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Abstract. Over the last several decades, recommender systems
have become an integral part of both our daily lives and the re-
search frontier at machine learning. In this survey, we explore various
approaches to developing simulators for recommendation systems,
especially for modeling the user response function. We consider sim-
ple probabilistic models, approaches based on generative adversar-
ial networks, and full-scale simulators, and also review the datasets
available for the research community.

§1. Introduction

Over the last several decades, recommender systems have become an
integral part of our daily lives, especially in domains such as e-commerce,
social networks, and content streaming platforms. These systems analyze
user behavior and preferences to provide personalized recommendations,
enhancing user experience and improving user engagement. However, eval-
uating the effectiveness of recommendation algorithms and understanding
their behavior in a real world setting can be a challenging task. This is
where simulators for recommendation systems come into play.

Simulators are programs specifically designed to fit given datasets and
provide a realistic way for modeling new synthetic users, items, and/or
their interactions based on previous interaction history. These simulations
allow researchers and developers to study the behavior and performance
of recommender algorithms under controlled conditions. By using simu-
lators, researchers can conduct extensive experiments without impacting
real user experiences, production systems, or requiring access to sensitive
user data. Another key usage scenario of such simulators is offline training
for recommendation systems based on reinforcement learning, which is far
cheaper than online learning; the latter is usually infeasible in a real world
setting anyway.

Key words and phrases: user response function, recommender systems, adversarial
learning, synthetic data.
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The present survey is devoted to exploring various approaches to devel-
oping simulators for recommendation systems, especially for modeling the
user response function. We aim to provide a comprehensive overview of ex-
isting literature and present an analysis of different approaches employed
in simulators for recommendation systems. We note, however, that there
are relatively few works in this area that are actually directly relevant,
i.e., present novel simulators with user response modeling, so the survey
necessarily branches out to adjacent topics as well.

Existing research can be broadly classified into several categories based
on the approaches utilized; our survey follows this categorization:
(1) simple probabilistic models (Section 2), from hard-coded action distri-

butions to Bayesian networks and Poisson stochastic processes;
(2) approaches based on generative adversarial networks (Section 3), a

popular class of models where the generator learns to imitate a user
or produce a user model, and the discriminator learns to separate real
actions or users from fake ones synthesized by the generator;

(3) full-scale simulators (Section 4) that are most directly relevant to our
topic and usually are accompanied by efficient implementations; often,
such simulators are designed with an explicit goal to provide training
environments for recommender systems based on reinforcement learn-
ing.

In what follows, we consider each of these subgroups in detail, examine
the methodologies, strengths, and limitations of each approach, and discuss
their applicability in the context of user response function modeling and
for the simulator as a whole. Finally, we note several other interesting
approaches (Section 5), present a brief overview of available datasets and
list some of the most recent papers that are related to this field.

§2. Simple probabilistic models

In this section, we review several probabilistic models that do not em-
ploy complex neural networks but show significant promise in generating
synthetic datasets for recommender systems. They are usually based on
probabilistic modeling, from simple learning of dataset statistics to com-
plex probabilistic graphical models.

2.1. Early approaches. In this survey, we concentrate on works from
the last ≈ 5 years of research, but synthetic data had been used for recom-
mender systems far longer. A 1994 IBM Quest synthetic data generator [8]
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(a)

(b)

Figure 1. Simple probabilistic model for user and item
clusters [118]: (a) structure of synthetic data; (b) illustra-
tion of the sampling process.

was intended for evaluating association rule algorithms but was also used
to evaluate collaborative filtering models [30]. Early approaches to creat-
ing synthetic data based on database schemas have also been applied to
evaluate recommender systems [48]. Popescul et al. [99] used a clustering
approach with uniform sampling from each cluster while Traupman and
Wilensky [117] introduced skewed data according to distributions learned
from a real dataset. Marlin et al. [78] produced synthetic data by resam-
pling a real dataset.

Tso and Schmidt-Thieme [118,119] present a simple probabilistic model
with user clusters and item clusters; distributions for user and item at-
tributes are drawn from a prior for every cluster, and then ratings are
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(a) (b)

(c)

Figure 2. Early probabilistic synthetic data generators:
(a) context-aware generation [94]; (b) sample semantic
graph for database synthesis [56]; (c) same for [67].

sampled according to the attributes drawn for specific clusters (see Fig. 1
for an illustration). They compare several standard collaborative filtering
baselines and find, e.g., which of them are more sensitive to the choice of
distribution parameters, an important finding relevant to their generaliza-
tion ability.

Pasinato et al. [94] propose a synthetic data generator for context-aware
recommender systems (CARS); since this approach is based on context at-
tributes related to user-item ratings, a synthetic data generator has to
produce contexts as well. Therefore, the system contains user profile gen-
erators for user “tastes”, product profile generators for item attributes, and
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(a) (b)

Figure 3. DataGenCARS [103]: (a) general scheme of op-
eration; (b) testing a recommender algorithm with syn-
thetic data.

a special penalization function that represents the influence of context on
ratings (Fig. 2a); see also Section 2.2. This system was similar to other
contemporary solutions for generating synthetic datasets based on data-
base schemas and semantic graphs; for example, the works [56,67] present
generators for credit card records based on semantic graphs (see Figs. 2b
and 2c respectively for sample such graphs).

2.2. DataGenCARS. DataGenCARS is a synthetic data generator for
context-aware recommender systems (CARS) that had given rise to several
works on evaluation and development of new recommender systems [28,
29, 53, 103]. It has a full-fledged implementation1 allowing to define user
schemas, context schemas, types of items, user profiles, and various kinds
of rating generation. DataGenCARS is also able to learn distributions of

1http://webdiis.unizar.es/~maria/?page\_id=70
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attribute values from a real dataset to complement it with synthetic data.
Figure 3a shows the general structure of DataGenCARS, while Figure 3b
shows the scheme for using synthetic data in recommender system evalu-
ation that the authors of DataGenCARS propose.

2.3. All You Need Is Ratings. This work by Monti et al. [87] concen-
trates on generating synthetic rating datasets and poses research questions
very similar to ours: “what is the impact of using a synthetic dataset instead
of a real one on the results of an offline experiment” and “can a generative
approach be exploited to create a synthetic dataset that exhibits properties
similar enough to the ones of a real dataset”. In their study of collaborative
filtering datasets (mostly classical ones such as MovieLens and LastFM ),
they argue that global statistical distributions learned from a whole dataset
are insufficient since they do not contain individual user preferences, and
propose to cluster the users into a fixed number of communities (clusters)
that could each have its own distribution of preferences.

As a result, the proposed approach begins with k-means clustering ap-
plied to vectors of user preferences (only positive preferences are consid-
ered) followed by learning the distributions for (1) number of ratings and
(2) items with positive feedback for each cluster individually. The authors
compare several collaborative filtering approaches (user k-NN, BPRMF,
WRMF) on the generated datasets and find that while the results are gen-
erally lower (which is natural since the generated datasets do not reflect
real user preferences), the order of CF models ranked by their recom-
mender quality metrics remains the same, a promising property that we
would want to hold in new synthetic data generators as well.

2.4. Causal Tags and Ratings. This work by Lyu et al. [74] concen-
trates on understanding the causality behind user ratings. While for “pure”
collaborative filtering datasets there are no causes to be inferred, most real
datasets have additional information about items that may allow to infer
such causes, e.g., “the user likes romantic movies” for movie recommen-
dations or “the user likes everything in pink” for an online store. Causes,
however, are never explained in data even when additional item features
are present, and it is hard to expect large-scale user surveys with accurate
information about such causes, so it is very hard to check whether the
causes inferred by a recommender system are real. Hence, the need arises
to create synthetic datasets where known causes are already built in and
known in advance.
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M Movie id
U User id
TM Tags associated with a movie
TU Tags associated with user preferences
TL Overlap between TM and TU

Q Quality (intrinsic feature of a movie)
R Rating

RCT Observed tags of a movie that indicate
user preference, collected via RCT ex-
periment from TL

O∗ Observed tags of a movie that indicate
user preference, collected via observa-
tional experiment from TL

R∗ Observed ratings
RRCT Missing mechanism associated with

RCT
RO Missing mechanism associated with O∗

RR Missing mechanism associated with R∗

Figure 4. The graphical model (m-graph) for the Causal
Tags and Ratings model and corresponding variable de-
scriptions [74].

To do that, Lyu et al. rely on causal graphical models, a formalism
similar to directed graphical models but allowing to reason probabilisti-
cally about causality [95, 96]; causal models had already been applied to
recommender systems [131] but not to synthetic data generation. Lyu et
al. introduce the concept of causal tags, particular features that may af-
fect ratings, and introduce into recommender systems missingness graphs
(m-graphs), a formalism that adds new nodes to the graphical model to ex-
plicitly model various kinds of missing data; this is exactly what is needed
for recommender systems since the entire point of such a system is to fill
in missing data in the user-item matrix.

Figure 4 shows the resulting m-graph together with the definition of
variables. Unfortunately, the authors show the results of only three base-
lines on generated datasets, and it appears that straightforward matrix
factorization is the winner at least half the time, but we believe that using
additional features to “anchor” generated ratings, not necessarily with a
causal graphical models, is still an interesting idea to explore.
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Figure 5. A general scheme of the Accordion simulator [80].

2.5. Accordion. The key idea of the Accordion model [80] is to represent
user response time as a Poisson process with an intensity function learned
from offline data; intensity λ is the only one parameter of a Poisson process,
and in this case it is allowed to vary in time (inhomogeneous Poisson
process). Figure 5 shows the general structure of Accordion: the model is
learned based on real user trajectories (simulated user-item interactions
are compared to real user-item trajectories) and based on the impressions
that comprise the output of the recommender system.

Poisson processes have the superposition property: a sum of two Poisson
processes with intensities λ1 and λ2 is again Poisson with intensity λ1 +
λ2. Thus, observed intensity can be split into several simple and readily
interpretable parts. An example of this effect is shown in Fig. 6a: events
from a real user from the ContentWise dataset are shown with crosses, and
the total intensity is composed of three parts: global (time-related activity
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(a)

(b)

Figure 6. The Accordion simulator: (a) superposition of
Poisson processes (example from [80]); (b) random vari-
ables present in the model.

changes across all users), state (based on user features), and self-exciting
intensity (the latter increases after a positive interaction occurring in the
history).

The authors of [80] develop novel algorithms for learning deep inhomo-
geneous Poisson processes. The three components exemplified in Fig. 6a are
further illustrated in Figure 6b, which shows the random variables present
in the simulator and their interdependencies. Accordion uses a variety of
neural architectures (admittedly very simple, mostly dense fully connected
networks) to model the three components of the intensity function. As a
result, Accordion is reported to be able to simulate long-time dependencies
in user histories, capture the effects of interactions on subsequent interac-
tions, and scale up to realistic sized datasets [80].
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(a)

(b)

Figure 7. TableGAN [93]: (a) the goal is that machine
learning models trained on the fake table should exhibit
the same behaviour as trained on the real table; (b) Table-
GAN architecture: the classifier has the same architecture
as the discriminator (illustration from [93]).

§3. Adversarial approaches in user modeling

3.1. Introduction: discrete generation with GANs. Classical gen-
erative adversarial networks (GAN) [38,39,81,100] have been traditionally
applied to generating continuous objects such as images. Generating dis-
crete variables such as synthetic user behaviour for recommender systems
was problematic because gradients cannot flow directly through a gener-
ated discrete object in the way needed to train the generator in a standard
GAN.

However, several solutions to this problem appeared soon after. Since
these solutions can all be potentially helpful for generation of synthetic tab-
ular data for recommender systems, we give a brief overview of the general
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(a)

(b)

Figure 8. CTGAN [127]: (a) CTGAN architecture;
(b) evaluation frameworks for synthetic data (left) and
real data (right).

approaches (see also a recent survey [36] of GANs for spatio-temporal data,
including discrete time series):

• medGAN [22] was designed to generate synthetic electronic health
records, i.e., high-dimensional discrete variables, with a special em-
phasis on privacy-related concerns;

• TableGAN [93] also concentrated on synthetic data generation for
privacy concerns, but this time with an explicit requirement that
machine learning models trained on newly generated tables should
show the same results as trained on real data (see Figure 7); for
this purpose, TableGAN adds a third network, the classifier, that
learns the semantics from the original table in order to increase its
semantic integrity;
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• CTGAN [127] was able to model the probability distribution of
rows in tabular data and generate realistic synthetic data, includ-
ing a mixture of continuous and discrete columns; the architecture
here is relatively standard (Fig. 8a), and the authors also introduce
a novel evaluation framework where they test for likelihood fitness
(likelihood of a test set) on synthetic data and machine learning
efficacy (how good are models trained on synthetic data) for real
datasets, as shown in Fig. 8b;

• TVAE, introduced in the same work as CTGAN [127], is not a
GAN but a modification of the variational autoencoder for tabular
data; in the experiments shown in [127], it performed on par with
CTGAN and better than other considered approaches.

These and other works [83] have made it possible to use generative ad-
versarial networks with discrete data. In this part of the survey we consider
solutions that apply these or similar techniques to generating synthetic
data, especially online user responses, for recommender systems. While
GANs have been predominantly employed in image generation tasks, they
have also shown great potential in modeling user response; we will see that
they can be utilized to generate synthetic user behavior, interactions, and
feedback. The generator component of the GAN is responsible for creating
realistic user responses (such as item ratings, clicks, or purchases) based on
various input factors, including user profiles, item features, and contextual
information. The discriminator, on the other hand, aims to distinguish be-
tween real and generated user responses, driving the generator to refine its
output to become more indistinguishable from real user data.

We note a separate direction of research where adversarial components
are introduced into the recommender system itself [35]. Next we note some
important works but do not consider it in detail since in this direction, gen-
erative adversarial networks are not used to generate synthetic data from
scratch but rather to improve the training process on existing datasets.
There are two primary ways to use them:

• either to mitigate data noise, both causal and malicious noise, by
adding adversarial perturbations to input data for recommender
systems [18,45,66,113,114,116,129],

• or to distinguish informative samples in the vast majority of unob-
served data for negative sampling in recommender systems based
on contrastive learning; here we note IRGAN [120], collaborative
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(a)

(b)

Figure 9. GAN-based generation of user feedback for data
augmentation: (a) CFGAN [17,35]; (b) UGAN [124].

filtering GAN (CoFiGAN) [71], and several other works [15,31,92,
101,122].

3.2. Adversarial Generation of User Feedback to Reduce Data
Sparsity. In this section, we consider GAN-based approaches that were
designed to generate additional data to either augment existing datasets
or alleviate their excessive sparsity. These methods can be thought of as a
form of data augmentation for recommender system datasets.
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(a)

(b)

Figure 10. GAN-based generation of user feedback for
data augmentation: (a) AugCF [123]; (b) APL [35,109].

One of the first GAN-based models to generate additional data for learn-
ing recommender systems was CFGAN [17]. As illustrated in Figure 9a, it
generates user preference vectors in an adversarial fashion, with the gener-
ator producing user preferences and a discriminator trying to distinguish
them from real user preference vectors after masking the generated ones
with real purchases. CFGAN also served as the basis for a rating augmen-
tation framework RAGAN explicitly designed to decrease data sparsity
characteristic for recommender datasets [16].

UGAN (Unified GAN) [124] uses a generic adversarial architecture to
generate user profiles (Fig. 9b); the authors show that recommender sys-
tem results improve on several standard datasets (such as DouBan and
MovieLens) after data augmentation with UGAN-generated user profiles.

AugCF [123] brings GAN-based generation down to the level of individ-
ual interactions: for a given user u sampled from some prior distribution
p(u), we sample a class c ∈ {0, 1} at random and choose a sample of K
items V1..K with their side information S1..K , from which the generator
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Figure 11. The workflow and high-level architecture of
IPGAN (illustration from [40]).

produces the probabilities of each of these items being the user’s most
preferred item in a given interaction category, samples one (user, item,
category) triple via the Gumbel-softmax trick, and the discriminator dis-
cerns whether the resulting (u, v, y) triple is realistic (Fig. 10a).

We note that all of the above approaches to extending recommender
datasets with GANs claim that with their data augmentations, results of
classical and/or state of the art recommender systems on standard datasets
improve, sometimes quite significantly.

3.3. Adversarial Generation for Constrastive Learning. Adversar-
ial pairwise learning (APL) for recommender systems [109] is an approach
that modifies the standard GAN training pipeline as shown in Fig. 10b:
the generator attempts to approximate the real data distribution for each
user, and the discriminator learns a pairwise preference ranking function
for pairs of items with a contrastive loss function L(fi − fj).

Another interesting adversarial model that deals with ranking-based
recommendations is IPGAN (Item Pair GAN) [40]. The problem it is try-
ing to solve is generating not only positive candidates but also candidates
for hard negative samples that are needed in contrastive training. Figure 11
shows its basic workflow: IPGAN has two generators, Gp for positive ex-
amples and Gn for negative examples, and one discriminator D that tries
to distinguish fake item pairs from real.
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(a)

(b)

Figure 12. GAN-augmented temporal recommendations:
(a) PLASTIC (illustration from [132]); (b) GeoALM (il-
lustration from [72]).

3.4. GAN-Based Generation with Additional Information. We
also note several (less directly relevant) works that deal with recommen-
dations with additional information. PLASTIC [132], which stands for
Prioritizing Long And Short-Term Information in top-n reCommendation
systems, moves to sequential recommendations and joins together matrix
factorization and a recurrent neural network as the basic recommenders



USER RESPONSE MODELING IN RECOMMENDER SYSTEMS 157

Figure 13. Outline of the training and generation process
for GANRS (illustrations and examples from [12]).

via an adversarial mechanism (see Fig. 12a). RecGAN [11] develop a cus-
tom GRU-based architecture for both generator and discriminator in order
to model the temporal evolution of user preferences. APOIR [133] (which
stands for adversarial point-of-interest recommendation) and GeoALM [72]
move into the geospatial domain: the generator provides recommendations
for points of interest, while the discriminator distinguishes them from real
check-in data and provides gradients for the generator’s training; Fig. 12b
illustrates GeoALM’s architecture and training process.
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3.5. GANRS. A very recent effort by Bobadilla et al. [12] presents a
GAN-based model, called GANRS, which is able to generate entire col-
laborative filtering datasets with a high degree of control, conditioning by
selecting their preferred number of users, items, samples, and stochastic
variability. The training process for this model is outlined in Figure 13:
(1) a deep matrix factorization model learns user and item embeddings, so
that (2) its feedforward process is able to convert sparse one-hot vectors
of user and item ids into embeddings, and (3) we can replace the collab-
orative filtering dataset with a dataset of dense embeddings; (4) then a
GAN learns to generate fake user profiles, compared with the discrimina-
tor against real samples from the dense dataset, so that (5) the GAN can
output good fake dense user representations; (6) the resulting fake profiles
are not exactly equal to existing dense vectors, and they are all different,
so they are clustered into a predefined number of clusters with k-means;
(7) finally, dense samples from the generator are converted to sparse la-
bels corresponding to their cluster ids. Bobadilla et al. report generating
high-quality samples based on MovieLens, Netflix, and MyAnimeList real
datasets.

§4. Synthetic data generators for state of the art
recommender systems

In this section, we consider recently developed synthetic data generators
that are designed with an eye towards state of the art neural recommender
systems. In many cases, the generator can also serve as an environment
for training a reinforcement learning agent, which is a popular framing for
modern recommender systems.

4.1. RecSim and RecSim NG. RecSim [50] is a platform developed
by Google Research for simulation environments for recommender systems
that support sequential interaction with users. A general overview of Rec-
Sim is shown in Figure 14; the platform consists of:

• a user model that samples a user from a prior distribution over
user features, including latent features such as personality and
tastes, observable features such as demographics, and behavioural
features such as the average session length or maximal time budget;

• a document model that samples a document from a prior over
document features, including latent ones such as the quality and
observable features such as the topic or overall popularity;
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Figure 14. The general overview of RecSim [50]; N is the
number of features in the user’s hidden state; n, in the
user’s observed state;M , in the item’s hidden state; m, in
the item’s observed state; D is the total number of items
(documents); K is the slate size.

• a user choice model that determines the user’s response to a doc-
ument;

• a user transition model that configures how the user state changes
after a document has been interacted with.

All components of RecSim are fully configurable, and it supports a wide
range of possibilities for all four above-mentioned models. RecSim itself
does not contain any learnable models that can generate recommendations.
Its main goal was to facilitate the development of recommender algorithms
that support user states and “non-static” users [44, 46, 125], especially the
increasingly popular field of recommender systems based on reinforcement
learning [7, 19,21,37,51,68].
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The ideas of RecSim were further developed in RecSim NG, a new ver-
sion of the platform [82] with an emphasis on collaborative interactive rec-
ommendations where a recommender system engages in multi-turn (non-
myopic) cooperative exploration with the user. RecSim NG extends the
ideas of RecSim by allowing the above-mentioned models to be developed
in a probabilistic programming environment, specifically Edward2 [115].
This allows the developer to specify, say, a user model as a dynamic
Bayesian network [88], complete with latent variables and complex priors
that can be incorporated with MCMC-based and variational approximate
Bayesian inference methods.

In RecSim NG, the user response function (the user choice model in
the terminology above) consists of two parts: affinity model and the choice
distribution itself. The affinity model is an arbitrary externally defined
function that takes user and item states as input and produces user-item
relevance scores. The authors suggest a simple negative Euclidean distance
as a basic affinity model and several more complex variations for its fur-
ther development. The choice model can be greedy (picking the most rel-
evant item) or stochastic; the authors suggest three options for the choice
distribution: multinomial logistic (softmax over affinities), cascade, and
Plackett-Luce.

4.2. RecoGym. RecoGym [104] is a simulation environment designed
specifically with reinforcement learning in mind, as reflected in its name
reminiscent of OpenAI Gym [14]; actually, RecoGym itself is also released
as an OpenAI Gym environment. Its model of user activity is shown in
Fig. 15a: a user alternates between organic sessions and publisher sessions
until the session ends; advertising recommendations can be shown during
publisher sessions, and the goal of recommendations is to show personalized
ads that would incentivize the user to transition back to the e-commerce
website.

Publisher sessions are modeled as multiarmed bandits, and organic
behaviour is modeled with a categorical distribution that could result
from a recommender system. The interaction between them is modeled
as Φu,a,t = f(Λu,p,t + εu,a,t), where Φu,a,t is the click-through rate for rec-
ommendation a to user u at time t, Λu,p,t is the organic score such that
the probability of organically viewing product p at time t for user u is
σ(Λu,p,t), and εu,a,t is the noise with mean 0 and variance σΦ. The sys-
tem’s behaviour depends significantly on the noise variance σΦ: Figure 15b
shows that as σΦ increases the organic performance decreases accordingly,
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(a)

(b) (c)

Figure 15. RecoGym [104]: (a) rough outline of the sys-
tem; (b) performance as a function of σΦ; (c) performance
as a function of the number of bandit events (performance
illustrations from [104]).

while Figure 15c shows that as the number of bandit events increases the
overall performance tends to the pure bandit performance, and organic
performance becomes irrelevant. We also note prior work on learning from
bandit feedback in recommender systems [58,59].

RecoGym has served as the basis for the RecoGym Challenge2 an-
nounced at REVEAL 2019; we note the report written by the winning
team that outlines both RecoGym operation (in more detail than the orig-
inal paper) and their winning solution [57].

4.3. Simulated Users for Measuring Recommender System Ef-
fects. This interesting work by Google researchers Yao et al. [128] presents
a user simulation framework with an eye towards measuring the effects of a

2https://sites.google.com/view/recogymchallenge/
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recommender system on user behaviour. E.g., a food recommender system
might be promoting unhealthy habits, while the filter bubble effect might
lead to narrowing of the user’s set of preferred items over time; this leads
to a field known as responsible recommendation [13, 24,32,89].

The proposed simulation framework divides a user’s single interaction
with the system into two parts:

• the selection model defines how a user chooses an item from a slate
(presented selection of items, i.e., the current set of impressions),
and

• the feedback model defines how the user rates the chosen item after
interacting with it.

The authors investigate several simple models of user behaviour and study
how standard recommender systems (e.g., matrix factorization and large-
scale neural recommenders) shape user trajectories under different assump-
tions regarding user behaviour. They show that recommender systems ex-
hibit nontrivial temporal dynamics even under completely random user be-
haviour, and the results suggest further work in disentanglement between
the effect of user preferences and recommender system design is needed.
A similar study has also been undertaken in [43], and we note that prior
analysis of recommender systems biases and their effects on user trajec-
tories, as well as ML fairness in general, has also been often done with
simulated synthetic users [23,55,112].

4.4. SOFA. SOFA [49], which stands for the Simulator for OFfline leArn-
ing and evaluation, is designed for reinforcement learning for recommenda-
tions (Figs. 16a and 16b). Its basic idea stems from an important limitation
that the authors identify in previously developed simulators: ignoring in-
teraction biases present in training user data leads to these biases affecting
the simulation and thus negatively affecting recommender models learned
via this simulation. Thus, SOFA is explicitly designed to introduce a debi-
asing step before adding logged data into the rating matrix, as illustrated
in Fig. 16c. This debiasing transformation, called the Intermediate Bias
Mitigation Step (IBMS), can have different forms, but the authors pro-
pose to use the inverse propensity scoring (IPS) approach known in causal
inference literature [54, 69]. The authors conclude that IBMS can indeed
mitigate interaction bias in logged data to a significant extent, and debias-
ing appears to be an important step in developing simulators for training
RL-based recommender systems.
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(a) (b)

(c)

Figure 16. The SOFA simulator [49]: (a) general structure
of RL-based recommendations; (b) using a simulator in
RL-based recommendations; (c) the IBMS step debiases
logged data before it reaches the rating matrix.

4.5. Virtual TaoBao. Virtual Taobao [107] is a simulator designed to
imitate product search on Taobao, in particular to serve as an environment
for reinforcement learning. The high-level architecture is shown in Fig. 17a;
Virtual Taobao consists of:

• GAN-SD (GAN for simulating distributions) that generates syn-
thetic customers together with their initial requests that represent
the first user input (see Fig. 17b for an overview of the engine’s
and customer’s view of the interaction); GAN-SD is a regular GAN
whose generator loss function is modified with distribution-based
constraints;

• MAIL (multi-agent adversarial imitation learning), an approach
extending GAIL [47] to the multi-agent setting, that generates
interactions between customers and the platform by learning their
policies via imitation learning.

The authors report that Virtual Taobao does capture the properties of the
real environment faithfully and improves reinforcement learning results.
Fig. 17b shows the customer and engine views of the interaction: in the
engine view, the state consists of customer features and their request and
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(a)

(b)

Figure 17. Virtual Taobao [107]: (a) reinforcement learn-
ing and data generation; (b) customer and engine views
of the interaction.

the action is a recommendation parameterized as a vector in Rd, while in
the customer view, the state consists of customer features and engine ac-
tion, while possible actions include making a purchase, turning to another
page, and leaving the system.

4.6. SARDINE. A very recent work by Deffayet et al. [26] presents
SARDINE (Simulator for Automated Recommendation in Dynamic and
INteractive Environments). SARDINE aims to provide a simulator able
to answer the following questions:

• how to enable multi-step reasoning and control user-related metrics
in the long run, a question especially important for reinforcement
learning in recommender systems [20,27,33,126];
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Figure 18. Structure of the SARDINE simulator [26].

• how to learn meaningful and reliable information from biased data,
a problem well-known in real-life recommender systems and stud-
ied for offline reinforcement learning [27, 126] and other meth-
ods [25,41,62];

• how to make sure that interactive recommender systems are robust
to uncertainties of the real world, specifically external factors in-
fluencing user behaviour, item values, and user preferences [63,91];

• how to effectively and efficiently recommend slates of items to users
in a dynamic and interactive environment, a question especially
relevant to our problem setting and studied in literature developing
slate recommendation policies [52,90,106,111].

The structure of the SARDINE simulator is presented in Fig. 18. It is
designed for slate recommendations in a dynamic environment, where a
user interacts with a recommender system over L steps. On every step,
the recommender system presents a slate of S items, the user may click
some of them, and these clicks are returned to the recommender system.
The simulator incorporates (see Fig. 18):

• item and user embeddings, defined in this case as randomly gen-
erated sparse embeddings over a certain set of topics T ;

• initial recommendation done in the simulator independently of the
recommender agent;

• relevance computation based on the dot product between the item
and user embedding;
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• a position-based click model, where the probability of a click is de-
fined as the product of the item’s attractiveness (computed from
the relevance score) and its examination probability computed
from the item’s rank in the slate;

• two long-term mechanisms to model the user’s evolving prefer-
ences: a boredom mechanic, which comes into play if the user is
shown too many items with the same topic, and clicked item in-
fluence.

Deffayet et al. report experiments on a number of baselines, including
reinforcement-based approaches and reranking approaches, and emphasize
that the proposed simulator is better able to investigate the research ques-
tions listed above [26].

§5. Other approaches

5.1. Multi-Scale User Interactions. An important extension of user
feedback generation deals with generating multi-scale user behaviour, for
instance, sequences such as “impression → click → conversion” which con-
stitute the essence of the sales funnel. Here we note the recent model called
HEROES (Hierarchical rEcurrent Ranking On the Entire Space) by Jin et
al. [60] who present a simulator for impression-click-conversion pipelines.

Figure 19a shows the pipeline of the system HEROES is modeling: a user
sees a ranked list of recommendations, may click some of the items, and
then may purchase some of the clicked items (the conversion event). This
leads to user behaviour being defined by a combination of several different
effects, as exemplified in Fig. 19b. To model user behaviour, HEROES uses
two layers: the CTR layer (click-through rate) models the impression to
click behaviour, and the CVR layer (conversion rate) models the click to
conversion behaviour. Whenever a click occurs in the data, a special gat-
ing mechanism allows information to pass to the CVR layer and continue
modeling there, as shown in Fig. 19c. The overall architecture of every
layer is recurrent, as shown in detail in Fig. 19d.

The authors report excellent results in predicting the click and conver-
sion events on three large-scale industrial datasets: Criteo3 [102], Taobao
E-Commerce4, and Diantao Live Broadcast (proprietary).

3https://ailab.criteo.com/ressources/
4https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408
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(a)

(b)

(c)

(d)

Figure 19. Multi-scale modeling with HEROES (illustra-
tions from [60]): (a) the system pipeline; (b) sample user
analysis; (c) the gating mechanism; (d) layer architecture.
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(a)

(b)

Figure 20. AUGUST (illustrations and examples
from [73]): (a) basic overview; (b) detailed generation pro-
cess.
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5.2. Generating Additional Information. Some synthetic data gen-
erators for recommender systems create entire datasets with additional in-
formation such as, e.g., the content of items. For instance, AUGUST [73]
(Automatic Generation Understudy for Synthesizing Conversational Rec-
ommendation Datasets) aims to generate data for conversational recom-
mendations, i.e., natural language dialogues between (simulated) users and
the recommender system, as shown in Fig. 20. In this case, however, the
main novelties of this work were in conditional text generation, in particu-
lar introducing predefined knowledge into natural language conversations,
rather than generating user responses in the collaborative filtering sense
of the word.

5.3. Synthetic Recommender Data Generation with Graph The-
ory. An interesting approach for generating synthetic data was proposed
by Belletti et al. [9]. They aim to bridge the gap between relatively small
academic datasets and huge real-world recommender systems. To do so,
they propose to expand existing user-item interaction matrices with frac-
tal Kronecker expansions. They note that user-item interactions have a
hierarchical nature: one can combine users and items into groups and form
coarse interaction matrices for these groups, as numerous clustering-based
recommender algorithms had done (Figure 21a). Then, they propose to
use the Kronecker expansion [64,65] to take this hierarchical structure one
step further down, treating original users and items as groups of users and
groups of items and expanding the matrix to represent a finer structure
while preserving the main statistical properties of the original graph. As
a result, they are able to obtain an expanded version of MovieLens with
10 billion ratings for 864K items and 2M users (compared to 20M rat-
ings for 27K items and 138K users in the original) while preserving all the
main properties such as the distribution of user and item ratings and the
spectrum of the user-item interaction matrix (Figure 21b).

5.4. Other works. Among other approaches, we note synthetic data gen-
eration for conversational recommender systems [108], synthetic generation
of simulated user profiles based on real social network users (Fig. 22) [84],
an experimental study of several multi-attribute utility collaborative filter-
ing algorithms based on synthetic data [77], a web-based testing tool Col-
laFiS for multi-criterial evaluations of collaborative filtering systems with
generated data [75] and further analyses based on it [76], and tools de-
signed to decouple evaluation from development of recommender systems
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(a)

(b)

Figure 21. Fractal expansions for user-item interaction
matrices (illustrations and plots from [9]): (a) the hier-
archical nature of user-item interactions; (b) statistics of
individual variables.
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Figure 22. Social user profiles generation [84].

and allow for fair experimental comparisons, not necessarily but perhaps
also on synthetic data [10,85,86,105].

§6. Datasets for user response evaluation

Although there are plenty of recommender system datasets with widely
varying size and properties, our task imposes additional restrictions on the
datasets’ composition and available data dimensions. The most important
point is that datasets for user response modeling must contain not only the
history of user-item interaction, but also the history of recommendations
showed to a specific user (impressions). Unfortunately, standard recom-
mender datasets very seldom contain this information, which makes the
search for datasets both harder and more important. It is telling that the
authors of ContentWise Impressions (Section 6.1.1) in their 2020 paper
say: “Impression datasets... can be classified into two categories: private
datasets, collected by the authors of the article but... not made accessi-
ble to the community, and non-redistributable datasets, made accessible
only to the participants of a challenge under a non-redistribute clause...
To the best of our knowledge, no open-source dataset with impressions
exists.” Still, some datasets with impressions have begun to appear, and in
Section 6.1 we review what is currently available in the field. Section 6.2
describes e-commerce datasets that can be adapted for user response mod-
eling.

6.1. Datasets with Logged Impressions.
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6.1.1. ContentWise Impressions. The ContentWise Impressions dataset,
presented in [79], contains logged recommendations and user interactions
with them. It was collected from a video streaming service with four mu-
tually exclusive categories of items: movies, movies and clips in series, TV
movies or shows, and episodes of TV series. Therefore, most items in Con-
tentWise Impressions are grouped into series, and each item is associated
with the series ID and position in the series. Figure 23 illustrates the user
screen layout in the streaming service: rows contain generated recommen-
dations (impressions), and more relevant items are positioned in top rows
and closer to the left.

The dataset consists of three files (tables):

(1) interactions.csv — user-recommendation interaction data: timestamp,
user, item, series and recommendation ids, episode number (item po-
sition in the series), interaction type, vision factor and explicit rating;

(2) impressions-direct-link.csv — recommendations data: recommendation
id, row position (of the entire recommendation), recommendation list
length, recommended series list;

(3) impressions-non-direct-link.csv — user-item interaction data that does
not log the respective set of recommended items; this part of the data
is not suitable for user response modeling, although it can be used in
other parts of the simulator pipeline, e.g. for user profile modeling.

Joining the first two tables via “recommendation id ” yields a dataset
with user response known for each pool of recommended items, exactly as
needed for user response modeling.

6.1.2. RL4RS. The RL4RS dataset (Reinforcement Learning for Recom-
mender Systems) [121] is another relatively new data source with logged
recommended items, released by NetEase Games. The data comes from
a mobile game which means that impressions are shown with special un-
lock rules illustrated in Fig. 24: in the RL4RS-Slate dataset (Fig. 24a),
new bundles of recommended items on a single page are shown after an
unlock condition is fulfilled (the current list is sold out), while the RL4RS-
SeqSlate dataset (Fig. 24b) adds the relationship between different pages
and asks to maximize the total reward of a session that spans multiple
pages of recommendations.

Compared to ContentWise, this dataset contains very rich user and
item information: an anonymized user portrait (profile), user click history
embeddings, item features that include price, category, and more, and
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Figure 23. Structure of a ContentWise Impressions slate [79].

other features. An important domain-specific feature of this dataset is that
it contains information about only 283 items along with 140K users and a
large number of item features: 40 values in an item embedding along with
values directly associated with the price of every item, its location, and an
indicator whether the item is “special”.

6.1.3. TenRec. Tenrec [130] is a dataset suite developed for multiple rec-
ommendation tasks, collected fromTencent ’s two different recommenda-
tion platforms for feeds (anonymized in the paper and called below QB
and QK). The dataset consists of two parts (articles and video), both con-
taining user and item ids with various types of user feedback, which makes
it an excellent candidate for studying user responses.

Tenrec is a large dataset with four different recommendation scenarios:
QB-article, QB-video, QK-article, and QK-video; some users and items
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(a) (b)

Figure 24. RL4RS [121]: (a) RL4RS-Slate; (b) RS-SeqSlate.

Figure 25. Overlaps between users and items for the four
settings presented in Tenrec [130].

overlap across the two platforms, as illustrated in Figure 25. The QB part
is relatively small—34K users and 130K items in QB-video, 25K users and
7.3K items in QB-article—but the QK parts are quite large: there are over



USER RESPONSE MODELING IN RECOMMENDER SYSTEMS 175

Figure 26. A sample user session in OTTO [98].

5M users and 3.7M items in QK-video with over 142M clicks and 1.3M
users and 220K items with 46M clicks in QK-article. Moreover, it contains
quite lengthy user interaction sessions, with over 2300 sessions of length
over 300 [130].

This dataset is especially well-suited for our needs. First, unlike most
other collaborative filtering datasets, Tenrec does track impressions for
videos (called “exposures” in [130]), with just under 500M impressions in
the QK-video part alone.

Moreover, similar to the situation with the sales funnel in e-commerce,
Tenrec contains additional types of interactions that can be viewed as a
user response, namely likes, shares, followings, favorites, and reads in case
of articles. In these parts of the dataset, we can use clicked items as a
“recommendation pool” and these additional interactions (which signify
special interest) in place of user responses.

6.2. E-Commerce Datasets. Since datasets with logged impressions
are few and far between, we suggest using e-commerce datasets that usu-
ally contain a sales funnel: a user views some pool of items, then clicks on
some subset of them, and finally purchases some subset of clicked items.
Formally speaking, such datasets usually contain events of several different
types. While impressions per se are not usually recorded in these datasets,
the presence of several levels of the sales funnel allows to model user re-
sponses on the next steps: for instance, clicks can be viewed as “impres-
sions”, and adding items to the cart or purchasing decisions can be viewed
as the user response. Unfortunately, most such datasets lack user and item
features (usually due to privacy concerns) and are often appropriate only
for sequence-based approaches.
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6.2.1. OTTO. OTTO [98] is a new dataset released in 2022 by the OTTO
online store and app. The dataset contains sessions that reflect user inter-
action with the online store and include information on their clicks, adding
items to the shopping cart, and orders. Figure 26 illustrates the structure
of an OTTO user session: for every moment in time (timestamp), the tar-
get for the “Click” action is only the next item clicked in this session, while
the targets for “Add to cart” and “Order” actions always includes all such
actions still remaining in the current session.

However, this dataset does not contain user features or even user ids,
so one cannot cross-reference different sessions of the same user, and the
dataset can be utilized only in the setting of sequential recommender sys-
tems.

6.2.2. RetailRocket. The RetailRocket dataset [5] also contains information
about user behaviour in a real-world e-commerce system with several types
of events—clicks, add to carts, and transactions—collected over 4.5 months.
Unfortunately, similar to OTTO, RetailRocket does not contain either any
user features or persistent user ids. However, it does contain a rich set of
item features:

• item categories are represented with a detailed category tree;
• other features such as the price vary with time, which opens up

other possibilities for recommendation analysis.

6.2.3. REES OpenCDP. The OpenCDP REES collection of datasets [1–4]
contains user behavior data for four different online stores: multi-category,
electronics, cosmetics, and jewelry. The jewelry store data does not contain
event types and hence is irrelevant. The other three datasets have the same
structure but different sizes. These datasets contain no user features and a
relatively poor set of item features (category, brand, and price), but they
do contain persistent user ids, which makes it possible to cross-reference
users across sessions.

6.3. Non-Recommender Datasets with Similar Structure. Other
fields of machine learning, including information retrieval systems and
question answering systems, also feature datasets with similar structure.
Compared with e-commerce, they are less well suited for recommender
systems, but can be suitable in some cases.
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(a)

(b)

Figure 27. Datasets from large online article/video rec-
ommendation systems: (a) ZhihuRec [42]; (b) KuaiRand
(illustration from [34]).

6.3.1. ZhihuRec. ZhihuRec [42] is a relatively large dataset collected on
the Q&A platform Zhihu; it is composed of about 100M interactions of
nearly 800K users, 165K questions, and 554K answers on 70K topics from
240K authors, with over 500K user query keywords recorded.

The dataset consists of two parts: user search query log and impres-
sions from the platform’s recommendation system (see Fig. 27a for an
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illustration). The search query log dataset seems to be suitable only for
information retrieval systems, but the impressions dataset may be appli-
cable in recommender system research, including user response modeling.
It contains a user’s views of answers to various questions on Zhihu and
responses for some of them. The dataset also contains user and answer
features along with persistent user ids. Note that answers are not shown
to the users by some recommendation policy but rather as a result of user
search queries that are logged as well.

6.3.2. Yandex Personalized Web Search Challenge. This dataset, published
by the Yandex search engine [6], contains information of user search queries
with top 10 found URLs and user clicks on them. No user or item (URL)
features are provided. Moreover, terms in the queries are anonymized as
well, which makes it impossible to obtain informative features through,
e.g., embeddings of the queries.

6.3.3. JDSearch. The JDSearch dataset [70] is at the junction of the fields
of information retrieval and e-commerce. It contains search queries with
found items and user interactions with such items along with some ano-
nymized item features. It can be used in the same settings as previous
ones.

6.4. Less relevant datasets. The following datasets may be in some
contexts considered as data sources for user response modeling, but in our
opinion are less suited for this task.

6.4.1. MTS Kion. MTS Kion [97] is a streaming service dataset with im-
plicit feedback (percentage of watched time) that could be potentially used
as user response. While having a small average user history (5), it con-
tains user features such as age and income that are even not obfuscated
(very rare for real world recommender datasets!). Item features are also
provided, including common metadata for movies such as title, starring
actors, age rating, and so on. The dataset is relatively large: it contains
5.4M interactions between 962K users and 15K items. However, is does not
contain anything that could be treated as a “recommendation pool”, so the
only way to use it would be to use watched videos as an “impression” and
watching a video to a high percentage as positive feedback.
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Users Items Interactions Impressions Slates

ContentWise [79] 42.1K 145K 10.5M 23.3M X
RL4RS [121] 150K 283 9M 16M X
Tenrec QB-Video [130] 34K 130K 1.7M 2.4M —
Tenrec QB-Article [130] 25K 7.3K 348K — —
Tenrec QK-Video [130] 5M 3.7M 142M 493.5M —
Tenrec QK-Article [130] 1.3M 220K 46M — —
OTTO [98]∗ 12M 1.8M 220M — —
RetailRocket [5] 3.4K 8.9K 14K 92.5K —

Table 1. Dataset summary statistics; ∗ OTTO has no user
ids, so we show the number of sessions.

6.4.2. Amazon M2. Amazon M2 [61] is a dataset for next-item recommen-
dation systems with textual features of products. It contains 4M sessions,
that is, sequences of items a user has interacted with. Unfortunately, it
does not contain anything resembling the sales funnel, but may be useful
for the COLES approach.

6.4.3. Kuaishou. The Kuaishou app has given rize to three different pub-
lished datasets [34,110]. Two of them contain rich user and item features to-
gether with a wide variety of interaction types. Although the datasets con-
tain different types of feedback, so the sales funnel is present, we cannot use
this datasets directly similar to other e-commerce datasets since its data
is not organized into sessions. In particular, the KuaiRand dataset con-
tains user-item interactions with both recommended and randomly shown
videos, which may be beneficial for user response modeling (Fig. 27b).

Unlike the first two Kuaishou datasets, the third one does not con-
tain either different types of interactions or sequential interactions, and is
in essence a simple collaborative filtering dataset. The feature that distin-
guishes this dataset from the others is its density, which is over 0.99, which
allows to explicitly evaluate recommender systems in an offline setup. User
and item features are also provided.

6.5. Summary. Table 1 shows a summary table of available datasets.
We believe that the two most convenient datasets that provide slates and
impressions and might also be suitable for subsequent experiments with
offline reinforcement learning are ContentWise and RL4RS.
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§7. Conclusion

In this survey, we have considered a wide variety of user response mod-
eling models, simulators, and datasets. In summary, we note several basic
approaches that modern user response modeling mainly falls into:

• probabilistic models (Section 2) try to capture the interactions
of latent variables characterizing users, items, and recommenda-
tion contexts in the form of probability distributions, usually as a
graphical probabilistic model;

• adversarial approaches (Section 3) generate synthetic user feed-
back with adversarial models that comprise a generator and a dis-
criminator trying to distinguish synthetic feedback produced by
the generator from real data;

• simulators (Section 4) can use probabilistic, neural, and/or adver-
sarial methods, but their main characteristic feature is that they
usually provide environments designed to train recommender sys-
tems with reinforcement learning, a growing and important sub-
field of recommender systems today.

We have also noted the most important datasets available to be used
for user response modeling (Section 6, see in particular the summary ta-
ble in Section 6.5), highlighting the most suitable ones for further model
development.
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