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Abstract. An important limitation of existing adversarial attacks
on real-world object detectors lies in their threat model: adversarial
patch-based methods often produce suspicious images while image
generation approaches do not restrict the attacker’s capabilities of
modifying the original scene. We design a threat model where the at-
tacker modifies individual image segments and is required to produce
realistic images. We also develop and evaluate a white-box attack
that utilizes generative adversarial nets and diffusion models as a
generator of malicious images. Our attack is able to produce high-
fidelity images as measured by the Fréchet inception distance (FID)
and reduces the mAP of Faster R-CNN model by >0.2 on Cityscapes
and COCO-Stuff datasets. A PyTorch implementation of our attack
is available at https://github.com/DariaShel/gan-attack.

§1. Introduction

Deep learning models are being implemented in an increasing number
of industry-level software systems. Computer vision is a field where deep
neural nets have been showing the best results since 2012 [17], powering
applications such as medical imaging [19], self-driving cars [10], and vi-
sual recommender systems [15]. However, the curse of dimensionality and
overparameterization of these models make them vulnerable to adversarial
examples, where malicious and stealthy input perturbations can reduce the
model accuracy down to zero.

Test-time adversarial attacks on computer vision have been studied
since 2013: the landmark paper [29] proposed imperceptible, Lp-norm
bounded perturbations which manipulate model predictions after being
added to the testing images. This type of adversarial perturbations re-
mains the most studied in the literature thanks to its stealthiness, ease
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of implementation in a white-box scenario [9] and transferability of adver-
sarial examples between different models trained over the same dataset or
even over different datasets [21].

While very effective against undefended models, Lp-norm bounded ad-
versarial examples can barely survive input transformations [11] deployed
as a defense mechanism in a black-box scenario or occurring naturally as a
result of shooting a (potentially malicious) scene with a camera. Therefore,
the application systems of our interest — object detectors in the physical
world — require other types of perturbations to benchmark against.

Recent work on fooling real-world object detectors [13, 32] builds upon
the adversarial patch method introduced in [3]. This method generates an
unbounded perturbation and applies it to a limited portion of a testing
image. The high magnitude of adversarial patches makes them robust to
input transformations but also makes the attacked example more suspi-
cious to both human eye and defense mechanisms: such examples can be
detected by uncanny patterns not fitting well into the original images. This
issue has already been addressed in [13] by employing generative models,
namely StyleGAN2 [16] and BigGAN [2] networks, for generating more
natural-looking adversarial patches.

Besides adversarial patch attacks, there are notable attack methods that
utilize generative models to generate whole images. In the earlier work [28],
the attacked images are obtained as a result of optimization over the latent
space of the generative model. A more promising approach from our point
of view is to train the model to generate malicious images instead of latent
space optimization; this approach is taken in [23] for adversarial image
editing. Another property of [23] that distinguishes it from [28] and [13]
is conditioning the generation process on the input scene; both properties
contribute to the improved naturalness and fidelity of the attacked images.

In order to develop a practical attack on real-world object detectors, we
decided to combine the advantages of adversarial patches and conditional
image generation. Our primary contributions are the following.

(1) We propose a threat model designed specifically for object detec-
tors in the physical world. In this threat model, the attacker is
allowed to affect only a limited portion of the image, similar to
adversarial patch attacks. Different from adversarial patches, we
permit modifying individual segments of the input image. More-
over, the attacker is forced to produce realistic, high-fidelity images
in order to evade human eye and/or defense mechanisms. We use
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the popular Fréchet inception distance (FID) [12] as a stealthiness
metric for the attacked images.

(2) According to this threat model, we develop a white-box adversar-
ial attack based on generative models and applicable to any dif-
ferentiable object detector (e.g., Faster R-CNN [24]). The attack
employs pix2pixHD [31] or PITI [30] as a generator of malicious
images and thus is conditioned on semantic label maps of the orig-
inal scenes.

§2. Related work

2.0.0.1. Generative models. Generative models learn to generate realistic
images and use quality metrics consistent with human perception.

A generative adversarial network (GAN) consists of a generator G and a
discriminator D. The purpose of the generator is to make the most realistic
images, and the discriminator is to differentiate the generated images from
the real ones. Therefore, the training of generative models is based on a
minimax game [8]:

min
G

max
D

Ex[logD(x)] + Ez[1− logD(G(z))] (1)

Here z is the random noise vector, and x is the original image.
There exist many types of GANs, e.g., with an auxiliary classifier [22]

or with an additional gradient penalty loss function aimed at improving
the stability of training [1].

We cast our problem of scene-conditioned adversarial attacks on object
detectors as an image-to-image translation task which was introduced in
[14]. The variation of GAN proposed in this work is capable of generating
images in high resolution, but with low detail. The issue was solved in [31]
which was taken as the basis for our work. To achieve high resolution
and detail, pix2pixHD uses two generators, three discriminators, as well
as an encoder and VGG-loss. The model accepts semantic label maps as
input and generates an image so that objects are located in the specified
segments.
2.0.0.2. Adversarial attacks. While there exist a number of adversarial at-
tacks employing generative adversarial networks and style transfer [7, 28],
these works have their limitations. In [28], the proximity of the generated
image to the original one in the latent space is required; this greatly limits
the possibilities for attack. In addition, the image is completely replaced
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with the generated one, so the attack becomes more noticeable. In [7], the
method transfers the style of the selected style image to the one being
attacked. However, the success and stealthiness of an attack highly de-
pend on the choice of the style image, and there is yet no algorithm to
automatically choose one. We also believe that preserving the content of
the attacked image portions is an excessive restriction which limits attack
possibilities in many cases.

Despite the limitations of [7], it provided us with an idea of replacing
only a few segments of the input image. Inspired by pix2pixHD [31], we
utilize ground-truth segmentation label maps to select the segments for
attack. Unlike [7], we allow arbitrary changes to these segments but require
high fidelity of the attacked image in return. In our method, the pix2pixHD
model is trained so that the generated segments remain visually realistic,
but the victim model is mistaken on them. The method is described in
more detail in Section 3.
2.0.0.3. Diffusion models. Recently, diffusion models have become very
popular [6, 25–27]. Diffusion models can solve a wide range of tasks, in-
cluding text-to-image, super-resolution, and others. Since we use image-
to-image translation as a proxy problem for our attack, we took PITI [30]
as an alternative to pix2pixHD. While the authors of [30] train their model
in multiple steps, we only employ PITI for increasing the resolution.

§3. Method description

3.1. Attack on image segments with GAN. Our attack is based on
a pre-trained model capable of generating an image using a segmentation
mask [31]. We train the model with the addition of several targets to the
original loss function L0 [31]:

LGAN (G,D) = E(s,x)[logD(s, x)] + Es[1− logD(s,G(s))] (2)

LV GG(G) = λ
∑
i

1

Mi
||F (i)(x)− F (i)(G(s))||1 (3)

L0 = min
G

( ∑
k=1,2,3

LGAN (G,Dk) + LV GG(G)
)

(4)

Here G and D1, D2, D3 are generator and discriminators from the
architecture from [31] respectively, x is the original image, and s is the
semantic (segmentation) label map of this image. In equation (3), λ = 10
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controls the importance of LV GG, and F (i) denotes the i-th layer of the
VGG network with Mi elements.
L0 is the initial loss function for training the generative model. In order

for the model to generate an attack, we added a few more expressions to
this function:

Loverlay(G,D) = E(s,x)[1− logD(s, overlay(T, x,G(s)))] (5)

Ladv =
1

N

N∑
i=1

BCELoss(Ci, 0) (6)

The overlay function replaces the selected T segments of the original image
with generated ones. T is the set of labels in the selected segments. We
want the resulting image to be considered real by the discriminator as well.
In equation (6), Ci is the confidence of the victim detector in detecting the
i-th object in the image. Accordingly, we want the confidence to be low,
so the detector will be unable to detect objects.

The final loss function for our attack will look as follows:

L = min
G

((
max

D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk)
)

+ LV GG(G)

+
∑

k=1,2,3

Loverlay(G,Dk) + Ladv

) (7)

The full attack procedure is presented in Algorithm 12.

3.2. Attack on image segments with diffusion. In this variation of
our attack, we take PITI [30] as the basis. The authors of [30] train a
diffusion model in multiple steps with the segmentation map of the image
as input. After that, a model is trained that improves the resolution of
the image generated by the diffusion model. In our attack, we will further
train this model, which is essentially a GAN, using the loss function from
equation (7).

The attack scheme is essentially no different from equation (12), since we
do not change the diffusion model but only train the GAN to (maliciously)
increase the resolution.

§4. Experiments

4.1. Datasets and models. The experiments were carried out on
Cityscapes [5] and COCO-stuff [4] datasets. The results were averaged
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Algorithm 1: Training loop for generating adversarial image seg-
ments
Data: x – Original image,
s – Image segmentation map,
T – The set of labels for the segments to be replaced,
N – Number of loop iterations per image,
netG – Pre-trained generators,
netD – Pre-trained discriminators,
det – The victim detector,
overlay(T, x, x′) – Function that replaces the selected T segments
of the original image with the generated ones,
lvgg(x, x′) – Function for calculating LV GG loss (eq. 3),
getConfidence(det(x)) – Function that gets confidence C from the
detector outputs,
compute_Dloss(real, fake) – A function that computes the
discriminator loss function,
compute_Gloss(fake, attacked) – A function for the generator loss
function,
compute_adv_loss(C) – A function for the Ladv loss (6)
Output: x̂ – The attacked image

1 for iter = 1 to N do
2 x′ ← netG(s);
3 real = netD(x);
4 fake = netD(x′);
5 lossD = compute_Dloss(real, fake);
6 x̂← overlay(T, x, x′);
7 attacked = netD(x̂);
8 C ← getConfidence(det(x̂));
9 lossG = compute_Gloss(fake, attacked) + lvgg(x, x′) +

compute_adv_loss(C);
# Optimization step

10 step(netD, lossD);
11 step(netG, lossG);
12 end
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Figure 1. GAN attack. From left to right: segmentation
map; the result of object detection in the original and
attacked image, respectively.

and are given in Tables 1 and 2. Faster R-CNN [24] was taken as the
victim detector.

4.2. Metrics. mAP was chosen as the success metric of the attack.
The stealthiness metric of our attack is the Fréchet inception distance

(FID) [12]. FID compares the distribution of 2048-dimensional activations
of the Inception v3 pool3 layer for generated and real images. Two Gauss-
ian distributions are estimated, and the FID value is calculated as the
Fréchet distance between these distributions. The lower the FID value,
the higher the image quality:

FID = |µ− µ′|+ Tr(Σ + Σ′ − 2(ΣΣ′)
1
2 ). (8)

Here N (µ,Σ) is the multivariate normal distribution estimated from
Inception v3 features calculated on real images, and N (µ′,Σ′) is the mul-
tivariate normal distribution estimated on the generated (attacked in our
case) images.

4.3. GAN. In our experiment with pix2pixHD model as an attack gen-
erator, we used the Cityscapes dataset.

In the original image, we replace the segments representing road, build-
ings and sky with generated ones. They were chosen as they cover a suffi-
ciently large portion of the image, which enables a more successful attack.
But at the same time, these segments are essentially background, so they
do not catch the eye. In addition, these segments are not objects that the
detector is trained to detect, so our attack turns out to be “fair”.
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Table 1. The mAP on attacked images is almost 2 times
lower than on the original ones, which indicates a suc-
cessful attack. The FID on images where only a few seg-
ments are replaced with generated ones is lower than on
fully generated images. This means that partially gener-
ated images are more realistic.

mAP FID

original attacked fully generated VS
original

segments generated VS
original

w/attack no attack w/attack no attack
0.6709 0.3854 104.879 74.155 74.702 53.867

After running the experiments, the following results were obtained. The
detector found much fewer objects in the attacked image than in the orig-
inal one (see Figure 1).

Experiments were carried out on 500 test images, and the averaged
metrics are listed in Table 1. We also provide FID scores for benign images
generated by pix2pixHD in “no attack” columns. One can see that while
the attacked images are less realistic than benign ones, the difference in
FID is not very big.

4.4. Diffusion. For our experiments with the diffusion model, we have
used the COCO-stuff dataset.

In the COCO-stuff dataset, there are no segments that occur in all
images, unlike the Cityscapes dataset. Therefore, in the original image we
replace a single segment that occupies the largest area with a generated
one.

As in the GAN-based attack, the detector recognized much fewer objects
in the attacked image than in the original one (see Figure 2).

Experiments were conducted on 550 testing images, and averaged met-
rics are listed in Table 2.

§5. Conclusion

In this work, we have proposed a threat model and an adversarial attack
targeted at real-world object detection systems. Our results on subsets of
Cityscapes and COCO 2017 have the following implications.

(1) It is possible to significantly reduce the quality of object detec-
tors by modifying individual segments of the original images with
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Figure 2. Example of the attack using a diffusion model.
From left to right: segmentation map; the result of object
detection on the original and attacked image, respectively.

Table 2. The results of mAP evaluation are similar to
those obtained in the experiment with GAN, which means
that the attack employing the diffusion model is as suc-
cessful as with GAN. However, the FID of images gener-
ated using the diffusion model is higher, which indicates
that images generated using the diffusion model are less
realistic. It can be assumed that this is due to the artifacts
that occur when using diffusion.

mAP FID

original attacked fully generated VS
original

segments generated VS
original

w/attack no attack w/attack no attack
0.6056 0.3621 182.413 158.062 139.058 103.694
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the help of GANs and diffusion models. The generated malicious
images are high-fidelity and therefore our attack is harder to rec-
ognize compared to adversarial patch attacks.

(2) Fréchet inception distance alone cannot serve as a reliable indica-
tor of attack presence in the testing images, and defenses against
our attack require other criteria. Note that we are aware of the
vulnerability of FID itself to attacks (see e.g. [18]); however, we
confirm that one does not have to optimize FID in order to obtain
high FID scores for the attacked images in our method.

However, our present research has several limitations that are left for
our future work.

(1) We have not yet tested our attack for robustness to input trans-
formations [11] such as cropping-rescaling. Since these transforma-
tions are common in the physical world, our attack needs further
improvement so that it can be used as a fair robustness benchmark
for real systems of interest.

(2) Our immediate goal is an extensive comparison of our attack
with state-of-the-art adversarial patch-based attacks including
[13]. While we can already judge the “naturalness” of perturbed
images by looking at them, automated evaluation is still needed
to confirm the usefulness of our approach. This comparison should
also be carried out in the presence of defense mechanisms, e.g. [20].

(3) For practical use of our attack, we need to investigate the trans-
ferability of perturbations generated by the attack to other scenes
and other models, including black-box ones. As real-world object
detection systems are typically black boxes, a more fair benchmark
(compared to white-box evaluation) would be to assess the success
rate of attack transfer.
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