abelian monoid presented by the generating set
{v, qv1 , . . . , qvkv−1 | v ∈ E0} and the relations

qvi−1+(wi(v)−wi−1(v))v=qvi +
∑

e∈s−1(v),
w(e)=wi(v)

r(e) (v∈E0, 16 i6kv) (10)

where qv0 = qvkv = w0(v) = 0. If φ : (E,w) → (E′, w′) is a morphism in
WG, then there is a unique monoid homomorphismM(φ) :M(E,w) →
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M(E′, w′) such that M(φ)([v]) = [φ0(v)] and M(φ)([qvi ]) = [q
φ0(v)
i ] for

any v ∈ E0 and 1 6 i 6 kv−1. One checks easily thatM : WG→MON
is a functor that commutes with direct limits.

9.2. Some universal ring constructions by G. Bergman. In this
subsection all rings are assumed to be unital. Let k be a commutative ring
and R a k-algebra (i.e. R is a ring given with a homomorphism of k into
its center). By an R-module we mean a left R-module. An R-ringk is a
k-algebra S given with a k-algebra homomorphism R → S. In [10], G.
Bergman described the following two key constructions:

• ADJOINING MAPS Let M be any R-module and P a finitely
generated projective R-module. Then there exists an R-ringk S,
having a universal module homomorphism f : M ⊗ S → P ⊗ S,
see [10, Theorem 3.1]. S can be obtained by adjoining to R a family
of generators subject to certain relations, see [10, Proof of Theo-
rem 3.1].

• IMPOSING RELATIONS LetM be any R-module, P a projective
R-module and f : M → P any module homomorphism. Then there
exists an R-ringk S such that f ⊗ S = 0 and universal for that
property. S can be chosen to be a quotient of R, see [10, Proof of
Theorem 3.2].

Using the key constructions above Bergman described more complicated
constructions. Two of them are used in this paper:

• ADJOINING ISOMORPHISMS Given two finitely generated pro-
jective R-modules P and Q, one can adjoin a universal isomor-
phism between P⊗ and Q⊗ by first freely adjoining maps i :
P⊗ → Q⊗ and i−1 : Q⊗ → P⊗ (via ADJOINING MAPS) and
then setting 1Q⊗− ii−1 and 1P⊗− i−1i equal to 0 (via IMPOSING
RELATIONS), see [10, p. 38]. Bergman denoted the resulting R-
ringk by R〈i, i−1 : P ∼= Q〉.

• ADJOINING IDEMPOTENT ENDOMORPHISMS Given a fini-
tely generated projective R-module P , one can adjoin a universal
idempotent endomorphism of P⊗ by first freely adjoining a map
e : P⊗ → P⊗ (via ADJOINING MAPS) and then setting e − e2

equal to 0 (via IMPOSING RELATIONS), see [10, p. 39]. Bergman
denoted the resulting R-ringk by R〈e : P → P ; e2 = e〉. Note that
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the adjoined idempotent endomorphism e yields a universal direct
sum decomposition P⊗ = ker(e)⊕ im(e).

Set S := R〈i, i−1 : P ∼= Q〉 and T := R〈e : P → P ; e2 = e〉. Bergman
proved the following (for these results he required that k is a field and
that P and Q are nonzero): The abelian monoid V ′(S) (see Remark 9.1.2)
may be obtained from V ′(R) by imposing one relation [P ] = [Q]. The
abelian monoid V ′(T ) may be obtained from V ′(R) by adjoining two new
generators [P1] and [P2] and one relation [P1] + [P2] = [P ]. Furthermore,
the left global dimension of S (resp. T ) equals the left global dimension of
R, unless the left global dimension of R is 0, in which case the left global
dimension of S (resp. T ) is 6 1. See [10, Theorems 5.1, 5.2 and the last
paragraph of p. 48].

9.3. V ◦ L and M are isomorphic.

Theorem 9.3.1 ( [25, Theorem 14]). V ◦ L ∼=M. Moreover, if (E,w) is
a finite weighted graph, then L(E,w) is left and right hereditary.

Sketch of Proof. In Part I below we define a natural transformation
θ :M→ V ◦L. In Part II we explain why θ is a natural isomorphism and
why L(E,w) is left and right hereditary provided that (E,w) is finite.

Part I Let (E,w) be a weighted graph and v ∈ E0
reg. Write s−1(v) =

{ev,1, . . . , ev,n(v)} where w(ev,1) 6 . . . 6 w(ev,n(v)). Let Xv be defined as
in Remark 3.2.3. Then Xv has the upper triangular block form

Xv =


X1,1
v X1,2

v X1,3
v . . . X1,kv

v

0 X2,2
v X2,3

v . . . X2,kv
v

0 0 X3,3
v . . . X3,kv

v
...

...
. . . . . .

...
0 0 . . . 0 Xkv,kv

v


where kv is the number of different weights of edges in s−1(v) and none
of the matrices Xi,j

v has a zero entry. For any 1 6 l 6 kv − 1 define the
matrix

Xv,l =

X
1,l+1
v . . . X l,kv

v
...

. . .
...

X l,l+1
v . . . X l,kv

v


and set εv,l := Xv,lX

∗
v,l. Here X

∗
v,l is the matrix one obtains by transposing

Xv,l and applying the involution ∗ to each entry. One can show that εv,l is
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an idempotent matrix for any 1 6 l 6 kv−1. There is a unique monoid ho-
momorphism θ(E,w) : M(E,w) → V(L(E,w)) such that θ(E,w)(v) = [(v)]

and θ(E,w)(q
v
l ) = [εv,l] for any v ∈ E0 and 1 6 l 6 kv − 1. It is an easy

exercise to show that θ :M→ V ◦ L is a natural transformation.

Part II It remains to show that the natural transformation θ :M→ V◦L
defined in Part I is a natural isomorphism, i.e. that θ(E,w) : M(E,w) →
V(L(E,w)) is an isomorphism for any weighted graph (E,w). By Lemma
4.2.7 any weighted graph is a direct limit of a direct system of finite
weighted graphs. Hence is suffices to show that θ(E,w) is an isomorphism
for any finite weighted graph (E,w) (note thatM, V and L commute with
direct limits). So let (E,w) be a finite weighted graph. Set B0 := KE0

.
We denote by αv the element of B0 whose v-component is 1 and whose
other components are 0. Let v1, . . . , vm be the distinct elements of E0

reg.
Let 1 6 t 6 m and assume that Bt−1 has already been defined. We define
a K-algebra Bt as follows. Set Ct,0 := Bt−1 and let βt,0 : Ct,0 → Ct,0 be
the map sending any element to 0. For 1 6 l 6 kvt − 1 define inductively
Ct,l := Ct,l−1〈βt,l : Ot,l → Ot,l; (βt,l)2 = βt,l〉 (see Subsection 9.2 or [10, p.
39]) where

Ot,l = im(βt,l−1)⊕
wl(vt)⊕

h=wl−1(vt)+1

αvtCt,l−1.

Set Dt,0 := Ct,kvt−1. For 1 6 l 6 kvt − 1 define inductively Dt,l :=

Dt,l−1〈γt,l, (γt,l)−1 : Pt,l ∼= Qt,l〉 (see Subsection 9.2 or [10, p. 38]) where

Pt,l =

nl(vt)⊕
h=nl−1(vt)+1

αr(eh,vt )Dt,l−1 and Qt,l = ker(βt,l).

Finally define Bt := Dt,kvt−1〈γt,kvt , (γt,kvt )−1 : Pt,kvt
∼= Qt,kvt 〉 where

Pt,l =

nkvt (vt)⊕
h=nkvt−1(vt)+1

αr(eh,vt )Dt,kvt−1 and

Qt,kvt = im(βt,kvt−1)⊕
wkvt (vt)⊕

h=wkvt−1(vt)+1

αvtDt,kvt−1.

Then one can show that L(E,w) ∼= Bm. It follows from [10, Theorems 5.1,
5.2] that M(E,w) ∼= V ′(Bm) ∼= V ′(L(E,w)) ∼= V(L(E,w)). One checks
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easily that the monoid isomorphism M(E,w) → V(L(E,w)) one gets in
this way is precisely θ(E,w). Furthermore, the left global dimension of Bm ∼=
L(E,w) is 6 1 by [10, Theorems 5.1, 5.2], i.e. L(E,w) is left hereditary.
Since L(E,w) is a ring with involution, we have L(E,w) ∼= L(E,w)op.
Thus L(E,w) is also right hereditary. �

Corollary 9.3.2 ( [25, Corollary 15]). Let (E,w) be a weighted graph.
If there is a vertex v ∈ E0 that emits edges of different weights, then
|V(L(E,w))| =∞.

Proof. Let F denote the free abelian monoid generated by the set
{v, qv1 , . . . , qvkv−1 | v ∈ E0} and ∼ the congruence on F defined by the
relations (10) in Definition 9.1.3. Let v ∈ E0 be a vertex such that kv > 1.
For any n ∈ N0 let [nqv1 ] denote the ∼-congruence class of nqv1 . In F one
cannot write nqv1 as x+ y where x ∈ F and y is the left or right hand side
of one of the relations (10) (note that in the left hand side as well as in the
right hand side of each of the relations (10) a nonempty sum of vertices
appears). Hence [nqv1 ] = {nqv1} for any n ∈ N0 (i.e. each nqv1 is only congru-
ent to itself). Therefore the elements [nqv1 ] (n ∈ N0) are pairwise distinct
inM(E,w). It follows from Theorem 9.3.1 that |V(L(E,w))| =∞. �

Corollary 9.3.3 ([25, Corollary 16]). Let (E,w) be an LV-rose such that
there are edges of different weights. Then L(E,w) is a domain that is
neither K-algebra isomorphic to an unweighted Leavitt path algebra nor to
a Leavitt algebra.

Proof. By Theorem 8.3.1, L(E,w) is a domain. Clearly (E,w) does not
satisfy Condition (LPA1) and hence L(E,w) is not isomorphic to an un-
weighted Leavitt path algebra by Theorem 5.3.4. It remains to show that
L(E,w) is not isomorphic to a Leavitt algebra L(m,n) where 1 6 m < n.
By Example 3.2.5 and Theorem 9.3.1 we have V(L(m,n)) ∼= N0/〈m =
n〉 and hence |V(L(m,n))| = n < ∞. But by Corollary 9.3.2 we have
|V(L(E,w))| = ∞. Thus L(E,w) is not isomorphic to a Leavitt algebra
L(m,n). �

9.4. The Grothendieck group K0(L(E,w)). One can use the adja-
cency matrix and the weighted identity matrix of a weighted graph (E,w)
to describe K0(L(E,w)). We define those matrices below.

Definition 9.4.1. Let (E,w) be a weighted graph. The adjacency matrix
of (E,w) is the matrix N ∈ NE

0⊕E0

0 whose entry at position (u, v) is the
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number of edges from u to v. The weighted identity matrix of (E,w) is the
matrix Iw ∈ NE

0⊕E0

0 whose entry at position (u, v) is w(v) if u = v and 0
otherwise.

Let (E,w) be a weighted graph. Denote the transpose of its adjacency
matrix N by N t. Multiplying the matrix N t − Iw from the left defines a
group homomorphism ZE0 → ZE0

where ZE0

is the direct sum of copies
of Z indexed by E0. The theorem below shows that the cokernel of this
map is the Grothendieck group of L(E,w).

Theorem 9.4.2 ([25, Theorem 18]). Let (E,w) be a weighted graph. Then

K0(L(E,w)) ∼= coker(N t − Iw : ZE
0

→ ZE
0

).

Proof. Since L(E,w) is a ring with local units, K0(L(E,w)) is the group
completion (V(L(E,w)))+ of the abelian monoid V(L(E,w)), see [2, p.
77]. By Theorem 9.3.1, (V(L(E,w)))+ ∼= (M(E,w))+. It follows from [13,
Equation (45)] that the abelian group (M(E,w))+ is presented by the
generating set {v, qv1 , . . . , qvkv−1 | v ∈ E0} and the relations

qvi−1 + (wi(v)− wi−1(v))v = qvi +
∑

e∈s−1(v),
w(e)=wi(v)

r(e) (v ∈ E0, 1 6 i 6 kv)

where qv0 = qvkv = 0. We can rewrite the relations above in the form

qvi = qvi−1 + (wi(v)− wi−1(v))v −
∑

e∈s−1(v),
w(e)=wi(v)

r(e) (v ∈ E0, 1 6 i 6 kv).

By successively applying Tietze transformations we get that (M(E,w))+

is presented by the generating set E0 and the relations

w(v)v =
∑

e∈s−1(v)

r(e) (v ∈ E0).

Hence (M(E,w))+ ∼= ZE0

/H where H is the subgroup of ZE0

generated
by the set

{
∑

e∈s−1(v)

αr(e) − w(v)αv | v ∈ E0}

(where for a vertex v, αv denotes the element of ZE0

whose v-component
is 1 and whose other components are 0). One checks easily that H is the
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image of the homomorphism N t − Iw : ZE0 → ZE0

. Thus

K0(L(E,w)) ∼= (V(L(E,w)))+ ∼= (M(E,w))+ ∼= ZE
0

/H

= coker(N t − Iw : ZE
0

→ ZE
0

). �

Example 9.4.3. Consider the weighted graphs

(E,w) : u v
e,1oo f,2 // x

and

(E,w′) : u v
e,2oo f,2 // x .

Note that by Section 5, L(E,w) ∼= L(F ) ∼= M3(K) ⊕M3(K) where F is
the unweighted graph

•

��
F : • •oo // •,

while L(E,w′) is not isomorphic to an unweighted Leavitt path algebra.
By Theorem 9.3.1 we have

V(L(E,w)) ∼= 〈u, v, x, q | v = q + u, q + v = x〉 ∼= N2
0

and

V(L(E,w′)) ∼= 〈u, v, x | 2v = u+ x〉.

It follows that V(L(E,w)) 6∼= V(L(E,w′)) since V(L(E,w)) is a refinement
monoid but V(L(E,w′)) is not. On the other hand we have

K0(L(E,w)) ∼= K0(L(E,w′)) ∼= 〈u, v, x | 2v = u+ x〉 ∼= Z2

by Theorem 9.4.2.

§10. The graded V-monoid and Kgr
0

Throughout this section Γ denotes a group with identity ε.
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10.1. Basic definitions and results. Let R be a ring. Recall that a
left R-module M is called unital if RM = M . We denote by R-MOD the
category of unital left R-modules. Furthermore, we denote by R-MODproj

the full subcategory of R-MOD whose objects are the projective objects
of R-MOD that are finitely generated as a left R-module. If R has local
units, we define

V(R) = {[P ] | P ∈ R-MODproj}
where [P ] denotes the isomorphism class of P as a left R-module. V(R) be-
comes an abelian monoid by defining [P ]+[Q] = [P⊕Q]. The Grothendieck
group K0(R) is the group completion of V(R) (cf. [8, Subsection 4A]).

Let R now be a Γ-graded ring. Recall that a left R-moduleM is called Γ-
graded if there is a decompositionM =

⊕
γ∈ΓMγ such that RαMγ ⊆Mαγ

for any α, γ ∈ Γ. We denote by R-GR the category of Γ-graded unital left
R-modules with morphisms the R-module homomorphisms that preserve
grading. Moreover, we denote by R-GRproj the full subcategory of R-
GR whose objects are the projective objects of R-GR that are finitely
generated as a left R-module. If R has graded local units, we define

Vgr(R) = {[P ] | P ∈ R-GRproj}

where [P ] denotes the isomorphism class of P as a graded left R-module.
Vgr(R) becomes an abelian monoid by defining [P ] + [Q] = [P ⊕ Q]. The
graded Grothendieck group Kgr

0 (R) is the group completion of Vgr(R)
(cf. [8, Subsection 4A]).

Let R be a Γ-graded ring. The smash product ring R#Γ is defined as
the set of all formal sums

∑
γ∈Γ r

(γ)pγ where r(γ) ∈ R for any γ ∈ Γ,
the pγ ’s are symbols, and all but finitely many coefficients r(γ) are zero.
Addition is defined component-wise and multiplication is defined by linear
extension of the rule (rpα)(spβ) = rsαβ−1pβ where r, s ∈ R and α, β ∈ Γ.
We will use the proposition below to compute the graded V-monoid of a
weighted Leavitt path algebra.

Proposition 10.1.1 ( [28, Proposition 66]). Let R be a Γ-graded ring with
graded local units. Then R-GRproj

∼= R#Γ-MODproj by an isomorphism
that commutes with direct sums. It follows that Vgr(R) ∼= V(R#Γ).

10.2. Admissible weight maps. In this subsection (E,w) denotes a
weighted graph. For any v ∈ E0

reg we choose an edge ev ∈ s−1(v) such that
w(ev) = w(v). Recall that the unweighted graph associated to (E,w) is
denoted by Ê.
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Definition 10.2.1. An admissible weight map for (E,w) is a map W :

Ê1 → Γ which has the property that

W (ei)W (ej)
−1 =W (fi)W (fj)

−1 and W (ei)
−1W (fi)=W (ej)

−1W (fj)

for any v ∈ E0
reg, e, f ∈ s−1(v) and 1 6 i, j 6 min{w(e), w(f)}.

The lemma below is straightforward to check.

Lemma 10.2.2. A map W : Ê1 → Γ is an admissible weight map for
(E,w) if and only if W (ei) = W (e

s(e)
i )W (e

s(e)
1 )−1W (e1) for any e ∈ E1

and 1 6 i 6 w(e).

Set S := {e1, e
v
i | e ∈ E, v ∈ E0

reg, 1 6 i 6 w(v)} ⊆ Ê1. It follows from
Lemma 10.2.2 that there is a 1-1 correspondence between the set of all
maps S → Γ and the set of all admissible weight maps Ê1 → Γ for (E,w).

Lemma 10.2.3. Let W be an admissible weight map for (E,w). Then W
induces a Γ-grading on L(E,w) such that deg(v) = ε, deg(ei) = W (ei)
and deg(e∗i ) = W (ei)

−1 for any v ∈ E0, e ∈ E1 and 1 6 i 6 w(e).

Proof. Let K〈X〉 denote the free K-algebra on the set X = {v, ei, e∗i |
v ∈ E0, e ∈ E1, 1 6 i 6 w(e)}. There is a Γ-grading on K〈X〉 defined
by deg(v) = ε, deg(ei) = W (ei) and deg(e∗i ) = W (ei)

−1 for any v ∈ E0,
e ∈ E1 and 1 6 i 6 w(e). Clearly the relations (i)-(iv) in Definition 3.2.1
are homogeneous with respect to this grading. Hence the Γ-grading on
K〈X〉 induces a Γ-grading on L(E,w). �

Example 10.2.4. Let λ be defined as in the last paragraph of Section 3.
Define a map W : Ê1 → Zλ by W (ei) = αi where αi denotes the element
of Zλ whose i-th component is 1 and whose other components are 0. Then
W is an admissible weight map for (E,w). It induces the standard grading
on L(E,w).

Example 10.2.5. Let λ be defined as in the previous example. For any
v ∈ E0

reg write s−1(v) = {ev,1, . . . , ev,nv}. Set µ := sup{nv | v ∈ E0
reg}

if this supremum is finite and otherwise µ := ω where ω is the smallest
infinite ordinal. Define a map W : Ê1 → Zλ ⊕ Zµ by W (ev,ji ) = (αi, βj)
for any v ∈ E0

reg, 1 6 j 6 nv and 1 6 i 6 w(ev,j) (αi is defined as
in the previous example and βj is defined analogously). Then W is an
admissible weight map for (E,w) and therefore it induces a Zλ ⊕ Zµ-
grading on L(E,w). Obviously this grading is finer than the one defined
in the previous example.
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10.3. Leavitt path algebras of bi-separated graphs. In this subsec-
tion we recall some definitions and results from [23].

Definition 10.3.1. A bi-separated graph is a triple Ė = (E,C,D) such
that
(i) E = (E0, E1, s, r) is a graph,
(ii) C =

⊔
v∈E0 Cv where Cv is a partition of s−1(v) for any v ∈ E0,

(iii) D =
⊔
v∈E0 Dv where Dv is a partition of r−1(v) for any v ∈ E0,

(iv) |X ∩ Y | 6 1 for any X ∈ C and Y ∈ D.

For a bi-separated graph Ė = (E,C,D) we set Cfin := {X ∈ C | |X| <
∞} and Dfin := {Y ∈ D | |Y | < ∞}. In the following we assume that
C = Cfin and D = Dfin. Recall from Section 2 that if E is a graph, then
Ed denotes the double graph of E and P (E) denotes the path algebra of
E. In [23] the double graph of E was denoted by Ê and the path algebra
of E by K(E).

Let Ė = (E,C,D) be a bi-separated graph. For X ∈ C we denote by
s(X) the common source of the edges in X. For Y ∈ D we denote by r(Y )
the common range of the edges in Y . Moreover, for X ∈ C and Y ∈ D we
define

XY = Y X =

{
e, if X ∩ Y = {e},
0, if X ∩ Y = ∅.

Definition 10.3.2. Let Ė = (E,C,D) be a bi-separated graph. The Leav-
itt path algebra of Ė with coefficients inK, denoted by L(Ė), is the quotient
of P (Ed) obtained by imposing the following relations:
(L1)

∑
Y ∈D(XY )(Y X ′)∗ = δXX′s(X) for any X,X ′ ∈ C,

(L2)
∑
X∈C(Y X)∗(XY ′) = δY Y ′r(Y ) for any Y, Y ′ ∈ D.

Example 10.3.3. Let (E,w) be a weighted graph. For any v ∈ E0 and
1 6 i 6 w(v) define Xi

v := {ei | e ∈ s−1(v), w(e) > i}. For any e ∈ E1

define Y e := {ei | 1 6 i 6 w(e)}. Moreover, define Cv := {Xi
v | 1 6 i 6

w(v)} and Dv := {Y e | e ∈ r−1(v)} for any v ∈ E0. Then (Ê, C,D) is a
bi-separated graph and L(E,w) ∼= L(Ê, C,D).

Let Ė = (E,C,D) be a bi-separated graph. We define an equivalence
relation ∼D on C as follows: For X,X ′ ∈ C define X ∼D X ′ if X = X ′

or there exists a finite sequence X0, Y1, X1, Y2, X2, . . . , Yn, Xn such that
Xi ∈ C (0 6 i 6 n), Yi ∈ D (1 6 i 6 n), X0 = X, Xn = X ′, Xi−1 ∩ Yi 6=
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∅ (1 6 i 6 n) and Yi ∩ Xi 6= ∅ (1 6 i 6 n). Let C =
⊔
λ∈Λ Xλ be the

partition of C induced by ∼D. Similarly we define an equivalence relation
∼C on D and let D =

⊔
λ′∈Λ′ Yλ′ be the partition of D induced by ∼C .

There is a canonical bijective map Λ → Λ′, see [23, §4.2]. Therefore we
will denote the indexing sets of the partitions of both C and D by Λ. The
bi-separated graph Ė is called tame, if |Xλ|, |Yλ| < ∞ for any λ ∈ Λ. Ė
is called docile if it is tame and for any λ ∈ Λ there are distinguished
elements Xλ ∈ Xλ and Yλ ∈ Yλ such that Xλ ∩ Y 6= ∅ for any Y ∈ Yλ and
X ∩ Yλ 6= ∅ for any X ∈ Xλ.

Let Ė = (E,C,D) be a docile bi-separated graph. The words
(XYλ)(YλX

′)∗ (λ ∈ Λ, X,X ′ ∈ Xλ) and (Y Xλ)∗(XλY
′) (λ ∈ Λ, Y, Y ′ ∈

Yλ) are called forbidden. We call a path in the double graph Ed a d-path.
A normal d-path or nod-path is a d-path such that none of its subwords is
forbidden.

Theorem 10.3.4 ([23, Theorem 5.5]). Let Ė be a docile bi-separated graph.
Then the nod-paths form a linear basis for L(Ė).

10.4. The covering bi-separated graph of a weighted graph de-
fined by an admissible weight map.

Definition 10.4.1. Let (E,w) be a weighted graph and W an admissible
weight map for (E,w). Define a graph F by

F 0 = {v(γ) | v ∈ E0, γ ∈ Γ},

F 1 = {e(γ)
i | e ∈ E1, 1 6 i 6 w(e), γ ∈ Γ},

sF (e
(γ)
i ) = s(e)(W (e

s(e)
i )W (e

s(e)
1 )−1γ),

rF (e
(γ)
i ) = r(e)(W (e1)−1γ).

For any γ ∈ Γ, v ∈ E0 and 1 6 i 6 w(v) set Xγ,v,i = {e(γ)
i | e ∈

s−1(v), w(e) > i}. For any γ ∈ Γ and e ∈ E1 set Yγ,e = {e(γ)
i | 1 6 i 6

w(e)}. For any v(γ) ∈ F 0 define

Cv(γ) = {XW (ev1)W (evi )−1γ,v,i | 1 6 i 6 w(v)},
Dv(γ) = {YW (e1)γ,e | e ∈ r−1(v)}.

The bi-separated graph Ḟ = (F,C,D) is called the covering bi-separated
graph of (E,w) defined by W .
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Until the end of this subsection (E,w) denotes a weighted graph, W
an admissible weight map for (E,w) and Ḟ = (F,C,D) the covering bi-
separated graph of (E,w) defined byW . Recall thatW induces a Γ-grading
on L(E,w). We will show that L(Ḟ ) ∼= L(E,w)#Γ.

The equivalence relations ∼D on C and ∼C on D defined in the previous
subsection are given by Xβ,u,i ∼D Xγ,v,j ⇔ (β = γ ∧ u = v) and Yβ,e ∼C
Yγ,f ⇔ (β = γ ∧ s(e) = s(f)), respectively. Hence the partition of C
induced by ∼D is

C =
⊔

(γ,v)∈Γ×E0
reg

X(γ,v) where X(γ,v) = {Xγ,v,i | 1 6 i 6 w(v)}.

Similarly the partition of D induced by ∼C is

D =
⊔

(γ,v)∈Γ×E0
reg

Y(γ,v) where Y(γ,v) = {Yγ,e | e ∈ s−1(v)}.

Moreover, Ḟ is docile. As distinguished elements we chooseX(γ,v) := Xγ,v,1

and Y(γ,v) := Yγ,ev for any (γ, v) ∈ Γ× E0
reg.

Lemma 10.4.2. There is a surjective K-algebra homomorphism

ψ : L(Ḟ )→ L(E,w)#Γ

such that

ψ(v(γ))=vpγ , ψ(e
(γ)
i )=eipW (e1)−1γ , ψ((e

(γ)
i )∗)=e∗i pW (e

s(e)
i )W (e

s(e)
1 )−1γ

(11)
for any v(γ) ∈ F 0 and e(γ)

i ∈ F 1.

Proof. In order to show that there is a K-algebra homomorphism ψ :
L(Ḟ )→ L(E,w)#Γ such that (11) holds, it suffices to prove the relations
(i)-(iv) below, where

Av(γ) = vpγ , A
e
(γ)
i

= eipW (e1)−1γ , B
e
(γ)
i

= e∗i pW (e
s(e)
i )W (e

s(e)
1 )−1γ

for any v(γ) ∈ F 0 and e
(γ)
i ∈ F 1, and moreover A0 = 0 and B0 = 0

(cf. [23, Proposition 3.18]).
(i) AuAv = δuvAv for any u, v ∈ F 0.
(ii) As(f)Af = AfAr(f) = Af and Ar(f)Bf = BfAs(f) = Bf for any

f ∈ F 1.
(iii)

∑
Y ∈D AXYBY X′ = δXX′As(X) for any X,X ′ ∈ C.

(iv)
∑
X∈C BY XAXY ′ = δY Y ′Ar(Y ) for any Y, Y ′ ∈ D.
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We leave (i) and (ii) to the reader and show only (iii) and (iv).
First we prove (iii). Let X,X ′ ∈ C. Clearly we may assume thatX,X ′ ∈

X(γ,v) for some (γ, v) ∈ Γ × E0
reg (otherwise (iii) is trivially satisfied). It

follows that X = Xγ,v,i and X ′ = Xγ,v,j for some 1 6 i, j 6 w(v). Clearly∑
Y ∈D

AXYBY X′ =
∑

e∈s−1(v),w(e)>i,j

A
e
(γ)
i
B
e
(γ)
j

=
∑

e∈s−1(v),w(e)>i,j

eipW (e1)−1γe
∗
jpW (evj )W (ev1)−1γ

=
∑

e∈s−1(v),w(e)>i,j

ei(e
∗
j )W (e1)−1W (ev1)W (evj )−1pW (evj )W (ev1)−1γ

=
∑

e∈s−1(v),w(e)>i,j

eie
∗
jpW (evj )W (ev1)−1γ

= δijvpW (evj )W (ev1)−1γ

= δXX′As(X)

by Lemma 10.2.2 and hence (iii) holds.
Next we prove (iv). Let Y, Y ′ ∈ D. Clearly we may assume that Y, Y ′ ∈

Y(γ,v) for some (γ, v) ∈ Γ × E0
reg (otherwise (iv) is trivially satisfied). It

follows that Y = Yγ,e and Y ′ = Yγ,f for some e, f ∈ s−1(v). Clearly∑
X∈C

BY XAXY ′ =
∑

16i6w(e),w(f)

B
e
(γ)
i
A
f
(γ)
i

=
∑

16i6w(e),w(f)

e∗i pW (evi )W (ev1)−1γfipW (f1)−1γ

=
∑

16i6w(e),w(f)

e∗i (fi)W (evi )W (ev1)−1W (f1)pW (f1)−1γ

=
∑

16i6w(e),w(f)

e∗i fipW (f1)−1γ

= δefr(e)pW (f1)−1γ

= δY Y ′Ar(Y )

by Lemma 10.2.2 and hence (iv) holds.
Thus there is a K-algebra homomorphism ψ : L(Ḟ )→ L(E,w)#Γ such

that (11) holds. Clearly the image of ψ contains the set

S := {vpγ , eipγ , e∗i pγ | v ∈ E0, e ∈ E1, 1 6 i 6 w(e), γ ∈ Γ}.
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But S generates L(E,w)#Γ as a K-algebra and therefore ψ is surjective.
�

Our next goal is to show that the homomorphism ψ :L(Ḟ )→L(E,w)#Γ
from Lemma 10.4.2 is injective. Let A denote the set of all nod-paths for
Ḟ and B the set of all nod-paths for (E,w). Set Y := {v(γ), e

(γ)
i , (e

(γ)
i )∗ |

γ ∈ Γ, v ∈ E0, e ∈ E1, 1 6 i 6 w(e)} and Z := {v, ei, e∗i | v ∈ E0, e ∈
E1, 1 6 i 6 w(e)}. Let 〈Y 〉 be the set of all finite nonempty words over Y
and 〈Z〉 the set of all finite nonempty words over Z. With juxtaposition
of words, 〈Y 〉 and 〈Z〉 become semigroups. Let ξ : 〈Y 〉 → 〈Z〉 be the
unique semigroup homomorphism such that ξ(v(γ)) = v, ξ(e(γ)

i ) = ei and
ξ((e

(γ)
i )∗) = e∗i . For any a ∈ A set b(a) := ξ(a).

Lemma 10.4.3. For any a ∈ A there is a uniquely determined γ(a) ∈ Γ
such that ψ(a) = b(a)pγ(a).

Proof. The assertion of the lemma clearly holds if |a| 6 1. Suppose now
that a = y1 . . . yn where n > 2 and y1, . . . , yn ∈ Y \ F 0. Then for any
1 6 i 6 n there is a γi such that ψ(yi) = b(yi)pγi .

First we show that

deg b(yk) = γk−1γ
−1
k (2 6 k 6 n) (12)

where deg b(yk) denotes the homogeneous degree of b(yk). We consider
only the case that yk−1 = e

(β)
i and yk = f

(γ)
j for some e(β)

i , f
(γ)
j ∈ F 1

and leave the other cases to the reader. Clearly γk−1 = W (e1)−1β and
γk = W (f1)−1γ. Since

r(e)(W (e1)−1β) = rF (e
(β)
i ) = sF (f

(γ)
j ) = s(f)(W (e

s(f)
j )W (e

s(f)
1 )−1γ),

we have

γk−1γ
−1
k = W (e1)−1βγ−1W (f1) = W (e

s(f)
j )W (e

s(f)
1 )−1W (f1)

= W (fj) = deg b(yk)

in view of Lemma 10.2.2. Thus (12) holds.
Now we show by induction on t that

ψ(y1 . . . yt) = b(y1 . . . yt)pγt (2 6 t 6 n). (13)

t = 2: Clearly

ψ(y1y2) = b(y1)pγ1b(y2)pγ2 = b(y1)(b(y2))γ1γ−1
2
pγ2 = b(y1y2)pγ2
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by (12).

t− 1→ t: Clearly

ψ(y1 . . . yt−1yt) = ψ(y1 . . . yt−1)ψ(yt)

= b(y1 . . . yt−1)pγt−1
b(yt)pγt

= b(y1 . . . yt−1)(b(yt))γt−1γ
−1
t
pγt = b(y1 . . . yt)pγt

by the induction assumption and (12).
Hence (13) holds and thus in particular ψ(a) = b(a)pγ(a) where γ(a) =

γn. The uniqueness of γ(a) follows from the definition of L(E,w)#Γ. �

Lemma 10.4.4. b(a) ∈ B for any a ∈ A.

Proof. We leave it to the reader to check that b(a) is a d-path for (E,w).
We show now that b(a) contains no forbidden subword and hence lies in
B. That is clear if a is a vertex, so let us assume that a = y1 . . . yn where
y1, . . . , yn ∈ Y \F 0. It is straightforward to check that the forbidden words
for Ḟ are

(ev)
(γ)
i ((ev)

(γ)
j )∗ (γ ∈ Γ, v ∈ E0

reg, 1 6 i, j 6 w(v))

and
(e

(γ)
1 )∗f

(γ)
1 (γ ∈ Γ, v ∈ E0

reg, e, f ∈ s−1(v)).

Assume that there is a t ∈ {1, . . . , n− 1} such that ξ(ytyt+1) = evi (e
v
j )
∗ for

some v ∈ E0 and 1 6 i, j 6 w(v). Then ytyt+1 = (ev)
(β)
i ((ev)

(γ)
j )∗ for some

β, γ ∈ Γ. Since a is a d-path, it follows that β = γ (by the definition of
rF ). Hence we get the contradiction that a contains a forbidden subword.
Analogously one can show that b(a) contains no forbidden subword of the
form e∗1f1 where e, f ∈ s−1(v) for some v ∈ E0. Thus b(a) ∈ B for any
a ∈ A. �

Lemma 10.4.5. The map (b, γ) : A→ B×Γ, a 7→ (b(a), γ(a)) is injective.

Proof. Let a = yn . . . y1, a
′ = y′n′ . . . y

′
1 ∈ A such that b(a) = b(a′) and

γ(a) = γ(a′). Then clearly n = n′. We show by induction on t that yt = y′t
for any 1 6 t 6 n (and hence a = a′).

t = 1: Suppose that y1 = e
(γ)
i for some e(γ)

i ∈ F 1. Then y′1 = e
(γ′)
i for some

γ′ ∈ Γ since b(a) = b′(a). Clearly W (e1)−1γ = γ(a) = γ(a′) = W (e1)−1γ′.
Hence γ = γ′ and therefore y1 = y′1. The cases y1 = (e

(γ)
i )∗ and y1 = v(γ)
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are similar.

t− 1→ t: Assume that yt−1 = y′t−1 for some 2 6 t 6 n. Suppose that
yt = e

(γ)
i for some e(γ)

i ∈ F 1. Then y′t = e
(γ′)
i for some γ′ ∈ Γ since b(a) =

b′(a). Since yt−1 = y′t−1 and a, b are d-paths, we have rF (e
(γ)
i ) = rF (e

(γ′)
i ).

It follows from the definition of rF that γ = γ′ and therefore yt = y′t. The
case yt = (e

(γ)
i )∗ is similar. �

Proposition 10.4.6. Let (E,w) be a weighted graph, W an admissible
weight map for (E,w) and Ḟ the covering bi-separated graph of (E,w)

defined by W . Then L(Ḟ ) ∼= L(E,w)#Γ.

Proof. Let ψ : L(Ḟ )→ L(E,w)#Γ be the surjectiveK-algebra homomor-
phism from Lemma 10.4.2. Let A,B and b(a) (a ∈ A) be defined as in the
first paragraph after the proof of Lemma 10.4.2. By Lemma 10.4.3 there
is for any a ∈ A a uniquely determined γ(a) such that ψ(a) = b(a)pγ(a).
By Lemma 10.4.4, b(a) ∈ B for any a ∈ A. By Lemma 10.4.5 the map
(b, γ) : A→ B × Γ is injective.

In order to prove the proposition it suffices to show that ψ is injective.
Let x ∈ L(Ḟ ). By Theorem 10.3.4 we can write x =

∑
a∈A kaa where

almost all coefficients ka ∈ K are zero. Clearly

ψ(x) =
∑
a∈A

kab(a)pγ(a) =
∑
β∈Γ

(
∑

a∈A,γ(a)=β

kab(a))pβ .

Assume now that ψ(x) = 0. Then
∑
a∈A,γ(a)=β kab(a) = 0 in L(E,w) for

any β ∈ Γ. But since the map (b, γ) : A → B × Γ is injective, we have
b(a) 6= b(a′) for any a 6= a′ ∈ A such that γ(a) = γ(a′). It follows from
Theorem 4.1.1 that ka = 0 for any a ∈ A and hence x = 0. Thus ψ is
injective. �

10.5. The monoid Vgr(L(E,w)). In this subsection we fix a weighted
graph (E,w) and an admissible weight mapW : Ê1 → Γ for (E,w). Recall
that W induces a Γ-grading on L(E,w).

Definition 10.5.1. For any v∈E0 write s−1(v)={ev,1, . . . , ev,n(v)} where
w(ev,1)6 . . .6w(ev,n(v)). Moreover, write w(s−1(v))={w1(v), . . ., wkv (v)}
where w1(v) < · · · < wkv (v). Set nl(v) := #{e ∈ s−1(v) | w(e) 6 wi(v)}
for any 1 6 l 6 kv. We define Mgr(E,w) as the abelian monoid pre-
sented by the generating set {v(γ), Iv,γ1 , . . . , Iv,γkv−1 | v ∈ E0, γ ∈ Γ} and the
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relations

Iv,γl−1+

wl(v)∑
i=wl−1(v)+1

v(W (evi )W (ev1)−1γ) = Iv,γl +

nl(v)∑
j=nl−1(v)+1

r(ev,j)(W (ev,j1 )−1γ)

(v ∈ E0, γ ∈ Γ, 1 6 l 6 kv).

Here we use the convention Iv,γ0 = Iv,γkv = w0(v) = n0(v) = 0 for any
v ∈ E0 and γ ∈ Γ.

Theorem 10.5.2. Vgr(L(E,w)) ∼=Mgr(E,w).

Proof. Let Ḟ = (F,C,D) be the covering bi-separated graph of (E,w)
defined by W . By Propositions 10.1.1 and 10.4.6 we have Vgr(L(E,w)) ∼=
V(L(E,w)#Γ) ∼= V(L(Ḟ )). Hence it suffices to show that V(L(Ḟ )) ∼=
Mgr(E,w). We use the notation of Definition 10.5.1. Recall that

C =
⊔

(γ,v)∈Γ×E0
reg

X(γ,v) where X(γ,v) = {Xγ,v,i | 1 6 i 6 w(v)}

and
D =

⊔
(γ,v)∈Γ×E0

reg

Y(γ,v) where Y(γ,v) = {Yγ,e | e ∈ s−1(v)}

where Xγ,v,i = {e(γ)
i | e ∈ s−1(v), w(e) > i} and Yγ,e = {e(γ)

i | 1 6 i 6
w(e)}. Moreover, Ḟ is docile. For any (γ, v) ∈ Γ × E0

reg let Aγ,v be the
matrix w(v)× n(v)-matrix whose entry at position (i, j) is

Xγ,v,i ∩ Yγ,ev,j =

{
(ev,j)

(γ)
i , if w(ev,j) > i,

0, otherwise.

Then each Aγ,v has the upper triangular block form

Aγ,v =


Aγ,v11 Aγ,v12 Aγ,v13 . . . Aγ,v1kv

0 Aγ,v22 Aγ,v23 . . . Aγ,v2kv
0 0 Aγ,v33 . . . Aγ,v3kv
...

...
. . . . . .

...
0 0 . . . 0 Aγ,vkvkv


where each Aγ,vxy is a matrix having wx(v)−wx−1(v) rows, ny(v)−ny−1(v)
columns and no zero entry. It follows from [23, Theorem 6.1 and preceding
paragraph] that V(L(Ḟ )) is presented by the generating set

{v(γ), Iv,γ1 , . . . , Iv,γkv−1 | v ∈ E
0, γ ∈ Γ}
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and the relations

Iv,γl−1 +

wl(v)∑
i=wl−1(v)+1

sF (Xγ,v,i) = Iv,γl +

nl(v)∑
j=nl−1(v)+1

rF (Yγ,ev,j )

(v ∈ E0, γ ∈ Γ, 1 6 l 6 kv).

It follows from the definition of sF and rF that V(L(Ḟ )) ∼=Mgr(E,w). �

10.6. The graded Grothendieck group Kgr
0 (L(E,w)).

Theorem 10.6.1. Let (E,w) be a weighted graph and W an admissible
weight map for (E,w). Then the abelian group Kgr

0 (L(E,w)) is presented
by the generating set {v(γ) | v ∈ E0, γ ∈ Γ} and the relations

w(v)∑
i=1

v(W (evi )W (ev1)−1γ) =
∑

e∈s−1(v)

r(e)(W (e1)−1γ) (v ∈ E0, γ ∈ Γ).

Proof. The theorem follows from Theorem 10.5.2 and the fact that
Kgr

0 (L(E,w)) is the group completion of the abelian monoid Vgr(L(E,w)
(cf. the proof of Theorem 9.4.2). �

Example 10.6.2. Consider again the weighted graphs

(E,w) : u v
e,1oo f,2 // x

and

(E,w′) : u v
e,2oo f,2 // x

from Example 9.4.3. Let W and W ′ be the admissible weight maps for
(E,w) and (E,w′) that induce the standard Z2-gradings on L(E,w) and
L(E,w′), respectively (see Example 10.2.4). By Theorem 10.5.2,
V(L(E,w)) is presented by the generating set

{u(m,n), v(m,n), x(m,n), I(m,n) | (m,n) ∈ Z2}

and the relations

v(m,n) =I(m,n)+u(m−1,n), I(m,n)+v(m−1,n+1) =x(m−1,n) ((m,n)∈Z2).

Hence V(L(E,w)) is the free abelian monoid generated by a countably
infinite set. On the other hand, Theorem 10.5.2 implies that V(L(E,w′))
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is presented by the generating set {u(m,n), v(m,n), x(m,n) | (m,n) ∈ Z2}
and the relations

v(m,n) + v(m−1,n+1) = u(m−1,n) + x(m−1,n) ((m,n) ∈ Z2).

Theorem 10.6.1 implies that both graded Grothendieck groups
Kgr

0 (L(E,w)) and Kgr
0 (L(E,w′)) are presented by presented by the gener-

ating set
{u(m,n), v(m,n), x(m,n) | (m,n) ∈ Z2}

and the relations

v(m,n) + v(m−1,n+1) = u(m−1,n) + x(m−1,n) ((m,n) ∈ Z2).

Hence Kgr
0 (L(E,w)) ∼= Kgr

0 (L(E,w′)) is the free abelian group generated
by a countably infinite set.

§11. Representations

In this section (E,w) denotes a fixed weighted graph. Recall that Ê
denotes the unweighted graph associated to (E,w). If ei ∈ Ê1, then we
call tg(ei) := i the tag of ei and st(ei) := e is the structure edge of ei. If F
is a graph, then we denote by Path(F ) the set of all paths in F . Moreover,
if u, v ∈ F 0, then we denote by uPath(F ) the set of all paths starting in
u, by Pathv(F ) the set of all paths ending in v and by uPathv(F ) the
intersection of uPath(F ) and Pathv(F ).

11.1. Representation graphs for weighted graphs.

11.1.1. Representation graphs.

Definition 11.1.1. A representation graph for (E,w) is a pair (F, φ)

where F = (F 0, F 1, sF , rF ) is a graph and φ = (φ0, φ1) : F → Ê a graph
homomorphism such that (i) and (ii) below are satisfied.
(i) For any v ∈ F 0 and 1 6 i 6 w(φ0(v)) there is precisely one f ∈ s−1

F (v)
such that tg(φ1(f)) = i.

(ii) For any v ∈ F 0 and e ∈ r−1(φ0(v)) there is precisely one f ∈ r−1
F (v)

such that st(φ1(f)) = e.

Usually we visualise a representation graph (F, φ) by drawing the graph
F and labelling each vertex v ∈ F 0 with φ0(v) and each edge f ∈ F 1 with
φ1(f), see the four examples below.
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Example 11.1.2. Suppose that (E,w) is the weighted graph
v f,1
zz

e,1
$$

. Then a representation graph (F, φ) for (E,w) is given
by

e1 // v
e1 // v

e1 // v
e1 //

(F, φ) : v

f1

OO

v

f1

OO

v.

f1

OO

e1

GG
f1

WW
e1

GG
f1

WW
e1

GG
f1

WW

Example 11.1.3. Suppose again that (E,w) is the weighted graph
v f,1
zz

e,1
$$

. Then a representation graph (F, φ) for (E,w) is given by

v

e1

��

(F, φ) : v.

f1

OO

e1

DD
f1

ZZ

Example 11.1.4. Suppose that (E,w) is the weighted graph
v f,2
zz

e,2
$$

. Then a representation graph (F, φ) for (E,w) is given
by

(F, φ) : ve1
$$

f2
zz

.

Example 11.1.5. Suppose that (E,w) is the weighted graph
v f,3
zz

e,3
$$

. Then a representation graph (F, φ) for (E,w) is given by

(F, φ) : v

e1

��

f2

11
f3

// v

e1

��
e2

��

e3

��
v

f1

DD

f2

EE

f3

DDv

e1

��

e2

��

e3

��
v

f1

EE

f2

DD

f3

DDv

e1

""

e2

  

e3

��
v

f1

<<

f2

>>

f3

@@v

e1

��v v . . . .

Let (F, φ) be a representation graph for (E,w). Let Êd and Fd be the
double graphs of Ê and F , respectively. Clearly the homomorphism φ :
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F → Ê induces a map Path(Fd)→ Path(Êd), which we also denote by φ.
The lemma below is easy to check.

Lemma 11.1.6 ([16, Lemma 3]). Let (F, φ) be a representation graph for
(E,w). Let q, q′ ∈ Path(Fd) such that φ(q) = φ(q′). If s(q) = s(q′) or
r(q) = r(q′), then q = q′.

In Subsection 11.2 we will associate to any representation graph for
(E,w) a module for L(E,w). The irreducible representation graphs defined
below are precisely those representation graphs that yield a simple module.

Definition 11.1.7. A representation graph (F, φ) for (E,w) is called ir-
reducible if φ(uPath(Fd)) 6= φ(vPath(Fd)) for any u 6= v ∈ F 0.

We leave it to the reader to check that the representation graph in
Example 11.1.2 is not irreducible, while the representation graphs in Ex-
amples 11.1.3, 11.1.4 and 11.1.5 are irreducible.

11.1.2. The category of representation graphs. We denote by RG(E,w)
the category whose objects are the representation graphs for (E,w). A
morphism α : (F, φ) → (G,ψ) in RG(E,w) is a graph homomorphism
α : F → G such that ψα = φ. One checks easily that a morphism α :
(F, φ)→ (G,ψ) is an isomorphism if and only if α0 and α1 are bijective.

The lemma below and the two propositions thereafter are straightfor-
ward to check.

Lemma 11.1.8 ( [16, Lemma 8]). Let (F, φ) and (G,ψ) be objects in
RG(E,w). Let u ∈ F 0 and v ∈ G0. If φ(uPath(Fd)) ⊆ ψ(vPath(Gd)),
then φ(uPath(Fd)) = ψ(vPath(Gd)).

Proposition 11.1.9 ([16, Proposition 9]). Let α : (F, φ) → (G,ψ) be a
morphism in RG(E,w). If u∈F 0, then φ(uPath(Fd))=ψ(α0(u)Path(Gd)).

Recall that a graph homomorphism α = (α0, α1) : F → G is called
a covering if α0 and α1 are surjective, and for any v ∈ F 0 the maps
α1|r−1(v) : r−1(v) → r−1(α0(v)) and α1|s−1(v) : s−1(v) → s−1(α0(v)) are
bijective (i.e. α is surjective and “locally” bijective).

Proposition 11.1.10 ([16, Proposition 10]). Let α : (F, φ)→ (G,ψ) be a
morphism in RG(E,w). Then α is a covering.
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11.1.3. Quotients of representation graphs. For any object (F, φ) in
RG(E,w) we define an equivalence relation ∼ on F 0 by u ∼ v if
φ(uPath(Fd)) = φ(vPath(Fd)). Recall that if ∼ and ≈ are equivalence
relations on a set X, then one writes ≈ 6 ∼ and calls ≈ finer than ∼ (and
∼ coarser than ≈) if x ≈ y implies that x ∼ y, for any x, y ∈ X.

Definition 11.1.11. Let (F, φ) be an object in RG(E,w). An equivalence
relation ≈ on F 0 is called admissible if the following hold:
(i) ≈ 6 ∼.
(ii) If u ≈ v, p ∈ uPathx(Fd), q ∈ vPathy(Fd) and φ(p) = φ(q), then

x ≈ y.

The admissible equivalence relations on F 0 (with partial order 6) form
a bounded lattice whose maximal element is ∼ and whose minimal element
is the equality relation =.

Let (F, φ) be an object in RG(E,w) and ≈ an admissible equivalence
relation on F 0. If f, g ∈ F 1 we write f ≈ g if s(f) ≈ s(g) and φ(f) = φ(g).
This defines an equivalence relation on F 1. Define an object (F≈, φ≈) in
RG(E,w) by

F 0
≈ = F 0/ ≈,
F 1
≈ = F 1/ ≈,

s([f ]) = [s(f)],

r([f ]) = [r(f)],

φ0
≈([v]) = φ0(v),

φ1
≈([f ]) = φ1(f).

We call (F≈, φ≈) a quotient of (F, φ).

Theorem 11.1.12 ([16, Theorem 12]). Let (F, φ) and (G,ψ) be objects
in RG(E,w). Then there is a morphism α : (F, φ)→ (G,ψ) if and only if
(G,ψ) is isomorphic to a quotient of (F, φ).

Proof. (⇒) Suppose there is a morphism α : (F, φ)→ (G,ψ). If u, v ∈ F 0,
we write u ≈ v if α0(u) = α0(v). Clearly ≈ defines an equivalence relation
on F 0. Below we check that ≈ is admissible.
(i) Suppose u ≈ v. Then
φ(uPath(Fd)) = ψ(α0(u)Path(Gd)) = ψ(α0(v)Path(Gd)) = φ(vPath(Fd))

by Proposition 11.1.9. Hence u ∼ v.
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(ii) Suppose u ≈ v, p ∈ uPathx(Fd), q ∈ vPathy(Fd) and φ(p) = φ(q).
Clearly α(p) ∈ α0(u)Pathα0(x) (Gd) and α(q) ∈ α0(v)Pathα0(y)(Gd).
Moreover, ψ(α(p)) = φ(p) = φ(q) = ψ(α(q)). Since α0(u) = α0(v),
it follows from Lemma 11.1.6 that α(p) = α(q). Hence α0(x) =
r(α(p)) = r(α(q)) = α0(y) and therefore x ≈ y.

Note that by Lemma 11.1.6 we have f ≈ g if and only if α1(f) =
α1(g), for any f, g ∈ F 1. Define a graph homomorphism β : F≈ → G
by β0([v]) = α0(v) and β1([f ]) = α1(f). Clearly ψβ = φ≈ and therefore
β : (F≈, φ≈) → (G,ψ) is a morphism. In view of Proposition 11.1.10, β0

and β1 are bijective and hence β is an isomorphism.
(⇐) Suppose now that (G,ψ) ∼= (F≈, φ≈) for some admissible equiv-

alence relation ≈ on F 0. In order to show that there is a morphism
α : (F, φ)→ (G,ψ) it suffices to show that there is a morphism β : (F, φ)→
(F≈, φ≈). But this is obvious (define β0(v) = [v] and β1(f) = [f ]). �

11.1.4. The subcategories RG(E,w)C . Let (F, φ) and (G,ψ) be objects
in RG(E,w). We write (F, φ) � (G,ψ) if there is a u ∈ F 0 and a v ∈
G0 such that φ(uPath(Fd)) = ψ(vPath(Gd)). One checks easily that �
defines an equivalence relation on Ob(RG(E,w)). If C is a �-equivalence
class, then we denote by RG(E,w)C the full subcategory of RG(E,w)
such that Ob(RG(E,w)C) = C. If α : (F, φ) → (G,ψ) is a morphism in
RG(E,w), then (F, φ)� (G,ψ) by Proposition 11.1.9. Thus RG(E,w) is
the disjoint union of the subcategories RG(E,w)C , where C ranges over
all �-equivalence classes.

Let F be a graph and Fd its double graph. A path p = x1 . . . xn ∈
Path(Fd) is called backtracking if there is a 1 6 j 6 n − 1 such that
xjxj+1 = ff∗ or xjxj+1 = f∗f for some f ∈ F 1. We say that p is reduced
if it is not backtracking.

Fix a �-equivalence class C, a representation graph (F, φ) ∈ C and
a vertex u ∈ F 0. We denote by φ(uPath(Fd))red the set of all paths in
φ(uPath(Fd)) that are reduced. Define a representation graph (T, ξ) =
(TC , ξC) for (E,w) by

T 0 = {vp | p ∈ φ(uPath(Fd))red},
T 1 = {ep | p ∈ φ(uPath(Fd))red, p 6= φ(u)},

s(ex1...xn) =

{
vx1...xn−1 , if xn ∈ Ê1,

vx1...xn , if xn ∈ (Ê1)∗,
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r(ex1...xn) =

{
vx1...xn , if xn ∈ Ê1,

vx1...xn−1
, if xn ∈ (Ê1)∗,

ξ0(vx1...xn) =


φ(u), if n = 1 and x1 = φ(u),

rÊ(xn), if xn ∈ Ê1,

sÊ(x∗n), if xn ∈ (Ê1)∗,

ξ1(ex1...xn) =

{
xn, if xn ∈ Ê1,

x∗n, if xn ∈ (Ê1)∗.

Here we use the convention that if x1 . . . xn ∈ φ(uPath(Fd))red, where
n = 1, then x1 . . . xn−1 = φ(u).

Example 11.1.13. Suppose (E,w) is the weighted graph ve,2
$$

f,2
zz

and (F, φ) is the representation graph for (E,w) given by

F : ug
$$

h
zz

and φ0(u) = v, φ1(g) = e1, φ1(h) = f2. Then φ(uPath(Fd))red consists
of all reduced paths in Path(Êd) whose letters come from the alphabet
{v, e1, e

∗
1, f2, f

∗
2 }. Let C be the �-equivalence class of (F, φ). Then TC is

the graph
vv

ee1

��

ef2

))
ve∗1

ee∗1

55

ee∗1f2

��

vf∗2

ef∗2

??

ef∗2 e1

��

ve1

ee1e1

��

ee1f2

��

vf2

ef2e1

��

ef2f2

��
ve∗1e

∗
1

ee∗1e
∗
1

FF

ve∗1f
∗
2

ee∗1f
∗
2

OO

ve∗1f2 vf∗2 e∗1

ef∗2 e
∗
1

FF

vf∗2 f∗2

ef∗2 f
∗
2

OO

vf∗2 e1 ve1f∗2

ee1f
∗
2

GG

ve1e1 ve1f2 vf2e∗1

ef2e
∗
1

GG

vf2e1 vf2f2 .

...
...

...
...

Proposition 11.1.14 ([16, Proposition 14]). If (G,ψ) ∈ C, then there is
a morphism α : (TC , ξC)→ (G,ψ).

Proof. Since (G,ψ)� (F, φ), there is a v ∈ G0 such that φ(uPath(Fd)) =
ψ(vPath(Gd)). Define a homomorphism α : TC → G as follows. Let
x1 . . . xn ∈ φ(uPath(Fd))red. Since φ(uPath(Fd)) = ψ(vPath(Gd)), there is
a (uniquely determined) path y1 . . . yn ∈ vPath(Gd) such that



WEIGHTED LEAVITT PATH ALGEBRAS 225

ψ(y1 . . . yn) = x1 . . . xn. Define α0(vx1...xn) = r(yn), α1(ex1...xn) = yn if
yn ∈ G1 and respectively α1(ex1...xn) = y∗n if yn ∈ (G1)∗. We leave it to the
reader to check that α is a graph homomorphism and that ψα = ξC . �

Corollary 11.1.15 ([16, Corollary 15]). Up to isomorphism the represen-
tation graphs in C are precisely the quotients of (TC , ξC), and consequently

(SC , ζC) := ((TC)∼, (ξC)∼)

is the unique irreducible representation graph in C.

Proof. The first statement follows from Theorem 11.1.12 and Proposition
11.1.14. The second statement now follows since a quotient ((TC)≈, (ξC)≈)
satisfies the condition in Definition 11.1.7 if and only if ≈ equals ∼. �

Recall that an object X in a category C is called repelling (resp. attract-
ing) if for any object Y in C there is a morphism X → Y (resp. Y → X).
By Proposition 11.1.14, (TC , ξC) is a repelling object in C. On the other
hand, if (G,ψ) is an object in C, then clearly (SC , ζC) is isomorphic to
a quotient of (G,ψ). It follows from Theorem 11.1.12 that (SC , ζC) is an
attracting object in C.

Example 11.1.16. Suppose (E,w) is the weighted graph ve,2
$$

f,2
zz

.
Consider the representation graphs (F1, φ1), . . . , (F7, φ7) for (E,w) given
below.

// v
OO
//

// v
OO
e1 // v

f2

OO

e1 // v
OO
//

OO OO

// v //
OO

// v
OO
//

(F1, φ1) : // v

OO
e1 // v

f2

OO

e1 // v

f2

OO

e1 // v

f2

OO

e1 // v

OO
// .OO OO

// v

f2

OO

// // v

f2

OO

//
OO OO

// v
OO
e1 // v

f2

OO

e1 // v
OO
//

OO OO

// v //
f2

OO

OO



226 R. PREUSSER

// v
e1 //
OO

v
e1 //
OO

v //
OO

(F2, φ2) : // v
e1 //

f2
OO

v
e1 //

f2
OO

v
f2
OO

// .

// v
e1 //

f2
OO

v
e1 //

f2
OO

v
f2
OO

//
OO OO OO

(F3, φ3) : // v

f2

��e1 // v

f2

��e1 // v

f2

�� // . (F4, φ4) : // v

e1

��f2 // v

e1

��f2 // v

e1

�� // .

(F5, φ5) : vf2
$$

e1

��
v f2
zz

e1

UU . (F6, φ6) : ve1
$$

f2

��
v e1
zz

f2

UU .

(F7, φ7) : ve1
$$

f2
zz
.

All the representation graphs (Fi, φi) (1 6 i 6 7) lie in the same �-
equivalence class C. One checks easily that (F1, φ1) ∼= (TC , ξC) and
(F7, ξ7) ∼= (SC , ζC) (cf. Example 11.1.13). Moreover, we have

(F1, ξ1)

��
(F2, ξ2)

yy %%
(F3, ξ3)

��

(F4, ξ4)

��
(F5, ξ5)

%%

(F6, ξ6)

yy
(F7, ξ7)

where an arrow (Fi, φi) −→ (Fj , φj) means that (Fj , φj) is a quotient of
(Fi, φi).

11.2. Representations of weighted Leavitt path algebras via rep-
resentation graphs.

11.2.1. The functor V. For an object (F, φ) in RG(E,w), let V(F,φ) be the
K-vector space with basis F 0. For any u ∈ E0, e ∈ E1 and 1 6 i 6 w(e),
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define endomorphisms σu, σei , σe∗i ∈ EndK(V(F,φ)) by

σu(v) =

{
v, if φ0(v) = u

0, otherwise
,

σei(v) =

{
rF (f), if ∃f ∈ s−1

F (v) : φ1(f) = ei

0, otherwise
,

σe∗i (v) =

{
sF (f), if ∃f ∈ r−1

F (v) : φ1(f) = ei

0, otherwise
,

where v ∈ F 0. Then there is an K-algebra homomorphism π : L(E,w)→
EndK(V(F,φ))

op such that π(u) = σu, π(ei) = σei and π(e∗i ) = σe∗i . We call
this representation the representation of L(E,w) defined by (F, φ). Clearly
V(F,φ) becomes a right L(E,w)-module by defining x ·a := π(a)(x) for any
a ∈ L(E,w) and x ∈ V(F,φ). A morphism α : (F, φ)→ (G,ψ) in RG(E,w)
induces a surjective L(E,w)-module homomorphism Vα : V(F,φ) → V(G,ψ)

such that Vα(u) = α0(u) for any u ∈ F 0. We obtain a functor

V : RG(E,w)→MOD -L(E,w)

where MOD-L(E,w) denotes the category of unital right L(E,w)-modu-
les.

The lemma below is easy to check. It describes the action of monomial
elements of the weighted Leavitt path algebra L(E,w) on the K-vector
space V(F,φ). Note that by Lemma 11.1.6, for any p ∈ Path(Êd) and u ∈ F 0

there is at most one v ∈ F 0 such that p ∈ φ(uPathv(Fd)).

Lemma 11.2.1 ([16, Lemma 21]). Let (F, φ) be an object in RG(E,w).
If p ∈ Path(Êd) and u ∈ F 0, then

u · p =

{
v, if p ∈ φ(uPathv(Fd)), for some v ∈ F 0,

0, otherwise.

Corollary 11.2.2 ([16, Corollary 22]). Let (F, φ) be an object of RG(E,w).
If a =

∑
p∈Path(Êd) kpp ∈ L(E,w) and u ∈ F 0, then

u · a =
∑
v∈F 0

( ∑
p∈φ(uPathv(Fd))

kp

)
v.

The example below shows that the functor V is not full, namely, there
can be L(E,w)-module homomorphisms V(F,φ) → V(G,ψ) that are not in-
duced by a morphism (F, φ)→ (G,ψ).
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Example 11.2.3. Suppose (E,w) is the weighted graph v e,1
zz

. Let
(F, φ) and (G,ψ) be the representation graphs for (E,w) given by

F : u f
zz

, G : u1

f(1)

��
u2

f(2)

]]

and φ0(u) = v, φ1(f) = e1, ψ0(u1) = ψ0(u2) = v, ψ1(f (1)) = ψ1(f (2)) =
e1. SinceG has more vertices than F , (G,ψ) cannot be isomorphic to a quo-
tient of (F, φ). Hence, by Theorem 11.1.12, there is no morphism (F, φ)→
(G,ψ). But there is a L(E,w)-module homomorphism σ : V(F,φ) → V(G,ψ)

such that σ(u) = u1 + u2.

Let (F, φ) and (G,ψ) be objects in RG(E,w). If (F, φ) ∼= (G,ψ), then
clearly V(F,φ)

∼= V(G,ψ). It is not known if the converse implication is also
true. But we will see that V(F,φ)

∼= V(G,ψ) implies at least that (F, φ) �
(G,ψ) (i.e. that (F, φ) and (G,ψ) lie in the same subcategory RG(E,w)C
of RG(E,w)).

Lemma 11.2.4 ( [16, Lemma 31]). Let (F, φ) and (G,ψ) be objects in
RG(E,w) and let σ : V(F,φ) → V(G,ψ) be an L(E,w)-module homomor-
phism. Let u ∈ F 0 and σ(u) =

∑n
s=1 ksvs, where n > 1, k1, . . . , kn ∈ K×

and v1, . . . , vn are pairwise distinct vertices from G0. Then φ(uPath(Fd)) =
ψ(vsPath(Gd)) for any 1 6 s 6 n.

Proof. Let p ∈ Path(Êd) such that p 6∈ φ(uPath(Fd)). Then

0 = σ(0) = σ(u · p) = σ(u) · p =

n∑
s=1

ksvs · p =

n∑
s=1

ks(vs · p)

by Lemma 11.2.1. One more application of Lemma 11.2.1 gives that vs ·p =
0, for any 1 6 s 6 n, whence p 6∈ ψ(vsPath(Gd)) for any 1 6 s 6 n. Hence
we have shown that φ(uPath(Fd)) ⊇ ψ(vsPath(Gd)) for any 1 6 s 6 n.
It follows from Lemma 11.1.8 that φ(uPath(Fd)) = ψ(vsPath(Gd)) for any
1 6 s 6 n. �

Proposition 11.2.5 ([16, Proposition 32]). Let (F, φ) and (G,ψ) be ob-
jects in RG(E,w). If there is a nonzero L(E,w)-module homomorphism
σ : V(F,φ) → V(G,ψ), then (F, φ)� (G,ψ).
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Proof. The proposition follows from Lemma 11.2.4 and the definition of
�. �

Proposition 11.2.6 ([16, Proposition 33]). Let (F, φ) and (G,ψ) be irre-
ducible representation graphs for (E,w). Then V(F,φ)

∼= V(G,ψ) as L(E,w)-
modules if and only if (F, φ) ∼= (G,ψ).

Proof. Clearly isomorphic objects inRG(E,w) yield isomorphic L(E,w)-
modules. Hence we only have to show that V(F,φ)

∼= V(G,ψ) implies (F, φ) ∼=
(G,ψ). Suppose that V(F,φ)

∼= V(G,ψ). Then (F, φ) � (G,ψ) by Proposi-
tion 11.2.5, i.e. (F, φ) and (G,ψ) are in the same �-equivalence class C.
Since they are irreducible, it follows from Corollary 11.1.15 that (F, φ) ∼=
(SC , ζC) ∼= (G,ψ). �

11.2.2. Gradedness of the modules V(F,φ). Recall that the standard grading
on L(E,w) is a Zλ-grading where λ = sup{w(e) | e ∈ E1} if this supremum
is finite and otherwise λ = ω where ω is the smallest infinite ordinal.

Lemma 11.2.7 ( [16, Lemma 24]). Let R be a Γ-graded ring and M a
right R-module, where Γ is a totally ordered abelian group. If there is a
homogeneous element r ∈ R with deg(r) 6= 0 and 0 6= m ∈ M such that
m · r = m, then M cannot be Γ-graded.

Theorem 11.2.8 ([16, Theorem 25]). Let (F, φ) be an object in RG(E,w).
Then the L(E,w)-module V(F,φ) is graded with respect to the standard grad-
ing of L(E,w) if and only if deg(φ(p)) = deg(φ(q)) for any u, v ∈ F 0 and
p, q ∈ uPathv(Fd).

Proof. Set L := L(E,w) and V := V(F,φ). First suppose that deg(φ(p)) =

deg(φ(q)) for any u, v ∈ F 0 and p, q ∈ uPathv(Fd). Choose a u ∈ F 0.
Define a map deg : F 0 → Zλ by deg(v) = deg(φ(p)) where p ∈ uPathv(Fd).
For α ∈ Zλ set Vα :=

⊕
v∈F 0,deg(v)=αKv. Then clearly V =

⊕
α∈Zλ Vα.

Next we check that VαLβ ⊆ Vα+β for any α, β ∈ Zλ. It suffices to show
that v · p ∈ Vα+β for any v ∈ Vα ∩ F 0 and p ∈ Path(Êd) such that
deg(p) = β. Assume that v · p 6= 0. Then, by Lemma 11.2.1 there is an
x ∈ F 0 and a q ∈ vPathx(Fd) such that φ(q) = p. Since deg(v) = α, there
is a t ∈ uPathv(Fd) such that deg(φ(t)) = α. Since tq ∈ uPathx(Fd), we
have deg(x) = deg(φ(tq)) = deg(φ(t))+deg(φ(q)) = α+β. Thus x ∈ Vα+β .

Suppose now that V is a graded L-module. Assume there are u, v ∈ F 0

and p, q ∈ uPathv(Fd) such that deg(φ(p)) 6= deg(φ(q)). Set t := φ(pq∗).
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Then clearly deg(t) 6= 0 and u · t = u. It follows from Lemma 11.2.7 that
V is not graded, which is a contradiction. �

Corollary 11.2.9 ([16, Corollary 27]). Let C be a �-equivalence class.
Then the module V(TC ,ξC) is graded.

Example 11.2.10. Consider the weighted graph ve,2
$$

f,2
zz

from
Example 11.1.16. By Theorem 11.2.8, the L(E,w)-modules V(F1,φ1) and
V(F2,φ2) are graded whereas V(F3,φ3), V(F4,φ4), V(F5,φ5), V(F6,φ6) and the sim-
ple module V(F7,φ7) are not graded.

11.2.3. Simplicity of the modules V(F,φ). The lemma below is easy to check.

Lemma 11.2.11 ([16, Lemma 63]). Let W be a K-vector space and B
a linearly independent subset of W . Let ki ∈ K and ui, vi ∈ B, where
1 6 i 6 n. Then

∑n
s=1 ks(us − vs) 6∈ B.

Theorem 11.2.12 ([16, Theorem 28]). Let (F, φ) be an object in RG(E,w).
Then the following are equivalent.
(i) V(F,φ) is simple.

(ii) For any x ∈ V(F,φ) \ {0} there is an a ∈ L(E,w) such that
x · a ∈ F 0.

(iii) For any x ∈ V(F,φ)\{0} there is a k ∈ K and a p ∈ Path(Êd) such that

x · kp ∈ F 0.

(iv) (F, φ) is irreducible.

Proof. (i) ⇒ (iv). Assume that there are u 6= v ∈ F 0 such that
φ(uPath(Fd)) = φ(vPath(Fd)). Consider the submodule (u−v) ·L(E,w) ⊆
V(F,φ). Since V(F,φ) is simple by assumption, we have (u − v) · L(E,w) =
V(F,φ). Hence there is an a ∈ L(E,w) such that (u−v)·a = v. Clearly there
is an n > 1, k1, . . . , kn ∈ K× and pairwise distinct p1, . . . , pn ∈ Path(Êd)
such that a =

∑n
s=1 ksps. We may assume that (u − v) · ps 6= 0 for any

1 6 s 6 n. It follows from Lemma 11.2.1 that ps ∈ φ(uPath(Fd)) =
φ(vPath(Fd)) for any s and moreover, that (u− v) · ps = us − vs for some
distinct us, vs ∈ F 0. Hence

v = (u− v) · a = (u− v) · (
n∑
s=1

ksps) =

n∑
s=1

ks(us − vs)

which contradicts Lemma 11.2.11.
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(iv) ⇒ (iii). Let x ∈ V(F,φ) \ {0}. Then there is an n > 1, pairwise
disjoint v1, . . . , vn ∈ F 0 and k1, . . . , kn ∈ K× such that x =

∑n
s=1 ksvs. If

n = 1, then x · k−1
1 φ0(v1) = v1. Suppose now that n > 1. By assumption,

we can choose a p1 ∈ φ(v1Path(Fd)) such that p1 6∈ φ(v2Path(Fd)). Clearly
x · p1 6= 0 is a linear combination of at most n − 1 vertices from F 0.
Proceeding this way, we obtain paths p1, . . . , pm such that x·p1 . . . pm = kv
for some k ∈ K× and v ∈ F 0. Hence x · k−1p1 . . . pm = v.

(iii) ⇒ (ii). Trivial.

(ii) ⇒ (i). Let U ⊆ V(F,φ) be a nonzero L(E,w)-submodule and x ∈
U \ {0}. By assumption, there is an a ∈ L(E,w) and a v ∈ F 0 such
that v = x · a ∈ U . Let now v′ be an arbitrary vertex in F 0. Since F is
connected, there is a p ∈ vPathv′(Fd). It follows from Lemma 11.2.1 that
v′ = v · φ(p) ∈ U . Hence U contains F 0 and thus U = V(F,φ). �

11.2.4. Indecomposability of the modules V(F,φ). Recall that for a ring R,
an R-module is called indecomposable if it is non-zero and cannot be writ-
ten as a direct sum of two non-zero submodules. It is easy to see that an
R-moduleM is indecomposable if and only if the only idempotent elements
of the endomorphism ring EndR(M) are 0 and 1.

Let C be a �-equivalence class and define the representation graphs
(SC , ζC) and (TC , ξC) as in §11.1.4. Then V(SC ,ζC) is indecomposable since
it is simple. One can show that V(TC ,ξC) is also indecomposable, see the
theorem below. In general the indecomposibility of V(F,φ), for a represen-
tation graph (F, φ), depends on the ground field K, see [16, Example 34].

Theorem 11.2.13 ( [16, Theorem 43]). Let C be a �-equivalence class.
Then the L(E,w)-module V(TC ,ξC) is indecomposable.

Sketch of Proof. Recall from §11.1.4 that

T 0
C = {vp | p ∈ φ(uPath(Fd))red}

where (F, φ) is some fixed representation graph in C and u is a vertex in
F . Define the set

G :=
{
p ∈ φ(uPath(Fd))red | vp ∼ vφ(u)

}
(∼ is defined in §11.1.3). For p, p′ ∈ G we define a reduced path p ∗ p′ ∈
Path(Êd) as follows. If p, p′ ∈ G \ {φ(u)} let p ∗ p′ be the element of
Path(Êd) one gets by removing all subwords of the form eie

∗
i and e∗i ei

from the juxtaposition pp′ (if p′ = p∗, then p ∗ p′ := φ(u)). Moreover,
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define φ(u) ∗ p := p, p ∗ φ(u) := p and φ(u) ∗ φ(u) := φ(u). One can show
that (G, ∗) is a free group, see [16, Proposition 39].

Let A be the subalgebra of L(E,w) generated by the image of the group
G in L(E,w), and set W :=

⊕
p∈GKvp ⊆ V(TC ,ξC). Then W is a right A-

module where the action of A onW is induced by the action of L(E,w) on
W . Set Ā := A/ ann(W ) where ann(W ) denotes the annihilator of the A-
module W . Then W is also a right Ā-module where the action of Ā on W
is induced by the action of A onW . One can show that the K-algebra Ā is
isomorphic to the group algebra K[G], see [16, Proposition 41]. Moreover,
the A-moduleW is free of rank 1 as an Ā-module, see [16, Proposition 42].

Let ε be an idempotent endomorphism of the L(E,w)-module V(TC ,ξC).
It follows from Lemma 11.2.4 that ε(W ) = W and hence ε|W ∈ EndK(W ).
Clearly we have also ε|W ∈ EndĀ(W ). By the previous paragraph we have
EndĀ(W ) ∼= Ā ∼= K[G]. Since G is free, the group ring K[G] has no
zero divisors by [17, Theorem 12]. It follows that 0 and 1 are the only
idempotents of K[G] whence ε|W = 0 or ε|W = idW . Clearly ε(vp) =
ε(vφ(u) · p) = ε(vφ(u)) · p for any basis element vp ∈ T 0. Hence ε = 0 if
ε|W = 0 and ε = id if ε|W = idW . Thus V(TC ,ξC) is indecomposable. �

11.3. Representations for weighted Leavitt path algebras via
branching systems.

11.3.1. Branching systems for weighted graphs.

Definition 11.3.1. Let X be a set, {Rei | ei ∈ Ê1} and {Dv | v ∈ E0}
families of subsets of X and {gei : Rei ↪→ Dr(e) | ei ∈ Ê1} a family of
injections such that conditions (i)-(iii) below are satisfied.
(i) {Dv | v ∈ E0} is a partition of X (i.e. Dv ∩Du = ∅ whenever v 6= u

and
⋃
v∈E0 Dv = X).

(ii) For any v ∈ E0 and 1 6 i 6 w(v) the family {Rei | e ∈ s−1(v), w(e) >
i} forms a partition of Dv.

(iii) Set Dei := gei(Rei) for any ei ∈ Ê1. Then for any e ∈ E1 the family
{Dei | 1 6 i 6 w(e)} forms a partition of Dr(e).

We call the quadruple X = (X, {Rei}, {Dv}, {gei}) an (E,w)-branching
system.

Example 11.3.2. Suppose that (E,w) is an at most countable weighted
graph, i.e. E0 and E1 are both finite or countably infinite. By fixing some
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linear order on E0 we may write E0 = {v1, v2, . . . }. For each i set Dvi =
[i− 1, i). Clearly, such sets are disjoint. Put X =

⋃
iDvi .

Now fix a vertex vi ∈ E0 and 1 6 j 6 w(vi). The set Sij = {e ∈ s−1(vi) |
w(e) > j} is finite (as E is row-finite). By ordering this set we can rewrite
it as Sij = {ei,j,1, ei,j,2, . . . }. For each 1 6 k 6 |Sij | set

Rei,j,kj
= [i− 1 +

k − 1

|Sij |
, i− 1 +

k

|Sij |
).

It is clear that the set {Rej | e ∈ Sij} forms a partition of Dvi .
In a similar fashion fix some e ∈ E1 and let vi = r(e). For each 1 6 j 6

w(e) set

Dej = [i− 1 +
j − 1

w(e)
, i− 1 +

j

w(e)
).

Clearly, the family of sets {Dej | 1 6 j 6 w(e)} forms a partition of Dvi .
Finally, the bijections gej : Rej → Dej may be chosen arbitrary, for ex-

ample, a composition of a translation, scaling and another translation. One
checks easily that (X, {Rej}, {Dv}, {gej}) is an (E,w)-branching system.

Let X = (X, {Rei}, {Dv}, {gei}) be an (E,w)-branching system. Let
MX be the K-module of all functions X → K with finite support. We are
going to define a structure of a right L(E,w)-module on MX . In order to
simplify notations, we will abuse the notation as follows. Let Z ⊆ Y ⊆ X
and ψ : Y → K. By χZ · ψ we denote the function X → K

x 7→

{
ψ(x) if x ∈ Z
0 otherwise .

Using this convention, set for any φ ∈MX , any ei ∈ Ê1 and any v ∈ E0

φ.ei = χDei · (φ ◦ g
−1
ei ),

φ.e∗i = χRei · (φ ◦ gei),
φ.v = χDv · φ.

By linearly extending the scalar multiplication defined above, MX be-
comes a right L(E,w)-module, see [16, Theorem 53].

11.3.2. Branching systems versus representation graphs. The (E,w)-bran-
ching sytems and the representations graphs for (E,w) yield precisely the
same modules for the weighted Leavitt path algebra L(E,w) (up to iso-
morphism). This can be shown as follows.



234 R. PREUSSER

Let (F, φ) a representation graph for (E,w). Put X = F 0 and Dv =
(φ0)−1(v) for each v ∈ E0. Clearly, {Dv | v ∈ E0} is a partition of X. Fix
v ∈ E0 and a tag 1 6 i 6 w(v). For each e ∈ s−1(v) such that i 6 w(e) set

Rei = {u ∈ Dv | there exists f ∈ s−1
F (u) : φ1(f) = ei}.

Condition (i) of Definition 11.1.1 of a representation graph translates in
this setting as follows: each vertex u in Dv is contained in one and only
one Rei , where e ranges over all edges of weight at least i emitted by v. In
other words, the family {Rei | e ∈ s−1(v), w(e) > i} forms a partition for
Dv. Now fix a vertex v ∈ F 0 and an edge e ∈ r−1(v). For each 1 6 i 6 w(v)
set

Dei = {u ∈ Dv | there exists f ∈ r−1
F (u) : φ1(f) = ei}.

Condition (ii) of Definition 11.1.1 of a representation graph guarantees
that the family of sets {Dei | 1 6 i 6 w(E)} forms a partition for Dv.
Finally, fix some ei ∈ Ê1. We need to define a bijection gei : Rei → Dei .
For each u ∈ Rei there exists precisely one edge f ∈ s−1(u) ∩ (φ1)−1(ei).
Set gei(u) = r(f).

Theorem 11.3.3 ([16, Theorem 55]). The quadruple

X = (X, {Rei}, {Dei}, {gei})

defined above is an (E,w)-branching system. Moreover, the L(E,w)-mo-
dules MX and V(F,φ) are isomorphic.

Conversely, to any (E,w)-branching system X one can associate a rep-
resentation graph (F, φ) for (E,w) such that the L(E,w)-modulesMX and
V(F,φ) are isomorphic, see [16, Theorem 56 and Corollary 57].

§12. Open problems

Below we mention some open problems regarding weighted Leavitt path
algebras.

• The Reduction Theorem and the Uniqueness Theorems belong
to the most important results for unweighted Leavitt path alge-
bras (see e.g. [2, Chapter 2]). Can one find analogous results for
weighted Leavitt path algebras?
• While the (graded) ideal structure of unweighted Leavitt path al-

gebras is well understood (see [2, Chapter 2]), not much is known
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about the (graded) ideal structure of weighted Leavitt path alge-
bras. Can one find a “nice” classification of the ideals and graded
ideals of a weighted Leavitt path algebra?

• It is known that an unweighted Leavitt path algebra is semiprim-
itive, i.e. its Jacobson radical is zero. Moreover, the socle of an
unweighted Leavitt path algebra has been computed (see again [2,
Chapter 2]). For weighted Leavitt path algebras it is only known
in some cases that the Jacobson radical is zero (cf. Section 8). Can
one find a weighted Leavitt path algebras that is not semiprimi-
tive? Can one determine the left or right socle of a weighted Leavitt
path algebra?

• As mentioned in Section 7, the zero component of an unweighted
Leavitt path algebra (with respect to its standard grading) is an
ultramatricial algebra, i.e. a union of an increasing chain of finite
products of matrix algebras over a field. Can one find a “good”
description of the zero component of a weighted Leavitt path al-
gebra?

• It is known which weighted graphs (E,w) have the property that
L(E,w) is isomorphic to an unweighted Leavitt path algebra, see
Section 5. Leavitt path algebras of separated graphs and Kumjian-
Pask algebras are graph algebras generalising the unweighted Leav-
itt path algebras, see [6] respectively [9]. Which weighted Leavitt
path algebras are isomorphic to a Leavitt path algebra of a sepa-
rated graph, or to a Kumjian-Pask algebra?
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