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Abstract. This paper is the third one in the series of the works
dedicated to the geometry of 2-tori, i.e. subgroups conjugate to the
diagonal subgroup of the form

{
diag(ε, ε, 1, . . . , 1), ε ∈ K∗

}
, in the

general linear group GL(n,K) over the field K. In the first one
we proved a reduction theorem establishing that a pair of 2-tori is
conjugate to such a pair in GL(6,K), and classified such pairs that
cannot be embedded in GL(5,K). In the second we describe the
orbits and spans of 2-tori in GL(5,K), that cannot be embedded in
GL(4,K). Here we consider the most difficult case of GL(4,K) and
classify the orbits of GL(4,K) acting by simultaneous conjugation
on pairs of 2-tori.

In memory of N. A. Vavilov

Introduction

In the present paper we move on to the last step of the description
of orbits and spans for pairs of 2-tori in GL(n,K). Namely, we classify
the orbits of GL(4,K) acting by simultaneous conjugation on such pairs.
Because of a large amount of calculations the description of spans for pairs
of 2-tori will be considered in the next paper.

Recall that 2-tori in GL(n,K) are the subgroups conjugate to the diag-
onal subgroup of the following form

{diag(ε, ε, 1, . . . , 1), ε ∈ K∗} .
From the general theory viewpoint 2-tori are microweight tori correspond-
ing to the fundamental weight ω2 in the extended Chevalley group of type
An−1.

This paper is the third in the series of works dedicated to the geometry of
microweight tori. In the previous paper [4] we proved a reduction theorem
establishing that a pair of 2-tori is conjugate to such a pair in GL(6,K)
and classified such pairs that cannot be embedded in GL(5,K). In the
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paper and [9] we described the orbits and spans of 2-tori in GL(5,K), that
cannot be embedded in GL(4,K). Note also that the orbits of 2-tori in
GL(3,K) coincides with the orbits 1-tori and are described in [6] (see also
Lemma 1 [4]).

Thus it remains to study the most difficult case of a pair 2-tori when it
is embedded in GL(4,K) and cannot be embedded in GL(3,K).

Since the present paper is a sequel of the works listed before we do not
discuss here context of this problem and related question. The reader can
find all of it and many references in the survey [8] and in the detailed
introduction of [9]. Here we only mention the paper [1] and surveys [5] and
[7].

The idea of this cycle of papers was suggested by N. A. Vavilov more
than ten years ago. The starting point of this research is his work [6].
The next three papers were written by N. A. Vavilov jointly with the
first author. To our deep regret prof. N. A. Vavilov can not finish this
project. The authors express their most sincere thanks to him for setting
the problem and numerous inspiring discussions.

§1 Notation

All our notations are the same as in [4] and [9], but for reader’s conve-
nience we cite them briefly here.

Let K be a field and K∗ = K\{0} be the multiplicative group of it.
Further, G = GL(n,K) is the general linear group of degree n over K.
By D = D(n,K) we denote the subgroup of diagonal matrices in G, and
N = N(n,K) denotes the subgroup of monomial matrices in G.

The quotient group N/D is isomorphic to Sn, the symmetric group on
n letters. Denote by W =Wn the group of permutation matrices in G. We
identify Sn and Wn via the isomorphism π 7→ wπ, where wπ is the matrix
whose entry in the position (i, j) is δi,πj .

Let V = Kn be the right vector space of columns of height n over K.
Usually we identify a matrix g ∈ G with the corresponding linear map of
the space Kn. Here g acts on the left . To stress that we are using this
geometric viewpoint, in such cases we call elements of G transformations.

By e1, . . . , en we denote the standard base of Kn. Here ei is the column,
whose i-th component equals 1, whereas all other components are equal
to 0. The dual space V ∗ = nK is left vector space of rows of length n. By
f1, . . . , fn we denote the standard base of nK. It is dual to e1, . . . , en with
respect to the standard pairing, V ∗ × V −→ K.
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Denote by eij a standard matrix unit, i.e. the matrix whose entry in the
position (i, j) is 1 and all the remaining entries are zeroes. Next, xij(ξ) =
e + ξeij for ξ ∈ K and 1 6 i 6= j 6 n denotes elementary transvection.
For given i 6= j we consider the corresponding unipotent root subgroup
Xij = {xij(ξ), ξ ∈ K}. The subgroup E(n,K) of G, generated by all Xij ,
1 6 i 6= j 6 n, is called the elementary subgroup of G. In case of the field,
it coincides with the special linear group SL(n,K).

Similarly, by di(ε) = e + (ε − 1)eii we denote an elementary pseudo-
reflection. For a given i we consider the corresponding 1-torus

Qi = {di(ε), ε ∈ K∗}.

Clearly, GL(n,K) is generated by E(n,K) and Q1.
The largest subspace W 6 V such that g|W = id is called the axis of g.

Similarly, the subspace U = {gv − v | v ∈ Kn} is called the centre of g.
Clearly, dimU = m and dimW = n−m. Many useful properties of it can
be found in [2].

The most important individual elements of GL(n,K) are the 1-dimen-
sional tranformations, which plays the main role in studying linear groups.
The general form of an 1-dimensional transformation is

xvu(ξ) = e+ vξu, v ∈ Kn, u ∈ nK, ξ ∈ K.

In this case the centre of xvu(ξ) is the space generated by v, whereas its axis
is the hyperplane orthogonal to u. Let uv = δ. If δ = 0, the transformation
xvu(ξ) is a transvection for all ξ ∈ K. If δ 6= 0, xvu(ξ) is a pseudo-reflection
for all ξ ∈ K \ {−1}.

As we noted, the orbits and spans by a pair of 1-tori are described in [6].
This description is also reproduced in paper [4].

The elementary 2-torus Q = QU0,W0
= {diag(ε, ε, 1, . . . , 1), ε ∈ K∗} is

defined by the subspaces U0 = 〈e1, e2〉 and W0 = 〈f1, f2〉. It means, that
elements of it are

d0(ε) = e+ e1(ε− 1)f1 + e2(ε− 1)f2, ε ∈ K∗.

It is clear that

gQUW g
−1 = QgU,Wg−1 , g ∈ GL(n,K).

Therefore any 2-torus (see [4]) is conjugated to the elementary 2-torus
Q. The elements of an arbitrary 2-torus are the elements of the following
form

d(ε) = e+ u1(ε− 1)v1 + u2(ε− 1)v2, ε ∈ K∗,
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where ui = gei, vi = fig
−1, 1 6 i 6 2, for some matrix g ∈ GL(n,K).

Thus each 2-torus is completely determined by the subspaces U = 〈u1, u2〉
and W = 〈v1, v2〉.

The subspace U is precisely the centre of QUW , in the sense of being the
centre of every d(ε) ∈ QUW , ε 6= 1. Similarly, the subspaceW⊥ orthogonal
to W 6 nK with respect to the canonical pairing nK × Kn −→ K, is
precisely the axis of QUW , in the above sense. Oftentimes we loosely refer
to W itself as the axis of QUW .

Consider a pair of 2-tori X and Y with centers U1 and U2 and with axes
W1 and W2, respictively. In paper [4] we introduce the following invariants
for a pair of m-tori.

• r = r(X,Y ) = dim(U1 + U2),

• s = s(X,Y ) = dim(W1 +W2).

• p = p(X,Y ) = dim(U1 ∩W⊥2 ),

• q = q(X,Y ) = dim(U2 ∩W⊥1 ).

• t = t(X,Y ) = max
(
dim

(
(U1+U2)∩(W1+W2)

⊥),dim (⊥(U1+U2)∩

(W1 +W2)
))

.

Clearly that in our case 2 6 r, s 6 4, 0 6 p, q 6 2 and 0 6 t 6 2.
In [4] we proved the reduction theorem for the pairs of m-tori. It follows

from it that any pair of 2-tori (X,Y ) can be embedded in GL(6,K) by
simultaneous conjugation. We call an orbit of a pair of 2-tori (X,Y ) the
orbit in GL(n,K), if the pair X, Y is embedded in GL(n,K) by simulta-
neous conjugation and it can not be embedded in GL(n− 1,K). It follows
from the reduction theorem that n can take values 3, 4, 5 or 6.

Taking into account the paper [9] it remains to consider the orbits in
GL(4,K). Indeed this is the most difficult and general case. In this paper
we classify the orbits for a pair of 2-tori in GL(4,K). The next paper will
be dedicated to calculation of their spans.

§2. The bases of orbits

Our aim is to describe orbits of pairs of 2-tori in GL(4,K) under simul-
taneous conjugation

(X,Y ) 7→ (gXg−1, gY g−1), g ∈ G.
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Let X, Y be 2-tori in GL(4,K). Denote by U1, U2 and W1, W2 their
centers and axes, respectively. We fix some bases in these subspaces

U1 = 〈u1, u2〉, U2 = 〈u3, u4〉.

W1 = 〈w1, w2〉,W2 = 〈w3, w4〉.

Let
U1 + U2 6 〈e1, e2, e3, e4〉,

W1 +W2 6 〈f1, f2, f3, f4〉.

Lemma 1. Let X and Y be 2-tori in GL(4,K). Assume that at least one
of r and s is 2, then the orbit (X,Y ) is determined by the following bases

For r = 2, s = 2, we have

u1 = e1, w1 = f1,

u2 = e2, w2 = f2,

u3 = e1, w3 = f1,

u4 = e2, w4 = f2.

(r2s2a)

For r = 2, s = 3, we have

u1 = e1, w1 = f1 + f3,

u2 = e2, w2 = f2 + λf3,

u3 = e1, w3 = f1,

u4 = e2, w4 = f2,

(r2s3a)

where λ = 0, 1.
For r = 2, s = 4, we have

u1 = e1, w1 = f1 + f3,

u2 = e2, w2 = f2 + f4,

u3 = e1, w3 = f1,

u4 = e2, w4 = f2.

(r2s4a)

Proof. Assume that r = 2, there are three possible values of s. That is,
either s = 2, or s = 3, or s = 4.

We can immediately assume that u1 = e1, u2 = e2, then u3 = e1,
u4 = e2. According to Lemma 2 in [4], if at least one of r or s is 2, then
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p = q = 0. Conjugating by X13, X14, X23, X24, we can further obtain that
w3 = f1, w4 = f2. Thus, we assume from the beginning that

w1 = f1 + α3f3 + α4f4,

w2 = f2 + β3f3 + β4f4.

• If s = 2, then α3 = α4 = β3 = β4 = 0. We have the base (r2s2a).
• If s = 3, then the vectors (α3, α4) and (β3, β4) are linearly dependent

and non-zero, it follows that ∣∣∣∣α3 α4

β3 β4

∣∣∣∣ = 0.

Since at least one of αi, βi, i = 3, 4 is non-zero, due to conjugation by
suitable element of the Weyl group, we can consider that α3 6= 0. And
conjugation by d3(α3) leads to α3 = 1. As a result of conjugation by the
element from X34, we get α4 = 0, β4 = 0. Therefore, we get the following
base

u1 = e1, w1 = f1 + f3,

u2 = e2, w2 = f2 + βf3,

u3 = e1, w3 = f1,

u4 = e2, w4 = f2,

where β ∈ K.
Suppose that β 6= 0. Due to conjugation by d1(β)d3(β), we may consider

that β = 1. Finally, we have the base (r2s3a).
• Let s = 4, then the vectors (α3, α4) and (β3, β4) are linearly inde-

pendent and non-zero. Since at least one of αi, βi, i = 3, 4 is non-zero,
conjugating by permutation matrix ω34, we can suppose that β4 6= 0. And
conjugation by d4(β4) leads to β4 = 1. As a result of conjugation by the
element from X43, we get β3 = 0. Therefore α3 can not be equal to zero.
Acting by the elements of d3(α3), x34(α4), we can obtain that α3 = 1,
α4 = 0. Finally, we have the base (r2s4a).

It remains to note that if s = 2 we just need to interchange the rows
and columns of the bases (r2s3a) and (r2s4a). So we have analogous bases
(r3s2) and (r4s2), respectively. �

Lemma 2. Let X and Y be 2-tori in GL(4,K). Assume that p = 0, at
least one of r and s is 3 and r, s > 3, then the orbit (X,Y ) is determined
by the following bases
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For r = 3, s = 3, we have

u1 = e1, w1 = f1 + f4,

u2 = e2, w2 = f2 + βf4,

u3 = e1 + e3, w3 = f1,

u4 = e2 + λe3, w4 = f2,

(r3s3a)

where β ∈ K, λ = 0, 1.

u1 = e1, w1 = f1 + αf3,

u2 = e2, w2 = f2 + βf3,

u3 = e1 + e3, w3 = f1,

u4 = e2 + λe3, w4 = f2,

(r3s3b)

where λ = 0, 1, α ∈ K∗, β ∈ K.
For r = 3, s = 4, we have

u1 = e1, w1 = f1 + αf3 + f4,

u2 = e2, w2 = f2 + βf3,

u3 = e1 + e3, w3 = f1,

u4 = e2 + λe3, w4 = f2,

(r3s4a)

where λ = 0, 1, α ∈ K, β ∈ K∗.
For r = 4, s = 3, we have

u1 = e1, w1 = f1 + f3,

u2 = e2, w2 = f2 + λf3,

u3 = e1 + αe3 + e4, w3 = f1,

u4 = e2 + βe3, w4 = f2,

(r4s3a)

where λ = 0, 1, α ∈ K, β ∈ K∗.

Proof. Suppose that r = 3. Since p = 0 we can assume that u1 = e1,
u2 = e2, w3 = f1, w4 = f2. As in Lemma 1 in case of s = 3 we get

u3 = e1 + e3, u4 = e2 + λe3,

where λ = 0, 1.
Next, we have

w1 = f1 + α3f3 + α4f4,

w2 = f2 + β3f3 + β4f4.
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• Let s = 3. If α3 = β3 = 0, we can consider that α4 6= 0. Conjugating
by d4(α4), we even have that α4 = 1. Put β = β4, we have the base (r3s3a).

Suppose α3 6= 0 and α4 6= 0, then we act by the element from X34 and
so that α4 = 0. Therefore we have β4 = 0. Then we obtain the base

w1 = f1 + αf3,

w2 = f2 + βf3,

where α ∈ K∗, β ∈ K.
This is the base (r3s3b).
• Let s = 4. We may assume that β3 6= 0. Conjugation by suitable

element from X34 leads to β4 = 0, then α4 can not be zero. Conjugating
by diagonal matrix d4(α4), we get α4 = 1. Then we obtain the base (r3s4a).
• Suppose that r = 4, s = 3. We just need to interchange the rows and

columns of the base (r3s4a), which gives the base (r4s3a). �

It is easily seen that in the case of the base (r3s3a) W⊥1 = 〈e1 + βe2 −
e4, e3〉 and q = 0. In the cases of the bases (r3s3b), (r3s4a) and (r4s3a) the
intersection of U2 and W⊥1 has dimension 1 only if α+ λβ + 1 = 0. In all
other cases q = 0.

Lemma 3. Let X and Y be 2-tori in GL(4,K). Assume that p = 0,
r = s = 4, then the orbit (X,Y ) is determined by the following bases

u1 = e1, w1 = f1 + αf3 + f4,

u2 = e2, w2 = f2 + γf3 + δf4,

u3 = e1 + e3, w3 = f1,

u4 = e2 + e4, w4 = f2,

(r4s4a)

where α, γ, δ ∈ K and γ 6= αδ.

u1 = e1, w1 = f1 + αf3,

u2 = e2, w2 = f2 + δf4,

u3 = e1 + e3, w3 = f1,

u4 = e2 + e4, w4 = f2,

(r4s4b)

where α, δ ∈ K∗.
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Proof. Since p = 0 we can assume at first that
u1 = e1, w1 = f1 + α3f3 + α4f4,

u2 = e2, w2 = f2 + β3f3 + β4f4,

u3 = e1 + γ3e3 + γ4e4, w3 = f1,

u4 = e2 + δ3e3 + δ4e4, w4 = f2.

It follows from r = 4 that ∣∣∣∣γ3 γ4
δ3 δ4

∣∣∣∣ 6= 0.

Conjugating by permutation matrix ω34, we can suppose that δ4 6= 0. And
conjugation by d4(δ−14 ) leads to δ4 = 1. Then acting by the element from
X34, we get δ3 = 0, hence γ3 can not be zero. After conjugating by d3(γ−13 ),
x43(−γ4), we obtain that γ3 = 1, γ4 = 0. Thus, we have

u3 = e1 + e3, u4 = e2 + e4.

Since s = 4, then the coefficients α3, α4, β3, β4 should satisfy the
condition ∣∣∣∣α3 α4

β3 β4

∣∣∣∣ 6= 0.

That is, α3β4 6= α4β3. Thus, we obtain the following base
u1 = e1, w1 = f1 + αf3 + βf4,

u2 = e2, w2 = f2 + γf3 + δf4,

u3 = e1 + e3, w3 = f1,

u4 = e2 + e4, w4 = f2,

where α, β, γ, δ ∈ K and αδ 6= βγ.
If one of β and γ is different from zero, conjugating by suitable elements

from the Weyl group, we may assume that β 6= 0. Due to conjugation by
d2(β)d4(β), we get β = 1. Finally, we have the base (r4s4a).

If β = γ = 0, then α, δ 6= 0. Thus, we have the base (r4s4b). �

In the case of the base (r4s4a) one has W⊥1 = 〈e1+δe2−e4, αe1+γe2−
e3〉. Direct calculations show that q = 1 if γ = (α+ 1)(δ + 1). In all other
cases q = 0. In the case (r4s4b) W⊥1 = 〈αe1 − e3, δe2 − e4〉 and we have
q = 2 if α = δ = −1, q = 1 if α = −1, δ 6= −1 or δ = −1, α 6= −1 and
q = 0 in other cases.

Further, by interchanging X and Y here, we additionally obtain the
following orbits.
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Lemma 4. Let X and Y be 2-tori in GL(4,K). Assume that q = 0 and
p 6= 0. Then the orbit (X,Y ) is determined by the following bases

u1 = e1 + e3, w1 = f1,

u2 = e2 + λe3, w2 = f2,

u3 = e1, w3 = f1 − (1 + λβ)f3,

u4 = e2, w4 = f2 + βf3,

(r3s3b’)

where β ∈ K, β 6= −1, λ = 0, 1.

u1 = e1 + e3, w1 = f1,

u2 = e2 + λe3, w2 = f2,

u3 = e1, w3 = f1 − (1 + λβ)f3 + f4,

u4 = e2, w4 = f2 + βf3,

(r3s4a’)

where β ∈ K∗, λ = 0, 1.

u1 = e1 − (1 + λβ)e3 + e4, w1 = f1,

u2 = e2 + βe3, w2 = f2,

u3 = e1, w3 = f1 + f3,

u4 = e2, w4 = f2 + λf3,

(r4s3a’)

where β ∈ K∗, λ = 0, 1.

u1 = e1 + e3, w1 = f1,

u2 = e2 + e4, w2 = f2,

u3 = e1, w3 = f1 + αf3 + f4,

u4 = e2, w4 = f2 + γf3 + δf4,

(r4s4a’)

where α, γ, δ ∈ K and γ 6= αδ, γ = (α+ 1)(δ + 1).

u1 = e1 + e3, w1 = f1,

u2 = e2 + e4, w2 = f2,

u3 = e1, w3 = f1 + αf3,

u4 = e2, w4 = f2 + δf4,

(r4s4b’)

where α, δ ∈ K∗ and at least one of them is equal to −1.

Thus it remains to consider the pairs (X,Y ) when the both invariants
p and q are different from zero.
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Lemma 5. Let X and Y be 2-tori in GL(4,K). Assume that q = p = 1,
then the orbit (X,Y ) is determined by the following bases

For r = 3, s = 4, we have

u1 = e1, w1 = f1 + λ1f3 + f4,

u2 = e2, w2 = f2 + λ1λ2f3,

u3 = e1 + λ2e2, w3 = f1,

u4 = e3, w4 = f3,

(p1q1a)

where λ1,2 = 0, 1.
For r = 4, s = 3, we have

u1 = e1, w1 = f1 + λ1f2,

u2 = e3, w2 = f3,

u3 = e1 + λ2e3 + e4, w3 = f1,

u4 = e2 + λ1λ2e3, w4 = f2,

(p1q1b)

where λ1,2 = 0, 1.
For r = 4, s = 4, we have

u1 = e1, w1 = f1 − f4,
u2 = e2, w2 = f2,

u3 = e1 + e4, w3 = f1,

u4 = e3, w4 = f3.

(p1q1c)

Proof. Let a non-zero vector u lie in the intersection U1 ∩W⊥2 , due to
suitable conjugation we may assume that u = e2. It follows that the co-
efficients at f2 of w3 and w4 must be equal to zero. Then conjugating by
the elements from X13, X14, X34, we can further assume that u1 = e1,
u2 = e2, w3 = f1, w4 = f3. Next, we have

u3 = e1 + γ2e2 + γ4e4, w1 = f1 + α3f3 + α4f4.

u4 = δ2e2 + e3 + δ4e4, w2 = f2 + β3f3 + β4f4.

• Suppose that r = 3, then γ4 = δ4 = 0. Conjugating by x23(−δ2), we
get that δ2 = 0, so

u3 = e1 + γe2, u4 = e3,

where γ ∈ K.
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Next consider w1 and w2. Due to the conjugation by x24(β4), we can
assume that β4 = 0. Since our orbit is in GL(4,K), then α4 6= 0, thus

w1 = f1 + αf3 + βf4, w2 = f2 + δf3,

where α, δ ∈ K, β ∈ K∗.
Next we have q = 1. Due to direct calculations it follows that δ = αγ.

Hence we obtain the following base

u1 = e1, w1 = f1 + αf3 + βf4,

u2 = e2, w2 = f2 + αγf3,

u3 = e1 + γe2, w3 = f1,

u4 = e3, w4 = f3,

where γ, α ∈ K, β 6= 0.
If γ = 0, α = 0, conjugation by d4(β) leads to β = 1.
If γ = 0, α 6= 0, conjugation by d3(α)d4(β) leads to α = 1, β = 1.
If γ 6= 0, α 6= 0, conjugation by d1(γ)d3(αγ)d4(βγ) leads to α = 1,

β = 1, γ = 1.
Finally, we obtain the base (p1q1a).
• For r = 4, s = 3, we interchange the rows and columns of the base

(p1q1a), which give us the base (p1q1b).
• For r = s = 4, one of coefficients γ4 and δ4 is different from zero,

we assume that γ4 6= 0. Conjugation by d4(γ
−1
4 ) leads to γ4 = 1, then

conjugating by x43(−δ4), x24(−γ2), x23(−δ2), we get δ4 = 0, γ2 = 0,
δ2 = 0. Thus, we have

u3 = e1 + e4, u4 = e3.

Since s = 4, then at least one of α4 and β4 is different from zero, we
assume α4 6= 0. Due to the conjugation from X23, we can assume that
β3 = 0. Thus, we obtain

w1 = f1 + αf3 + βf4, w2 = f2 + δf4,

where β ∈ K∗, α, δ ∈ K.
We have q = 1. So direct calculations show that α = 0, β = −1, δ = 0.

Thus we get the base (p1q1c). �

Lemma 6. Let X and Y be 2-tori in GL(4,K). Suppose that one of p and
q is 2, then r = s = 4, and the orbit (X,Y ) is determined by the following
bases
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For p = 2, q = 0, we have

u1 = e1, w1 = f1 + αf3 + f4,

u2 = e2, w2 = f2 + γf3 + δf4,

u3 = e3, w3 = f3,

u4 = e4, w4 = f4,

(p2q0a)

where α, γ, δ ∈ K and αδ 6= γ.
For p = 2, q = 1, we have

u1 = e1, w1 = f1 + αf3 + f4,

u2 = e2, w2 = f2 + αδf3 + δf4,

u3 = e3, w3 = f3,

u4 = e4, w4 = f4,

(p2q1a)

where α, δ ∈ K.
For p = 2, q = 2, we have

u1 = e1, w1 = f1,

u2 = e2, w2 = f2,

u3 = e3, w3 = f3,

u4 = e4, w4 = f4.

(p2q2a)

For p = 0, q = 2, we have

u1 = e3, w1 = f3,

u2 = e4, w2 = f4,

u3 = e1, w3 = f1 + αf3 + f4,

u4 = e2, w4 = f2 + γf3 + δf4,

(p0q2a)

where α, γ, δ ∈ K and αδ 6= γ.
For p = 1, q = 2, we have

u1 = e3, w1 = f3,

u2 = e4, w2 = f4,

u3 = e1, w3 = f1 + αf3 + f4,

u4 = e2, w4 = f2 + αδf3 + δf4,

(p1q2a)

where α, δ ∈ K.
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Proof. Suppose that p = 2, then U1 = W⊥2 , and we have U1 = 〈e1, e2〉,
W2 = 〈f3, f4〉. One has

u1 = e1, w1 = f1 + α3f3 + α4f4,

u2 = e2, w2 = f2 + β3f3 + β4f4,

u3 = e3 + γ1e1 + γ2e2, w3 = f3,

u4 = e4 + δ1e1 + δ2e2, w4 = f4,

where γi, δi, αj , βj ∈ K, i = 1, 2, j = 3, 4. It is clear that r = s = 4.
Conjugating by the elements from X13, X23, X14, X24 we get γi = δi = 0,
i = 1, 2.

Next, consider the intersection of the subspacesW⊥1 and U2. The vector
lying in W⊥1 has the form (−α3t− α4s,−β3t− β4s, t, s)t, where t, s ∈ K,
the vector of U2 has the form (0, 0, k1, k2)

t, where k1,k2 ∈ K. Thus the
values of q depend on the dimension of the solution subspace of the linear
system Ax = 0, x = (t, s, 0, 0)t, where

A =

[
α β
γ δ

]
.

and α = −α3, β = −α4, γ = −β3, δ = −β4.
• Suppose that A = 0, then q = 2. Thus, we have the base (p2q2a).
Now let one of the coefficients α, β, γ or δ be different from zero. Con-

jugating by permutation matrix, we may assume that β 6= 0. Conjugation
by d4(β) leads to β = 1.
• Suppose that αδ = βγ, it means rankA = 1. Then q = 1 and we have

the base (p2q1a).
• Suppose αδ 6= βγ, rankA = 2. Then the system has only zero solution,

i.e. q = 0. We have the base (p2q0a).
Finally, by interchanging X and Y , we obtain the bases (p0q2a) and

(p1q2a). �

§3. The classification of orbits

To finally figure out the orbits of pairs of 2-tori X and Y , we introduce
additional invariants (see [6])

a = a(X,Y ) =
(w1, u3)(w3, u1)

(w1, u1)(w3, u3)
, b = b(X,Y ) =

(w2, u3)(w3, u2)

(w2, u2)(w3, u3)
,

c = c(X,Y ) =
(w1, u4)(w4, u1)

(w1, u1)(w4, u4)
, d = d(X,Y ) =

(w2, u4)(w4, u2)

(w2, u2)(w4, u4)
.
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At this time the parameters a, b, c, d are determined for each pair
(X,Y) up to permutation by the elements (12)(34), (13)(24), (14)(23) of
Vierergruppe.

Consider the set {(wi, uj), (wj , ui), i = 1, 2, j = 3, 4}. Since the torus
does not determine the bases of the axis and center uniquely, the elements
(wi, uj) can not be taken as invariants. But they preserve non-zero or zero
value under conjugation. This allows us, for a pair of 2-tori X and Y , to
introduce another invariant e = e(X,Y ) equal to the number of non-zero
elements of a given set.

Theorem 1. Let X, Y be 2-tori in GL(4,K). Suppose that r = 3, s = 3
and one of invariants p or q is equal to zero, then the orbit (X,Y) is
uniquely determined by the following Table 1.

Table 1. For r = 3, s = 3.

a d e p q base
1 1 1 4 0 0 (r3s3a)

2 0 0 4 0 0 (r3s3b), α = −1, λ = 1, β = −1
3 0 1 + β 5 0 0 (r3s3b), α = −1, λ = 1, β 6= 0,−1
4 1 + α 1 5 0 0 (r3s3b), α 6=0,−1; λ=0, β 6=0 or λ=1, β = 0

5 1+α 1 4 0 0 (r3s3b), α 6=0,−1, λ=0, β=0
6 1 + α 0 5 0 0 (r3s3b), α 6= 0,−1, λ = 1, β = −1
7 1+α 1+β 6 0 0 (r3s3b), α 6=0,−1, λ=1, β 6=0,−1, 1+α+β 6=0
8 0 1 3 0 1 (r3s3b), α = −1, λ = β = 0

9 0 1 4 0 1 (r3s3b), α = −1; λ = 0, β 6= 0 or λ = 1, β = 0
10 1+α −α 6 0 1 (r3s3b), α 6=0,−1, λ=1, β 6=0,−1, 1+α+ β=0
11 0 1 3 1 0 (r3s3b′), λ = 0, β = 0

12 0 1 4 1 0 (r3s3b′), λ = 0, β 6= 0,−1 or λ = 1, β = 0
13 −β 1 + β 6 1 0 (r3s3b′), λ = 1, β 6= 0,−1

In all cases b = c = 0.

Proof. From lemma 2, we have two bases (r3s3a) and (r3s3b) for the
case r = 3, s = 3. Now we calculate specified invariants for these two
bases. Direct calculations show that q = 0, except for base (r3s3b) at
1 + α+ βλ = 0. Next, we calculate these invariants in detail.

For the base (r3s3a), direct calculations give row 1 on the Table 1.
For the case (r3s3b), we have

a =
1 · (1 + α)

1 · 1
= 1 + α, b =

0 · β
1 · 1

= 0,
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c =
0 · αλ
1 · 1

= 0, d =
1 · (1 + βλ)

1 · 1
= 1 + βλ,

thus α, λ and β determine the value of e. Furthermore, if 1+α+ βλ = 0,
then p = 0, q = 1. Finally, we obtain 2–10 on the table 1.

For the case (r3s3b’), we have

a = −βλ, b = 0, c = 0, d = 1 + βλ,

thus λ and β determine the value of e. Finally, we obtain 11–13 on the
Table 1. �

Theorem 2. Let X, Y be 2-tori in GL(4,K). Suppose that at least one
of r and s is 3 and r, s > 3, and one of invariants p or q is equal to zero,
then the orbit (X,Y) is uniquely determined by the following Table 2 and 3.

Table 2. For r = 3, s = 4.

a d e p q base
1 0 1 4 0 1 (r3s4a), α = −1, λ = 0, β 6= 0
2 1 0 4 0 1 (r3s4a), λ = 1, α = 0, β = −1
3 1+α −α 6 0 1 (r3s4a), λ=1, α 6=0,−1, β 6=0,−1, 1+α+βλ=0
4 1 1 5 0 0 (r3s4a), α = 0, λ = 0, β 6= 0

5 1 + α 1 5 0 0 (r3s4a), α 6= 0,−1, λ = 0, β = −1
6 1 1 + β 5 0 0 (r3s4a), α = 0, λ = 1, β 6= 0,−1
7 0 0 4 0 0 (r3s4a), α = −1, λ = 1, β = −1
8 0 1 + β 5 0 0 (r3s4a), α = −1, λ = 1, β 6= 0,−1
9 1 + α 0 5 0 0 (r3s4a), α 6= 0,−1, λ = 1, β = −1
10 1+α 1+β 6 0 0 (r3s4a), α 6=0,−1, β 6=0,−1, λ=1, 1+α+βλ 6=0
11 0 1 4 1 0 (r3s4a′), λ = 0, β 6= 0

12 1 0 4 1 0 (r3s4a′), β = −1,λ = 1
13 −β 1 + β 6 1 0 (r3s4a′), β 6= 0,−1, λ = 1

In all cases b = c = 0.

Proof. From Lemma 2, for the case r = 3, s = 4, we have the base (r3s4a).
Direct calculations show that q = 0, except for base (r3s4a) at 1+α+βλ=0.
Next, we calculate these invariants in detail.

For the base (r3s4a), we have

a = 1 + α, b = 0, c = 0, d = 1 + βλ,

thus α, λ and β determine the value of e. Furthermore, if 1 + α + δ 6= 0,
then p = 0, q = 1. Finally, we obtain 1–10 on the Table 2.

For the base (r3s4a’), we obtain

a = −βλ, b = 0, c = 0, d = 1 + βλ,
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thus λ and β determine the value of e. Finally, we obtain 11–13 on the
Table 2.

For the case r = 4, s = 3, by interchanging X and Y , we can get a
similar table 3 that corresponds to Table 2 just changing the positions of
p and q. �

Theorem 3. Let X, Y be 2-tori in GL(4,K). Suppose that r = 4, s = 4
and at least one of invariants p or q is equal to zero, then the orbit (X,Y)
is uniquely determined by the following Table 4.

Table 3. For r = 4, s = 3.

a d e p q base
1 0 1 4 1 0 (r4s3a), α = −1, λ = 0, β 6= 0
2 1 0 4 1 0 (r4s3a), λ = 1, α = 0, β = −1
3 1+α −α 6 1 0 (r4s3a), λ=1, α 6=0,−1, β 6=0,−1, 1+α+βλ=0

4 1 1 5 0 0 (r4s3a), α = 0, λ = 0, β 6= 0
5 1 + α 1 5 0 0 (r4s3a), α 6= 0,−1, λ = 0, β = −1
6 1 1 + β 5 0 0 (r4s3a), α = 0, λ = 1, β 6= 0,−1
7 0 0 4 0 0 (r4s3a), α = −1, λ = 1, β = −1
8 0 1 + β 5 0 0 (r4s3a), α = −1, λ = 1, β 6= 0,−1
9 1 + α 0 5 0 0 (r4s3a), α 6= 0,−1, λ = 1, β = −1
10 1+α 1+β 6 0 0 (r4s3a), α 6=0,−1, β 6=0,−1,λ=1,1+α+βλ 6=0

11 0 1 4 0 1 (r4s3a′), λ = 0, β 6= 0
12 1 0 4 0 1 (r4s3a′), β = −1, λ = 1
13 −β 1 + β 6 0 1 (r4s3a′), β 6= −1, λ = 1

In all cases b = c = 0.

Proof. For the base (r4s4a), we have

a = 1 + α, b = 0, c = 0, d = 1 + δ,

thus α, δ and γ determine the value of e. Furthermore, if 1 + α + δ 6= 0,
then p = 0, q = 1.

For the base (r4s4b), we have

a = 1 + α, b = 0, c = 0, d = 1 + δ,

thus α and δ determine the value of e. Furthermore, if one of α and δ is
equal to −1, then p = 0, q = 1. If α = δ = −1, then p = 0, q = 2 .

For the base (r4s4a’), we obtain

a = 1 + α, b = 0, c = 0, d = 1 + δ,

thus α and δ determine the value of e.
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For the base (r4s4b’), if one of α and δ is equal to −1, then p = 1, q = 0.
If α = δ = −1, then p = 2, q = 0 . �

From Lemma 5, when p = q = 1, direct calculations give us the following
theorem.

Theorem 4. Let X, Y be 2-tori in GL(4,K). Suppose that p = q = 1,
then the orbit (X,Y ) is uniquely determined by the following Table 5.

Table 4. For r = 4, s = 4.

a d e p q base
1 1 0 5 0 0 (r4s4a), α = −1, γ 6= 0, δ = 0

2 1 1+δ 6 0 0 (r4s4a), α = 0, γ 6= 0,
δ 6= 0,−1, γ 6= (α+1)(δ+1)

3 1 1 6 0 0 (r4s4a), α = 0, γ 6= 0, 1, δ = 0

4 0 0 4 0 0 (r4s4a), α = −1, γ 6= 0, 1, δ = −1
5 0 1+δ 5 0 0 (r4s4a), α 6= 0,−1, γ 6= 0, δ = −1
6 1+α 1+δ 5 0 0 (r4s4a), α 6=0,−1, γ=0, δ 6=0,−1
7 1+α 1+δ 6 0 0 (r4s4a), α 6=0,−1, γ 6=0, δ 6=0,−1,

γ 6= αδ, γ 6= (α+1)(δ+1)

8 0 0 3 0 1 (r4s4a), α = −1, γ = 0, δ = −1
9 0 1+δ 4 0 1 (r4s4a), α = −1, γ = 0, δ 6= 0,−1
10 1 1 6 0 1 (r4s4a), α = 0, γ = 1, δ = 0

11 1 1+δ 6 0 1 (r4s4a), α = 0, γ 6= 0, 1,
δ 6= 0,−1, γ = (α+1)(δ+1)

12 1+α 1+δ 6 0 1 (r4s4a), α 6=0,−1, γ 6=0, δ 6=0,−1,
γ 6=αδ, γ = (α+1)(δ+1)

13 0 0 3 1 0 (r4s4a′), α = −1, γ = 0, δ = −1
14 0 1+δ 4 1 0 (r4s4a′), α = −1, γ = 0, δ 6= 0,−1
15 1 1 6 1 0 (r4s4a′), α = 0, γ = 1, δ = 0
16 1 1+δ 6 1 0 (r4s4a′), α = 0, γ 6= 0, 1,

δ 6= 0,−1, γ = (α+1)(δ+1)
17 1+α 1+δ 6 1 0 (r4s4a′), α 6=0,−1, γ 6=0, δ 6=0,−1,

γ 6= αδ, γ = (α+1)(δ+1)

18 1+α 1 + δ 4 0 0 (r4s4b), α 6= 0,−1, δ 6= 0,−1
19 0 1 + δ 3 0 1 (r4s4b), α = −1, δ 6= 0,−1
20 0 0 2 0 2 (r4s4b), α = −1, δ = −1
21 1+α 0 3 1 0 (r4s4b′), δ 6= −1, α 6= 0,−1
22 0 0 2 2 0 (r4s4b′), α = −1, δ = −1

In all cases b = c = 0.

From lemma 6, when one of p and q is 2, direct calculations give us the
following theorem.
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Table 5. For p = q = 1.

a d e r s base
1 1 0 2 3 4 (p1q1a), λ1 = 0, λ2 = 0

2 1 0 3 3 4 (p1q1a), λ1 = 0, λ2 = 1 or λ1 = 1, λ2 = 0
3 1 1 5 3 4 (p1q1a), λ1 = 1, λ2 = 1
4 1 0 2 4 3 (p1q1b), λ1 = 0, λ2 = 0
5 1 0 3 4 3 (p1q1b), λ1 = 0, λ2 = 1 or λ1 = 1, λ2 = 0

6 1 1 5 4 3 (p1q1b), λ1 = 1, λ2 = 1
7 0 0 1 4 4 (p1q1c)

In all cases b = c = 0.

Table 6

a d e p q base
1 0 0 2 2 0 (p2q0a), α = δ = 0, γ 6= 0
2 0 0 3 2 0 (p2q0a), α, δ 6=0, γ=0 or α, γ 6=0, δ=0 or δ, γ 6=0, α=0
3 0 0 4 2 0 (p2q0a), α, δ, γ 6= 0, αδ 6= γ

4 0 0 2 0 2 (p0q2a), α = δ = 0, γ 6= 0
5 0 0 3 0 2 (p0q2a), α, δ 6=0, γ=0 or α, γ 6=0, δ=0 or δ, γ 6=0, α=0
6 0 0 4 0 2 (p0q2a),α, δ, γ 6= 0, αδ 6= γ
7 0 0 1 2 1 (p2q1a), α = 0, δ = 0

8 0 0 2 2 1 (p2q1a), α = 0, δ 6= 0 or α 6= 0, δ = 0
9 0 0 4 2 1 (p2q1a), α 6= 0, δ 6= 0
10 0 0 1 1 2 (p1q2a), α = 0, δ = 0

11 0 0 2 1 2 (p1q2a), α = 0, δ 6= 0 or α 6= 0, δ = 0
12 0 0 4 1 2 (p1q2a), α 6= 0, δ 6= 0
13 0 0 0 2 2 (p2q2a)

In all cases b = c = 0.

Theorem 5. Let X, Y be 2-tori in GL(4,K). Suppose that one of invari-
ants p or q is 2 and p, q 6= 0, then the orbit (X,Y) is uniquely determined
by the Table 6.
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