
Записки научных
семинаров ПОМИ

Том 530, 2023 г.

T. Ter-Hovhannisyan, H. Aleksanyan, K. Avetisyan

ADVERSARIAL ATTACKS ON LANGUAGE MODELS:
WORDPIECE FILTRATION AND CHATGPT
SYNONYMS

Abstract. Adversarial attacks on text have gained significant at-
tention in recent years due to their potential to undermine the re-
liability of NLP models. We present novel black-box character- and
word-level adversarial example generation approaches applicable to
BERT-based models. The character-level approach is based on the
idea of adding natural typos into a word according to its WordPiece
tokenization. As for word-level approaches, we present three tech-
niques that make use of synonymous substitute words created by
ChatGPT and post-corrected to be in the appropriate grammati-
cal form for the given context. Additionally, we try to minimize the
perturbation rate taking into account the damage that each pertur-
bation does to the model. By combining character-level approaches,
word-level approaches, and the perturbation rate minimization tech-
nique, we achieve a state of the art attack rate. Our best approach
works 30-65% faster than the previously best method, Tampers, and
has a comparable perturbation rate. At the same time, proposed per-
turbations retain the semantic similarity between the original and
adversarial examples and achieve a relatively low value of Leven-
shtein distance.

§1. Introduction

In recent years, adversarial attacks have gained growing attention as a
technique for exploring the robustness and reliability of machine learning
models. These attacks perform small perturbations to input data that can
lead models to make incorrect predictions [8, 12]. The purpose of an ad-
versarial attack is to generate data examples while keeping it similar to
the original but containing perturbations imperceptible to the human that
can mislead the model [3].

Key words and phrases: adversarial attacks, character-level attacks, word-level at-
tacks, ChatGPT synonyms, WordPiece.

80

ADVERSARIAL ATTACKS ON LANGUAGE MODELS 81

Creating adversarial examples for text data, which is discrete, is more
challenging than for continuous data such as images. For images, imper-
ceptible perturbations of pixels can lead to a wrong prediction by a model.
However, for text data small perturbations are noticeable and a single
word replacement can significantly change the meaning of a sentence. As a
result, adversarial examples for text should meet the following criteria: (1)
the perturbations must be undetectable by human perception, specifically
the semantic sense, (2) they must be grammatically correct and sound
natural, and (3) they must mislead the model.

In this work, we propose different novel black-box adversarial examples
generation approaches that surpass existing ones in terms of attack rate.
We propose both character-level and word-level perturbation approaches,
and additionally their combination. The described approaches are appli-
cable to BERT-based models.

The character-level approach is based on the idea of adding natural
typos into a word according to its WordPiece tokenization. According to
the tokenization, the approach tries to make typos in such a way that the
perturbed word’s embedding is far from its original embedding. This is
done by minimizing the intersection of the original word tokens and the
tokens of the word with a typo.

For word-level perturbations, we have tried 3 different approaches. All
of these approaches are based on ChatGPT-generated synonyms and try to
replace original words with synonyms in the correct grammatical form (e.g.
case, gender, number). The use of ChatGPT is due to its ability to produce
synonyms for words that are not present in existing synonym dictionaries.

Additionally, we combined the character-level and word-level ap-
proaches by applying character-level perturbations over already substi-
tuted words.

The experiments were conducted on 3 benchmark datasets for the Eng-
lish language (IMDB1, YELP2 [20], MR3 [15]) and a translation classifi-
cation dataset (NEG-1 4 [22]) for the Russian language. According to the
results, we have achieved a state of the art attack rate on these bench-
marks.

1https://huggingface.co/datasets/imdb
2https://huggingface.co/datasets/yelp_polarity
3https://huggingface.co/datasets/rotten_tomatoes
4http://nlp.isa.ru/ru-en-text-align-corp/Negative-1

82 T. TER-HOVHANNISYAN, H. ALEKSANYAN, K. AVETISYAN

§2. Related work

The first text adversarial attacks were performed against recurrent net-
works [1,13,16]. Due to the growth of the popularity of Transformer-based
models, the attacks were also executed on BERT-base models that were
more sustainable to the attacks than RNNs [7,11,14].

The attacking strategy in the text domain is divided into two steps:
important word detection and perturbation. The important word is a word
whose modification in the text can mislead the model. The first types of
attacks used a gradient-based approach of deciding vulnerable places in the
text. Such attacks are called white-box, which means that the adversary
has access to target model parameters and architecture [4, 5, 8, 18]. This
means that the attacker can study the inner workings of the model and
use this knowledge to craft adversarial examples that can fool the model
into making incorrect predictions.

Due to the complexity of calculation in the white-box setting and the in-
accessibility of some models, the black-box approach was proposed [13,16].
These methods can be more valuable in real-life situations where the at-
tacker has limited access to the targeted model. In this setting, the attacker
has no access to the model weights but the output. The soft black-box
methods can access the probabilities on the last layer of a model [7, 21].
The black-box attacks imitate the white-box attacks by approximations
made from the output of the model on different examples.

For the perturbations, the approaches presented in the literature can be
grouped into word-level and character-level. The word-level attacks per-
form replacement, insertion or deletion of whole words. The early methods
of word-level attacks relied on rule-based techniques [1,16,19]. These meth-
ods use linguistic constraints like part-of-speech or named entity tagging,
which are complicated to compute and cannot guarantee semantic consis-
tency and fluency. For word replacements, some works employed synonym
sets [16, 21], others like [10] used semantic vectors with special restric-
tions on stop-words and antonyms. Alternative methods that use BERT-
based language models (LM) to generate word replacements were devel-
oped [7,14]. These methods have shown to increase the attack success rate
and maintain semantic similarity.

Character-level attacks such as [2, 5, 6] use the idea of manipulating
characters in words. In [18], adversarial examples were crafted with mis-
spellings based on the keyboard layout. They can occur inadvertently due
to human nature and sometimes cannot be noticed [9]. It was studied

ADVERSARIAL ATTACKS ON LANGUAGE MODELS 83

that misspelling of important words, mostly the character replacement,
can cause BERT to misclassify the examples.

Having the perturbation candidates for the important word, the next
step is to decide which are better for the attack. Greedy algorithms in
attacks [11, 16] maximize changes in model prediction using beam-search
to select the best candidates for the replacement. The combinatorial opti-
mization-based attacks like genetic algorithms presented in [1, 19] involve
the use of fitness functions to control semantic quality. However, they are
time-consuming due to the large search space.

§3. Char-level attacks

In this section, we present a novel approach of character-level attacks on
WordPiece [17] tokenization-based models. We restricted the word modi-
fication process so that the modifications look like natural typos.

First, utilizing the attacked model we define the sequence of the words-
to-be-changed by calculating the importance of the words. The importance
calculation algorithm was similar to the ones described in many previous
works [14, 16]. Consider a sentence S = {w1, w2, . . . , wn} where wi repre-
sents the words in the example. After removing the word wi, the resulting
example is denoted by S\wi = S\{wi} = {w1, . . . , wi−1, wi+1, . . . , wn}. A
model to be attacked, My(−), is used to represent the prediction score
for label y. The importance score Iwi

is calculated as the difference be-
tween the prediction score before and after removing the word wi from the
sentence, which is formally defined as follows:

Iwi
= My(S)−My(S\wi

) (1)

Therefore, importance scores are obtained for every word in the sentence.
They are then used to select the most influential words in the context of
the attacked model.

3.1. Character-level modification actions. After obtaining a sorted
sequence of words to be modified, we utilized 4 modification actions that
will look natural, presented in [18], with additional restrictions of not using
homoglyphs and digits:

(1) Deletion — deleting a random character from the word; this im-
itates the process of missing a character while typing fast. (e.g.
“moon” → “mon”);

84 T. TER-HOVHANNISYAN, H. ALEKSANYAN, K. AVETISYAN

(2) Insertion — inserting next to a random letter of the word a letter
that is: a) located next to that letter according to the keyboard
layout, b) the same letter (e.g., “moon” → “mooon”);

(3) Mistype — changing a random letter of the word to a letter that is
located next to that letter according to the keyboard layout (e.g.
“moon” → “moom”);

(4) Swap — swapping two random adjacent characters of the word
(e.g., “moon” → “mono”).

For the insertion and mistype modification actions we imitate the possi-
bility of typographical errors, such as pressing the wrong key or pressing
the same key twice. Additionally, the insertion at the end of the word
included not only the nearest located letters of the last characters, but
also the characters that are located near the “Space”. To make the actions
look more natural, instead of using the whole alphabet, only nearby let-
ters on the keyboard were utilized. Each word was changed only with one
modification action so that we would have one typo per changed word.

3.2. WordPiece Tokenization-Based Adversarial Examples.
Looping over the important words according to the sorted sequence, the
goal was to maximize the attack chance on every step without utilizing a
greedy approach. To do so, we propose the idea of utilizing the peculiarities
of the WordPiece tokenization commonly used in BERT-based models.
So, on each step, utilizing the modification actions described above, we
get all of the possible candidates. We applied WordPiece tokenization on
all of these candidates and the original word itself. Afterwards, we utilized
the following 3 candidate filtration approaches.

(1) Min Token Intersection (MTI) — the intersection between to-
kens of the original word and each candidate is calculated. Only the
candidates that have a minimal intersection with the tokens of the
original word are left. E.g. for the word “melodrama” → [’mel’,
’##od’, ’##rama’] we leave “melodarma” → [’mel’, ’##oda’,
’##rma’], instead of “melodramas” → [’mel’, ’##od’, ’##rama’,
’##s’].

(2) Max Token Count Distance (MTCD) — the token count
distance between the original word and the candidates is cal-
culated. Only the words with the maximum value of the dis-
tance are left. E.g. in this case for the word “melodrama” →
[’mel’, ’##od’, ’##rama’] we leave “nelodrama” → [’ne’, ’##lo’,

ADVERSARIAL ATTACKS ON LANGUAGE MODELS 85

’##dra’, ’##ma’], instead of “melodarma” → [’mel’, ’##oda’,
’##rma’].

(3) Min Token Intersection + Max Token Count Distance
(MTI + MTCD) — the first two approaches are combined to-
gether so that the candidates with minimal intersection and maxi-
mum token count distance are left. E.g. for the word “melodrama”
→ [’mel’, ’##od’, ’##rama’] from the candidates “melodramas”
→ [’mel’, ’##od’, ’##rama’, ’##s’] and “melodrma” → [’mel’,
’##od’, ’##rma’] both remain after the intersection, but after
calculating max distance only “melodramas” remains.

The underlying assumption of this approach is that a larger difference
between subword sets of the original word and its replacement candidate
will result in an even more semantically distant sentence.

After the candidates are filtered, we choose the candidate, from the
remaining ones, that has the most effect on the model and change the
original word with it. Then, the algorithm proceeds to the next iteration
(word).

§4. Word-level attacks

To make semantically more relevant perturbations, many existing ap-
proaches are based on utilizing various dictionaries of synonyms (WordNet,
BabelNet, HowNet, etc.) or word embedding similarity. The problem with
word embedding similarity is that the candidates could appear semanti-
cally not close enough to the original word. The problem with dictionaries
is that there could be some important words that will not be present
in the dictionaries. To circumvent these problems, the perturbations were
processed by applying word synonyms from ChatGPT. Utilizing ChatGPT
opens opportunities to receive synonyms for the words not included in the
existing dictionaries (sometimes absurd or grammatically incorrect words).
E.g. for the word “oooooh”, that most probably is not present in any ex-
isting synonym dictionaries, ChatGPT produced the following synonyms:
“ohh”, “ahhh”, “ooh”, “woo”. It is also able to produce synonyms for named
entities such as human names, e.g., for the word “Marianne” synonyms like
“Mary”, “Maria”, “Marie” were provided.

4.1. Prompt Generation. To utilize ChatGPT efficiently, the model
was requested to generate synonyms for multiple words at once. The
prompt (illustrated in Fig. 1) was a simple command followed by a list of

86 T. TER-HOVHANNISYAN, H. ALEKSANYAN, K. AVETISYAN

Figure 1. ChatGPT prompt for generating multiple syn-
onyms for given English words.

words, for which synonyms were required. To construct an effective prompt
for getting the correct synonyms of a polysemous word from ChatGPT, we
additionally determined the part of speech tag of the word using Python’s
Stanza library and appended the word with that tag in brackets. This
technique was applied only for words in noun, verb, adverb, adjective, in-
terjection, and proper noun part-of-speech categories. ChatGPT’s response
included multiple synonyms for each of the given words.

4.2. Word Replacement Strategies. While replacing the words, we
want the perturbations to be as natural as possible keeping their morpho-
logical features (e.g., case, gender etc.). To achieve that goal, we conducted
a comparison of different word replacement strategies.

4.2.1. Morphological Analysis and Inflection (MAI).. In this strategy, we
try to imitate the use of standard dictionaries of synonyms. First, we obtain
the lemma of the synonym when perturbing the text. Then, we inflect
it using morphological analyzers and replace the original word with the
inflected synonym.

So, within the scope of this strategy, the given text examples were ini-
tially lemmatized. The ChatGPT prompt was generated utilizing these
lemmatized words. Then, as a baseline solution for keeping the morphologi-
cal features while replacing the words, we utilized morphological analyzers.
For each original word, their morphological features were extracted. The
extraction was processed via spaCy for English words and pymorphy2 for
Russian words. These features were used to inflect the synonyms obtained
for the lemmatized original words and therefore were also in lemmatized
form. The inflection was processed via spaCy’s lemminflect extension for

ADVERSARIAL ATTACKS ON LANGUAGE MODELS 87

English words and pymorphy2 for Russian words. The inflected synonyms
were then used as the ones to conduct the perturbation.

4.2.2. BERT-based mask prediction (BERT MP).. Another experimental
approach for keeping the morphological features is based on masked token
prediction. Getting the synonyms from ChatGPT in their lemmatized form
we try to predict their endings. The prediction is processed in the following
steps.

(1) The original word is replaced with its synonym (which is a lem-
matized word).

(2) The synonym is processed with the WordPiece tokenization.
(3) Based on the output of the tokenization the word ending is mask-

predicted in two different ways.
(a) If the synonym is tokenized into more than one token its last

token is masked and predicted.
(b) If the synonym is tokenized as one token, the ending pre-

diction is processed iteratively. On the first iteration, a
"[MASK]" token is added at the end of the word and pre-
dicted. Starting from the second iteration the last letters are
removed one by one and the "[MASK]" token is attached at
the end of the truncated word. The overall process of pre-
diction process is stopped at the fifth iteration. Having the
probabilities of each prediction on each iteration the ending
with the highest probability is taken.

This process is shown in Fig. 2.

4.2.3. ChatGPT Morphologically Inflected Form-Saved Synonyms (MAI
FSS). By modifying the prompt given to ChatGPT, we can make it gen-
erate synonyms for the words in unlemmatized forms while preserving the
morphological features for the synonyms that it provides. The prompt for
Russian examples is shown in Fig. 3. We utilized this feature to directly
obtain the synonyms with proper endings. Nevertheless, for some words
there appeared wrong predictions where the synonyms were provided in
their lemmatized form. Such synonyms were additionally inflected the same
way we did in the MAI word replacement approach.

Once we receive the list of synonyms utilizing one of the described
methods, we supplement that list. For each of the synonyms, we gener-
ate their typoed versions the same way we have done it for character-level

88 T. TER-HOVHANNISYAN, H. ALEKSANYAN, K. AVETISYAN

Figure 2. BERT-based mask prediction: (A) the synonym
is tokenized into more than one token, (B) the synonym
is tokenized into one token.

Figure 3. ChatGPT prompt for generating multiple syn-
onyms for given Russian words.

approaches. The typoed synonyms are added to the list of untouched ones
making up the final candidates list.

On each step, we choose the candidate that has the most effect on the
model and replace the original word with it.

§5. Perturbation minimization

Initially, as has been done in many other approaches, we one by one
modified important words until a successful attack. If more than 40% of

ADVERSARIAL ATTACKS ON LANGUAGE MODELS 89

the example words were modified we considered the attack unsuccessful,
otherwise the attack was considered successful.

For successful attacks, after the perturbation step we tried to minimize
the perturbation rate. To do so, we calculated the damage that each per-
turbation gives on each step. Starting from the word with the least damage
we change them back to the original words and try to attack again. If the
attack is unsuccessful we leave the modification of the word and iterate to
the next important word. If the attack is still successful after bringing a
modified word back to its original we leave the original word and proceed
to the next important word.

The pseudocode of this process is given in Algorithm 1.

§6. Attacked datasets

We study the effectiveness of our adversarial attacks on two binary
classification tasks: sentiment analysis, and translation classification.

As for the sentiment analysis we utilized 3 datasets that are examined
in various works: IMDB, MR, YELP.

As a translation classification dataset, we utilized NEG-1, where the
task is to determine whether the first sentence in Russian is a translation
of the second one in English. This dataset is used for evaluating the ac-
curacy of detailed analysis step in cross-lingual plagiarism detection task.
As our main field of study is cross-lingual plagiarism detection, we were
interested in testing the effect of adversarial attacks on the BERT-based
detailed analysis translation classification model. Taking into account the
specifics of the plagiarism detection task, it is more important to make
the system predict plagiarised sentences as not plagiarised than vice versa
while generating adversarial attacks. So, for this dataset, we utilized only
the positive-labeled sentence pairs of it.

§7. Results

Within this work, all the experiments, including the comparison be-
tween existing approaches and presented ones, were conducted on 1000
examples per described dataset. For each method, we computed the fol-
lowing metrics.

(1) Attack Rate (AR) — the ratio of the number of attacked examples
and the number of correct predicted examples.

90 T. TER-HOVHANNISYAN, H. ALEKSANYAN, K. AVETISYAN

Algorithm 1 Perturbation Minimization
Input: originalSentence, attackedSentence, replacements
Output: attackedSentence with minimized perturbation

originalSentence: original sentence from dataset
attackedSentence: changed sentence that is misleading the model
replacements: information about all replacements (word and its

replacement)
1: procedure MinimizePerturbation
2: damage = []
3: tempSentence = originalSentence
4: for each word in replacements do
5: score = predict(tempSentence)
6: tempSentence = replace(tempSentence, word)
7: damage ← |predict(tempSentence) - score|
8: Sort replacements by damage
9: newReplacements = []

10: while replacements 6= newReplacements do
11: newReplacements = replacements
12: replacements = Reverse(replacements)
13: for each word in replacements do
14: tempSentence = restoreOriginalWord(attackedSentence,

word)
15: if isAttacked(tempSentence) then
16: attackedSentence = tempSentence
17: remove word from replacements
18: return attackedSentence

(2) Perturbation Rate (PR) — the percentage of modified words in the
adversarial example.

(3) Levenstein distance (Lev.) — Levenstein distance by characters
between original and adversarial example.

(4) Semantic similarity — semantic similarity between original and
adversarial example (we used USE model for English and MUSE
model for Russian).

We separately present the results of character-level, word-level, and com-
bined approaches.

ADVERSARIAL ATTACKS ON LANGUAGE MODELS 91

Table 1. The average values (attack rate (AR), pertur-
bation rate (PR), semantic similarity (USE), Levenstein
distance (Lev.), and 4 types of character-level word mod-
ifications) of our character-level attack methods and pub-
lished method across MR, IMDB, and YELP datasets.

AR PR Lev. Insertion Deletion Mistype Swap
MTI 88.24% 6.55% 5.53 47.25% 13.86% 31.80% 7.10%

MTCD 66.44% 8.26% 9.08 83.51% 3.02% 9.88% 3.60%
MTI + MTCD 66.36% 8.14% 8.99 81.09% 3.86% 10.56% 4.67%
DeepWordBug 71.63% 12.76% 8.41 - - - -

7.0.1. Character-level approaches. We compared the proposed approaches
with the state of the art character-level DeepWordBug method. Experi-
mental results are shown in Table 1 and denote the average metrics on three
English datasets. According to the results, the “Minimum Token Intersec-
tion” achieves the highest results significantly surpassing the DeepWord-
Bug method in terms of all metrics. Our approach also achieves higher
results than many other word-level approaches, having significantly lower
values of the Levenstein distance and natural types of typos. Additionally,
we present the statistics of the percent of each typos generation action
that was utilized while generating the adversarial examples.

The semantic similarity was not calculated for character-level ap-
proaches as we assume that the typos are natural and the adversarial
and original samples are semantically similar.

7.0.2. Word-level approaches. For word-level approaches, the average re-
sults over the 3 English datasets are shown in Table 2, alongside the per-
centage of which types of candidates were utilized during the attack pro-
cess.

According to the results, these methods achieve a higher attack rate and
lower perturbation rate than many other existing approaches (Table 4).
The perturbation is mainly processed utilizing synonyms with typos.

7.0.3. Combined approaches. To achieve the highest results we combined
both character- and word-level approaches, obtaining a list of candidates
that contains original words with typos, synonyms, and synonyms with
typos. The results of these methods are shown in Table 3, separately for
each dataset. Additionally, we present the average percentage of which
types of candidates were utilized during the attack process. The results

92 T. TER-HOVHANNISYAN, H. ALEKSANYAN, K. AVETISYAN

Table 2. The average values (AR, PR, USE, and Lev-
enstein distance, the percentage of words modified using
synonyms (%syns), and typos on synonyms (%syns*)) of
our word-Level attack methods across MR, IMDB, and
YELP datasets.

AR PR USE Lev. %syns %syns*
BERT MP 92.87% 6.11% 0.95 28.37 11.89% 88.11%

MAI 93.95% 5.98% 0.95 26.33 8.92% 91.08%
MAI FSS 92.35% 6.51% 0.94 34.82 9.87% 90.13%

Table 3. Evaluation metrics for combined attacks on all
datasets, including AR, PR, USE, and Levenstein distance
between the original and adversarial samples, and the per-
centage of words modified using synonyms (%syns), typos
(%typos), and typos on synonyms (%syns*).

AR PR USE Lev. %syns %syns* %typos

MR
Comb. BERT MP 93.10% 9.99% 0.89 7.18 7.33% 44.98% 47.69%

Comb. MAI 92.76% 9.93% 0.90 7.03 4.27% 49.61% 46.12%
Comb. MAI FSS 93.10% 10.15% 0.89 7.65 5.28% 45.31% 49.41%

IMDB
Comb. BERT MP 98.80% 2.77% 0.98 24.38 8.75% 52.80% 38.45%

Comb. MAI 98.80% 2.60% 0.98 23.90 6.43% 59.86% 33.71%
Comb. MAI FSS 97.90% 2.70% 0.98 24.43 5.75% 53.56% 40.70%

YELP
Comb. BERT MP 96.92% 5.15% 0.96 24.38 6.53% 56.40% 37.07%

Comb. MAI 97.02% 4.96% 0.96 24.06 6.73% 61.73% 31.54%
Comb. MAI FSS 96.61% 5.25% 0.96 25.07 4.88% 54.57% 40.56%

NEG-1
Comb. BERT MP 93.54% 13.01% 0.93 12.93 5.92% 52.53% 41.55%

Comb. MAI 93.89% 13.07% 0.93 13.30 5.12% 55.23% 39.64%
Comb. MAI FSS 93.74% 13.01% 0.92 14.57 5.60% 52.80% 41.60%

show that mainly the typos-affected synonyms are used. The explana-
tion is that typos-affected synonyms are most perturbed relative to the
original words. At the same time, we achieve a high usage percentage of
typos-affected original words, which significantly decreases the Levenstein
distance making the adversarial example more imperceptible.

In terms of the Russian dataset, the results show that the method is
multilingually applicable achieving nearly 94% attack rate.

The comparison results of the two best combined approaches (BERT
MP, MAI) with other existing ones are shown in Table 4. The compar-
ison was processed over the averaged results on 3 considered datasets.

ADVERSARIAL ATTACKS ON LANGUAGE MODELS 93

Table 4. The average[variance] of values (AR, PR, USE,
and Levenstein distance) of our combined attack methods
and the published methods across MR, IMDB, and YELP
datasets.

BERT MP MAI PWWS TextFooler Tampers Bert-attack TextBugger

AR 96.27%
[5.63%]

96.19%
[6.42%]

91.31%
[53.06%]

94.56%
[15.98%]

95.35%
[9.70%]

83.06%
[12.35%]

78.62%
[130.23%]

PR 5.97%
[9.02%]

5.83%
[9.33%]

8.79%
[18.15%]

12.65%
[24.24%]

4.43%
[6.01%]

10.56%
[11.59%]

22.44%
[28.49%]

USE 0.95 0.95 0.92 0.90 0.93 0.88 0.93
Lev. 18.65 18.33 33.93 52.71 35.25 118.29 35.48

Table 5. Runtime comparison per sample between our
fastest method MAI and Tampers.

MR IMDB YELP
Tampers 9,5 sec./sample 98,5 sec./sample 79,6 sec./sample

Comb. MAI 6,8 sec./sample 41,0 sec./sample 27,7 sec./sample

According to the results, the proposed approaches achieve state-of-the-art
results in terms of attack rate simultaneously surpassing the best methods
in terms of semantic similarity, and the Levenstein distance.

We separately computed the time consumption (Table 5) of our fastest
approach with the Tampers that achieves a high attack rate with the least
perturbation rate. The time consumption was computed on one RTX 3090.
Our approach showed from 30 to 65 per cent faster results.

§8. Conclusion

In this work, we have presented novel character- and word-level ap-
proaches that are based on WordPiece tokenization and ChatGPT-genera-
ted synonyms respectively. The proposed character-level approach achieves
significantly higher results than the other state of the art character-level
approach. Our character-level method is also comparable to other word-
level approaches but with much lower Levenstein distance and natural
types of typos. Combining both approaches, we have developed an adver-
sarial example generation method that achieves state of the art results in
terms of attack rate reaching over 96%, and additionally surpassing the
best methods in terms of semantic similarity and the Levenstein distance.

94 T. TER-HOVHANNISYAN, H. ALEKSANYAN, K. AVETISYAN

References
1. M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-W. Chang,

Generating Natural Language Adversarial Examples, arxiv (2018).
2. Y. Belinkov and Y. Bisk, Synthetic and Natural Noise Both Break Neural Machine

Translation, arxiv (2018).
3. A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, Ad-

versarial Attacks and Defences: A Survey, arxiv (2018).
4. J. Ebrahimi, D. Lowd, and D. Dou, On Adversarial Examples for Character-Level

Neural Machine Translation, arxiv (2018).
5. J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, HotFlip: White-Box Adversarial Ex-

amples for Text Classification, arxiv (2018).
6. J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, Black-box Generation of Adversarial

Text Sequences to Evade Deep Learning Classifiers, arxiv (2018).
7. S. Garg and G. Ramakrishnan, BAE: BERT-based Adversarial Examples for Text

Classification, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Association for Computational Linguistics, 2020,
pp. 6174–6181.

8. I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and Harnessing Adversarial
Examples, arxiv (2015).

9. J. Grainger and C. Whitney, Does the huamn mnid raed wrods as a wlohe?, 58–9.
10. R. Jia, A. Raghunathan, K. Göksel, and P. Liang, Certified Robustness to Adver-

sarial Word Substitutions, arxiv (2019).
11. D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, Is BERT Really Robust? A Strong

Baseline for Natural Language Attack on Text Classification and Entailment, arxiv
(2020).

12. A. Kurakin, I. Goodfellow, and S. Bengio, Adversarial examples in the physical
world, arxiv (2017).

13. J. Li, S. Ji, T. Du, B. Li, and T. Wang, TextBugger: Generating Adversarial Text
Against Real-world Applications, Proceedings 2019 Network and Distributed Sys-
tem Security Symposium, 2019.

14. L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, BERT-ATTACK: Adversarial Attack
Against BERT Using BERT, arxiv (2020).

15. B. Pang and L. Lee, Seeing stars: Exploiting class relationships for sentiment cat-
egorization with respect to rating scales, , ACL ’05, Association for Computational
Linguistics, 2005, pp. 115–124.

16. S. Ren, Y. Deng, K. He, and W. Che, Generating Natural Language Adversarial
Examples through Probability Weighted Word Saliency, Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, Association for
Computational Linguistics, 2019, pp. 1085–1097.

17. X. Song, A. Salcianu, Y. Song, D. Dopson, and D. Zhou, Fast WordPiece Tokeniza-
tion, arxiv (2021).

18. L. Sun, K. Hashimoto, W. Yin, A. Asai, J. Li, P. Yu, and C. Xiong, Adv-BERT:
BERT is not robust on misspellings! Generating nature adversarial samples on
BERT, arxiv (2020).

ADVERSARIAL ATTACKS ON LANGUAGE MODELS 95

19. Y. Zang, F. Qi, C. Yang, Z. Liu, M. Zhang, Q. Liu, and M. Sun, Word-level Tex-
tual Adversarial Attacking as Combinatorial Optimization, Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, Association for
Computational Linguistics, 2020, pp. 6066–6080.

20. X. Zhang, J. Zhao, and Y. LeCun, Character-level Convolutional Networks for Text
Classification, arxiv (2016).

21. X. Zhao, L. Zhang, D. Xu, and S. Yuan, Generating Textual Adversaries with
Minimal Perturbation, arxiv (2022).

22. V. Zubarev and V. Sochenkov, Cross-Language text alignment for plagiarism de-
tection based on contextual and context-free models, 2019.

Поступило 6 сентября 2023 г.Russian-Armenian University,
ISP RAS, Yerevan, Armenia
E-mail : tterhovhannisyan@ispras.ru

E-mail : a.aleksanyan@ispras.ru

E-mail : karavet@ispras.ru

