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Abstract. Graph neural networks (GNNs) have shown great pro-
mise in a variety of tasks involving graph data, including recommen-
dation systems. However, as GNNs become more widely adopted in
practical applications, concerns have arisen about their vulnerabil-
ity to adversarial attacks. These attacks can lead to biased recom-
mendations, potentially causing economic losses and safety risks.
In this work, we consider an industrial application of recommen-
dation systems for transport logistics and study their vulnerability
to membership inference attacks. The dataset represents real train
flows in Russia, published in the ETIS project. Experiments with
three popular GNN architectures show that all of them can be suc-
cessfully attacked even when the adversary has minimal background
knowledge. Specifically, an attacker with access to only 1-2% of the
actual data can successfully train their own GNN model to infer the
membership of a shipper-consignee association in the training set
with an accuracy over 94%. Our study also confirms that overfit-
ting is the primary factor that influences the attack performance of
recommendation systems.

§1. Introduction

The explosion of digital data and large amount of available information
have made recommendation systems into an essential tool for many ap-
plications in different areas, such as e-commerce, social media, transport
logistics industry, etc.

One of the major challenges in building recommendation systems is
modeling the complex relationships between users and items based on the
history of their interactions. Traditional collaborative filtering methods
rely on matrix factorization techniques [11, 22], which can only capture
linear relationships between these entities. However, in many real-world
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scenarios such relationships are non-linear, requiring more powerful mod-
els.

Recently, graph neural networks (GNNs) have emerged as a promising
approach for tackling this problem. Within this approach, the data about
historical interactions is represented as a graph, across which GNNs can
learn to propagate information. However, as the practical applications of
GNNs in recommendation systems become more widespread, study of their
resistance to adversarial attacks is becoming increasingly important.

Poisoning attacks and membership attacks are two common types of
adversarial attacks that can be launched against graph neural network
(GNN) models [3]. In a poisoning attack, the attacker seeks to influence
the training data used to train the GNN model. The goal of the attacker
is to influence the model’s behavior and cause it to make biased recom-
mendations. For example, an attacker might add fake shipping records
that exaggerate the performance of a particular shipper to bias the model
towards recommending that shipper more frequently.

On the other hand, in a membership attack (MI), the attacker aims to
infer whether a particular link, a shipping record in our case, was used in
the training data for the GNN model. By doing so, an attacker might be
able to infer sensitive information about a shipping company’s customer
base by determining whether certain shipping records were included in the
training data. Also, the attacker can gain valuable insights into the model’s
training data and potentially use this information to launch more targeted
attacks.

Both of these attacks can have serious consequences for the performance
and security of GNN-based recommendation systems in the logistics in-
dustry. In this work, we focus on MI since they are underrepresented in
literature.

Our main contributions are the following.

(1) We consider transportation logistics data as a directed graph be-
tween shippers and consignees and suggest a GNN-based recom-
mendation system on it.

(2) We adopt MI attacks on GNNs to the link prediction task.
(3) We conduct a series of experiments to study the vulnerability of

recommendation models to several MI attacks and discuss the im-
plications.

The rest of the paper is organized as follows. We review related work on
attacks on GNNs and recommendation systems in Section 2. Section 3 gives
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the details about the dataset, models, and attack algorithms. In Section 4
we describe and discuss our experiments. Finally, Section 5 contains the
conclusion.

§2. Related work

Recently, graph neural networks (GNNs) have become an increasingly
popular approach for solving a variety of graph-based machine learning
problems, including recommendation systems [18]. When applying GNNs,
the recommendation task is usually defined as link weight regression [16],
missing [17,19] or future [20] link prediction problems.

In the context of transportation networks, GNNs have been used for
various applications such as traffic flow prediction [4], route recommenda-
tion [9], and anomaly detection [25]. Early works in this area are focused
on using traditional machine learning algorithms, such as logistic regres-
sion and random forests [12]. However, these methods are limited in their
ability to capture the complex relationships between nodes and edges in
transportation networks. More recently, deep learning-based methods, in-
cluding GNNs, have been proposed for link prediction in networks [21,29].

However, as the use of GNNs becomes more widespread, concerns have
been raised about their vulnerability to attacks. Among the attacks, several
different groups of attacks can be distinguished: poisoning, evasion, and
membership inference. The articles [14, 15, 31, 34], and [35] show how the
quality of the prediction of a particular class or the overall quality of the
GNN can be lowered. The articles [28, 32] show how evasion attacks can
be implemented on GNNs.

In [2] and [1], the link prediction adversarial attack problem was first
defined, and an iterative gradient attack algorithm was suggested. The au-
thors showed that graph autoencoders, as well as other considered deep
learning models, were vulnerable to such attacks. In the work [13], a
perturbation-based attack is suggested against the GNN model of link
prediction. Their experiments show that the performance of the GNN can
be substantially decreased.

In the work [8], a taxonomy is given to categorize all the papers of mem-
bership inference attacks (MI). They summarized most existing evaluation
metrics, datasets, and open-source implementations of popular approaches.
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The survey [33] summarizes current advancements and trends of trust-
worthy GNNs. The authors define trustworthy GNNs and compare dif-
ferent trustworthy GNNs from the aspects of robustness, explainability,
privacy, fairness, accountability, and environmental well-being.

To the best of our knowledge, there are only a few studies that have
investigated the use of GNNs for vulnerability analysis of transportation
networks. In [7], the authors perform a comprehensive privacy risk assess-
ment of GNNs through the lens of node-level membership inference attacks.
They systematically defined the threat model along three dimensions, in-
cluding shadow dataset, shadow model, and node topology, and proposed
three different attack models. In [30], the vulnerability of GNNs to MI is
investigated, and training-based and threshold-based attacks against var-
ious target GNN models are developed. Their results show that GNNs
are indeed vulnerable to membership inference attacks, even with minimal
background knowledge of an adversary, and overfitting is still the most
significant factor that affects the attack performance.

§3. Dataset preparation, link prediction models, and
attack methods

In this section we describe the dataset preparation process, three GNN
models for link prediction, and several MI algorithms to attack the models.

3.1. Transportation data. The dataset represents an update of the
train flows published in the European Transport Policy Information Sys-
tem (ETIS) project [24] and includes detailed information on the goods
transported to or from Russia during the period from January 1 to January
5, 2012.

To analyze the dataset, a directed graph was formed between shippers
and consignees, where the following attributes were used:

• Departure date: this attribute indicates the date when transporta-
tion began and was used to divide the dataset into a training set
(January 1 to January 3) and a validation and testing set (January
4 and 5, respectively);

• Shipper and Departure station: these attributes were encoded in
a numeric format and were used to determine the initial node of
the directed graph;
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• Consignee and Destination station: these attributes were also en-
coded in a numeric format and were used to define the final node
of the directed graph;

• Departure and destination roads: these are disjoint groups of train
directions that combine several stations in different regions; there
are 17 groups in total;

• Subject of the Russian Federation of departure and destination.
The resulting graph represents the flow of trains between shippers and

consignees in Russia during the specified time period. A directed edge
is drawn between the nodes of the intersecting sets W and V, where W
consists of nodes that correspond to pairs of shippers and stations, and
V consists of pairs consignees and stations. To capture the possibility of
a shipper appearing at different stations, we include a station as part of
the node definition. It is worth noting that a consignee can also act as a
shipper at the same stations, so shippers and consignees can be from the
same set. This distinguishes the task from classic recommendation system
tasks, where there are separate sets of users and items.

The graph is directed, and the edges are labeled with attributes such as
roads, and the subject of the Russian Federation for both the departure
and destination. To encode these attributes, we use a one-hot encoding
scheme [6].

A giant connected component is extracted from the graph. The original
graph is directed and comprised of 13 420 nodes and 16 734 edges with
average degree 2.49.

3.2. Algorithms and the quality metric. We treat the shipping rec-
ommendation problem as a link prediction task between shippers and con-
signees based on known shipping records. Since the interaction graph un-
der consideration is not bipartite, unlike the classical case, three of the
most popular general-purpose GNNs were selected for analysis: GCN [10],
GraphSAGE [5], and GAT [27].

GCN is a method that constructs node embeddings based on their local
neighborhood. GCN is based on graph convolutions built by stacking mul-
tiple convolutional layers. Every layer starts off with a shared node-wise
feature transformation (in order to achieve a higher-level representation),
specified by a weight matrix. In order to construct neighbourhood of each
node, GCN operates with full graph adjacency matrix at each layer.

On the other hand, GraphSAGE generalizes neighborhood aggregation,
so that it samples only a subset of neighboring nodes at different depth
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layers. On each layer, it aggregates the neighbors of the previous layers
using an aggregator. Each aggregator function aggregates information from
a different number of hops, or search depth, away from a given node. As a
result, nodes incrementally gain more and more information about graph
local structure.

Inspired by successes in natural language processing, GAT leverages
masked self-attentional layers over the node features to define the impor-
tance of neighbours. Concatenation of output of several different heads
enables method to specify different importances to different neighbours.

In all our experiments for link prediction task the outputs of GNNs
were transmitted to 2-layered multilayer perceptron (MLP). Binary cross-
entropy loss was used to optimize parameters of the models.

The models were evaluated in the inductive setting (predictions for a
node unseen in the training phase) via the AUC-ROC quality metric mea-
suring the performance for the classification of whether an edge between
two nodes exists.

3.3. Attack algorithms. In this work we consider membership inference
attacks. Most of such attacks are quite simple to implement. Moreover, this
group of attacks can be applied even to the black box model in the absence
of data leakage. The only requirement is that the model returns the degrees
of confidence in its predictions.

The membership inference attack problem can be thought of as a binary
classification problem. In the case of recommendation system, the task of
the attack algorithm is to classify whether there was an edge between two
given nodes in the training group.

A naive algorithm needs to make some requests to the target model.
Next, it looks at the distribution of forecast confidence levels. And if it
is possible to easily divide all forecasts into two groups, then a threshold
is chosen according to which the forecasts are divided into two groups.
Otherwise, one can either use the standard assumption of an 80-by-20
split, or assume that this information got into external sources and take
an exact split boundary.

In a more complex attack scenario, a shadow model needs to be trained.
As has been shown in the work [23], the 2-layer GCN model can be effec-
tively used for this purpose. The general algorithm consists of the following
steps (see Fig. 1).

(1) Imitate data leakage by excising a fraction of the dataset. The
target model is trained on the rest of it.
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Figure 1. Shadow MI attack scheme.

(2) Build a shadow model based on GCN.
(3) Divide the part of the dataset into training and test set for the

shadow model. Create the appropriate markup indicating which
edges are included in the training sample, and which are not.

(4) Train the shadow model.
(5) Preserve the shadow model confidence levels for all edges in

dataset.
(6) Train a classifier on shadow model confidence data.
(7) Attack the real model using the trained classifier.

§4. Experiments

Now we provide experimental results with two attack strategies, thresh-
old MI and shadow MI, on our recommendation system models.

Throughout the experiments we used by default a two-layer GCN model
trained on 5 epochs by default. Experiments were also carried out with
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Figure 2. Performance (AUC-ROC) of 3 convolution
types on the link prediction task is shown on the test
dataset (left) and the training dataset (right).

other types of layers, but they did not show significant differences. 75%
of edges were used for training, 5% for validation, and 20% for testing,
splitted in chronological order. All the reported values were obtained by
averaging over 20 runs.

SVC with an exponential kernel was used as the attacker’s classifier.

4.1. Threshold MI attack. In the threshold MI experiments, test and
train data were mixed, then all edges were evaluated by the target model.
The attacker then predicts the top 75% of edges as train. To assess the
attack quality, among the selected 75% of the data, it was estimated how
many edges were actually in the training part — these are correct attack
answers, and the rest are incorrect ones.

We studied the dependence of the attack quality on the number of
training epochs of the target model and on the architecture of the model.
As it can be seen from Fig. 2, the quality of the model on the training set
continues to improve after 10 epochs, but there is no change in the quality
on the test set. This indicates that the model is overfitting after 10 epochs.

Figure 3, with increasing training epochs and increasing model over-
fitting, the quality of the threshold MI attack increases. It is also worth
noting that in spite of the fact that the quality of the model increases
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Figure 3. Threshold MI attack accuracy depending on the
number of epochs the target model (GCN) was trained.

slightly with an increase in the number of epochs from 5 to 10, the quality
of the attack increases significantly. That is, the model begins to score,
on average, the edges from the training set higher than test edges, which
indicates the overfitting.

Figure 4 shows that all three standard convolutions are equally suscep-
tible to the attack and the architecture does not seem to correlate in any
way with the attack accuracy.

4.2. Shadow MI attack. For the shadow MI attack, we used as a default
shadow model a two-layer GCN trained on 5 epochs. The shadow dataset
did not overlap with the data on which the target model was trained. The
default shadow dataset has been set to 25% of the total data. Splitting the
shadow dataset into train and test sets was the same to splitting the data
when training the target model. After training the shadow model and the
classifier, they were applied to dataset used with the target model. Scores
were calculated for all the edges in this data, then fed to the input of the
classifier. Finally, the quality was evaluated by the accuracy metric.

We studied the dependence of the quality of the attack on the number
of training epochs of the target model, the architecture of the shadow
and target models, and the amount of dataset leakage. As the results in
Figures 5, 6, and 7 show, in all cases the variation of these parameters does
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Figure 4. Threshold MI attack accuracy depending on the
target model architecture.
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Figure 5. Shadow MI attack accuracy depending on
shadow data fraction used for the attack.

not give significant changes in the quality of the attack, and the quality
remains extremely high and shows a significant vulnerability of the models
to this group of attacks.
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An important point in evaluating the accuracy of attacks is that the
quality of the attack depends on splitting the sample into train, validation,
and test. Since in our case 75% of the dataset is the training set, then it is
worth evaluating how much the metric value is more than 75 percent, in
accordance with the splitting of the dataset.

It is also worth noting that one should not directly compare the quality
of the attacks considered by MI, as they involve different use cases and
make different assumptions about data leakage.

§5. Conclusion

Transportation logistics companies often collect a significant amount
of data about their customers, such as delivery addresses and shipment
details. However, this data can be sensitive and could reveal personal in-
formation about the clients. An attacker who gains access to such models
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can use membership inference attacks to determine whether a specific in-
dividual’s data was included in the training dataset, even if the model does
not explicitly reveal this information [8, 26].

In this work, we have considered an industrial application of GNNs to
recommendation systems in transportation logistics and analysed their sus-
ceptibility to membership inference attacks. Experiments with three GNN
architectures shown that all of them can be successfully attacked even by a
simple threshold-based classifier. Accuracy of training elements restoration
increases as a target model gets overfitted. In our link prediction setting
for transaction graph, the recommended number of epochs would be less
than 5 to decrease the risks. In this way, a threshold MI attack could be
used as an alternative method for overfitting detection.

Another risk is the leakage of training data which can lead to an attack
with a shadow model. We showed that having 1-2% of the actual data,
an attacker can successfully train their own GNN model to induce the
membership of a shipper-consignee association in the training set with
accuracy over 94%.

As a result, in order to preserve privacy the data owner should watch
out for even small data leaks, while a machine learning specialist should
be careful in choosing the model training steps.

In future works, our research will be focused on the study and devel-
opment of effective methods for producing trustworthy machine learning
models that are resilient against membership inference attacks.
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