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Abstract. Neural networks have begun to take over more and
more of a person’s everyday life, and the complexity of neural net-
works is only increasing. When tested on collected test data, the
model can show quite decent performance, but when used in real-
life conditions, it can give completely unexpected results. To deter-
mine the cause of the error, it is important to know how the model
makes its decisions. In this work, we consider various methods of
interpreting the BERT model in classification tasks, and also con-
sider a method for evaluating interpretation methods using vector
representations fastText and GloVe.

§1. Introduction

Neural networks have begun to produce more and more results compa-
rable to the human level and even outperform humans in some tasks, but
at the same time the models have become much more complicated, and
the number of parameters involved in the network has begun to reach huge
levels. Deep learning models themselves are not easy to interpret because
of their “black box” nature, and with such developments it is virtually
impossible. The benefit of interpretability in machine learning is that it
increases the credibility of the model. People are often afraid to rely on
machine learning models when solving certain critical tasks. In particular,
there may be situations when a person is faced with a new technology, and
such an attitude can slow down the pace of its implementation.

Interpretability methods can be evaluated from three points of view:
application-grounded, functionally-grounded, or human-grounded [12, 3].
Application-grounded evaluation estimates the consequences in the tar-
get environment, for example explanations in bank services. Functionally-
grounded evaluation aims to check how well the explanation reflects the
model. Human-grounded evaluation estimates whether the explanations
are understandable to humans.
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In this work, we consider post-hoc interpretation methods in the text
categorization task and assume that to be human-grounded the explana-
tion should be semantically related to the category’s name. A user should
see the semantic similarity between the explanation and the category. We
compare several known ways of interpreting the results of deep learning
models: LIME [14], SHAP [11], and the self-attention mechanism of BERT
as a way of interpreting the results [6] using this approach.

To compare the results of the interpretation methods with the category
name, we use word embeddings and a metric originating from informa-
tion retrieval, namely normalized discounted cumulative gain (NDCG) [7].
The result of interpretation methods considered in this work is a list of
words with weights, where weight means the contribution of this word in
the model’s decision, so this is a ranked list. As a result, we select the
top N ∈ {1, 3, 5, 10} words that have made the most positive contribu-
tion to the output of the classification result of the interpreted model and
compare them with the category’s name in semantic similarity using word
embeddings.

§2. Related work

Various explanation methods have been proposed to address the need
for interpretability of machine learning methods. However, it is quite diffi-
cult to understand which method is the most trustworthy. Yalcin and Fan
[15] analyzed explanations given by SHAP and LIME methods for the clas-
sification of poisonous mushrooms in the mushroom dataset. They found
that for more than a third of samples, SHAP and LIME give different
explanations when comparing the most important feature.

The authors of [4] study local explanation methods on a wide range
(304) of OpenML datasets using six quantitative metrics. They revealed
that LIME’s and SHAP’s approximations are particularly efficient in high
dimensions and generate intelligible global explanations, but they suffer
from a lack of precision regarding local explanations.

Natural language processing tasks have their own characteristic fea-
tures, therefore approaches to their interpretability should be studied sep-
arately.

In [9], the authors consider several intepretability methods in text cat-
egorization. Three tasks for evaluating intepretability were considered: (1)
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determining the best classification model from several ones based on ex-
planations; (2) identifying the category of an example based on the expla-
nation; (3) help in the analysis of examples with low probabilities. It was
found that the LIME method showed the best results in the second task,
where it finds the best evidence for the class independent of the class cor-
rectness. The study was implemented for two text categorization datasets
(Amazon reviews and arXiv papers) and involved crowdsourcing in the
first case and post-graduate student assessors in the second case.

Our study provides an automatic evaluation of task 2 defined in the
above-mentioned work [9]. We calculate the semantic similarity of words
extracted by interpretability methods with the category’s title.

§3. Interpretation algorithms

In our experiments we consider three known algorithms of interpreta-
tion: LIME [14], SHAP [11], and self-attention weights [6].

3.1. LIME. LIME [14] (Local Interpretable Model-agnostic Explanations)
is a method of local interpretation independent of the machine learning
model. Local interpretability implies knowing the reasons for a specific
decision. LIME presents a locally faithful explanation by fitting a set of
perturbed samples near the target sample using a potentially interpretable
model, such as linear models and decision trees [10]. The interpreted ex-
planation in LIME is presented in the form of a binary vector showing the
participation of any parameter in the result. For example, a possible inter-
pretable representation for text classification is a binary vector indicating
the presence or absence of a word, even though the classifier may use more
complex (and incomprehensible) features such as word embeddings [14].

Let x ∈ Rd be the instance being explained, the explained model be
denoted by f : Rd → R and the explanation of the model be presented
as a model g ∈ G, where G is a class of interpreted models such as linear
models

g(x′) = φ0 +

d′∑
i=1

φix
′
i (1)

where x′ ∈ {0, 1}d′
is a binary vector of the interpretable representation

of x and φi ∈ R.
Interpreted model g tries to ensure g(z′) ≈ f(x) whenever z′ ≈ x′.

Since not every g ∈ G can be simple enough to be interpreted, a measure
of the complexity Ω(g) of the explanation of g ∈ G is introduced. For
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linear models, Ω(g) may be the number of non-zero weights. Next, πx(z)
is used as a measure of proximity between the perturbed sample z and x.
L(f, g, πx) will be a measure of how incorrectly g approximates f in the
locality defined by πx:

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g). (2)

Thus, the essence of the LIME approach is that we approximate the pre-
diction of the model f of the test case x by a simpler, easily interpreted
model g, which uses a simplified representation. The resulting explanation
ξ(x) interprets the target sample x with linear weights when g is a linear
model.

3.2. SHAP. SHAP [11] (SHapley Additive exPlanations) is a game the-
oretic approach to explain the output of any machine learning model. It
connects optimal credit allocation with local explanations using the clas-
sic Shapley values from game theory and their related extensions. Shapley
regression values are important characteristics for linear models in the
presence of multicollinearity. To calculate the Shapley value, it is required
to retrain the model for all subsets of features S ⊆ F , where F is the set of
all features. These values assign an importance value to each feature, which
means the importance of including this feature in the model forecast.

To calculate the Shapley value, the fS∪{i} model is trained with the
presence of this feature, and the other fS model is trained without the
feature. Then the predictions from the two models are compared at the
current input fS∪{i}(xS∪{i})−fS(xS), where xS represents the values of the
input features in the set S. Feature retention depends on other features in
the model, the previous differences are calculated for all possible subsets of
S ⊆ F \{i}. Shapley values are weighted averages of all possible differences:

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)]. (3)

Exact computation of Shapley values is challenging. The work [11] in-
troduces a new perspective that unifies Shapley value estimation. They
propose SHAP values that are the Shapley values of a conditional expec-
tation function of the original model. Let x ∈ Rd be the instance being
explained, and let x′ ∈ {0, 1}M denote a binary vector for its interpretable
representation and h be the mapping function x = hx(x′). SHAP values
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Figure 1. A sample matrix of weights in the form of an
attention mechanism.

are the solution of

φi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[f(hx(z′))− f(hx(z′ \ i))] (4)

where z′ ∈ {0, 1}M , z′ \ i denote setting z′i = 0, |z′| is the number of
non-zero entries in z′, and z′ ⊆ x′ represents all z′ vectors where the non-
zero entries are a subset of the non-zero entries in x′. In [11], the authors
propose that f(hx(z′)) = E[f(z)|zS ], where S is the set of non-zero indexes
in z′.

3.3. Self-Attention. This method is an attempt to understand whether
it is possible to use weights in the attention mechanism as a local inter-
pretation of models with Transformer-based architectures. The method is
based on the study [6] of the possible relationship between self-attention
and feature selection methods from different points of view, including the
coincidence of vocabulary, similarity of ranking, relevance of the subject
area, stability of features, and the effectiveness of classification. First, for
each input sequence, average weights for the 12 attention heads in the last
hidden layer are calculated. Next, a new matrix of weights is generated,
grouping subwords in a word by averaging the weights of the subwords.
The vertical average is taken as the weight of the word. Next, the top 10
words are considered as an interpretation.



AUTOMATIC EVALUATION OF INTERPRETABILITY METHODS 73

This method does not depend on the response of the model, but is
specific only to Transformer-based models. To illustrate this statement,
Figure 1 depicts the mean weights of the 12 self-attention heads in the last
hidden state of the trained bert-base-uncased [2] BERT model and fine-
tuned on the WOS [8] dataset for “Interpretability of thematic classification
of texts based on neural networks”. From the plot we can clearly see the
so-called vertical pattern, where a few tokens receive most of the attention,
such as training, deep, transformer, language, and understanding. In the
work [6] the authors did not include special tokens < SEP > and <
CLS > because the amount of attention received by these tokens will
make the attention received by the other tokens barely noticeable.

§4. Method for automatic evaluation of
interpretability

After applying interpretation methods and getting the results in a con-
venient form for human perception, it is necessary to understand how
satisfactory the interpretation result is. As a method of evaluation, one
can ask experts to assess how clear the interpretation of the result is to
them, but this is a rather resource-intensive and expensive method.

We suppose that the more the explanation is similar to the category’s
name in the text categorization task, the more this explanation will be un-
derstandable for a human. This allows us to evaluate explanation methods
automatically. Since all above-mentioned methods of interpretation return
as a result a ranked list of words with weights, we can compare these lists
with the category name using the NDCG measure adapted from informa-
tion retrieval [7]. We consider the top N ∈ {1, 3, 5, 10} output words sorted
by the weights assigned to them by the methods. These weights mean the
importance of the word when making a decision.

Let Di = {di1, ..., dim} be the set of items retrieved for the query qi

and {reli(1), ..., reli(m)} be their relevance labels. Let σ = {v1, ..., vm} be
the ordered items and the DCG@k metric (discounted cumulative gain at
position k) of the ordering is:

DCG@k(σ) =
k∑

j=1

rel(vj)D(j), (5)

where vj is the identifier of the item retrieved at the position j and
D(j) = 1/log(1 + j) is the discount function. The NDCG@k metric is
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NDCG@k(σ) = DCG@k(σ)/DCG@kp, whereDCG@kp is the discounted
cumulative gain of the ideal ordering according to true relevance labels
rel(i).

In our case Di is a list of words of the text that we interpret, qi is
the category label of the text that our deep learning model predicted,
rel(i) is the cosine similarity between word embeddings for di1 and qi. To
calculate the ideal word ordering, we extract all words from the target
text and arrange them in descending order of embedding similarity to the
category’s label: this gives us maximal DCG for the target text.

As embeddings, we use the pre-trained GloVe1[13] and fastText2[5] mod-
els.

§5. Datasets

Experiments were conducted on two datasets: 20NewsGroup [1] and
WOS [8].

Web Of Science (WOS) dataset is a collection of abstracts for academic
articles that contains three corpora (5736, 11967, and 46985 documents)
with 11, 34, and 134 topics respectively. In our work we use WOS-11967
with 34 topics. In this dataset, 70% of the samples are used for training
and 30%, for validation.

20NewsGroup dataset includes 18846 documents with maximum length
of 1000 words. In this dataset, 14846 samples form the training set and
4000 samples are used for validation. We have also cleaned the text from
newsgroup-related metadata contained in them in order to obtain more
realistic data and so that the model does not learn to classify them.

For multiword category names in the WOS dataset (for example, Ma-
chine learning), we averaged their component word embeddings.

§6. Experiments

For classification, we used the bert-base-uncased BERT model [2] and
fine-tuned it on the datasets. For 20NewsGroup we obtained 71.3% accu-
racy, and for WOS-11967 we obtained 86.3% accuracy.

1http://nlp.stanford.edu/data/glove.840B.300d.zip
2https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.zip
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Table 1. Interpretation of a text about baseball from the
20NewsGroup dataset.

ideal_glove ideal_ft SHAP LIME Self-
Attention

pitchers catcher relieve inning catcher
catcher pitchers catcher pitchers ball
inning inning mound not mound
ball reliever pitchers maine pitchers
pitch pitch inning of allowed
reliever ball ball are warm
mound mound pitch hall off
pick pick ups is pitch

university university throws reliever inning
hall hall required pitch reliever
1 – 0.74 0.77 0.93
– 1 0.74 0.75 0.88

After we had trained the models, we used standard methods from the
SHAP1 and LIME2 libraries. For SHAP, we used the universal Explainer
method, which itself determined to use PartitionSHAP, faster version of
KernelSHAP that hierarchically clusters features. For LIME, it was set
that the maximum number of features present in an explanation equals
50 and the size of the neighborhood to learn the linear model equals 500.
For both methods, we provided the label that the model predicted, not
the actual one. The output of interpretation models can contain words
with repetitions, so we decided to conduct an experiment also for a unique
output, when repeated words are removed from the explanation list.

Table 1 shows the output list from the interpretation models for a text
from a 20NewsGroup dataset whose label is “baseball” and the model also
predicted the baseball category. The _glove postfix means GloVe and _ft
postfix means fastText embeddings were used for calculating scores. The
last two columns represent the NDCG values of interpretation results,
where 1 in the cell means used embeddings.

1https://github.com/slundberg/shap
2https://github.com/marcotcr/lime
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Figure 2. Interpretation results using GloVe embeddings.

The text itself is as follows: “Pitchers are required to pitch (or feint
or attempt a pick-off) within 20 seconds after receiving the ball, not 15.
Pitchers are required to pitch their warm-up throws within a one minute
time frame, beginning after each half inning ends, not two minutes. And
the reason why a reliever should be allowed warm-ups is simple: Differ-
ent mound, different catcher. Ryan Robbins Penobscot Hall University of
Maine IO20456@Maine.Maine.Edu”.

We can see in the example (Table 1) that the first word predicted by
the SHAP method (“relieve”) is quite general, but the word “catcher” high-
scored by Self_Attention is very specific for the baseball domain. The
overall NDCG@10 for Self_attention is close to ideal, NDCG@10 for SHAP
is much lower.

The results of the experiments are shown in Figure 2 for GloVe embed-
dings and Figure 3 for fastText embeddings. The _unique postfix means
that the top N ∈ {1, 3, 5, 10} interpretation output contains only unique
words.



AUTOMATIC EVALUATION OF INTERPRETABILITY METHODS 77

Figure 3. Interpretation results using fastText embeddings.

We can see that the first word in LIME explanations is much closer
semantically to the category label for both datasets and both embeddings.
LIME NDCG scores are higher at all levels than for SHAP, and almost
at all levels for Self_Attention (except NDCG@10 for the WOS dataset).
SHAP NDCG scores are much lower at all levels than both other scores.
This agrees with the findings from [9] based on human evaluation that
LIME was the best method in identifying the category of an example
based on the explanation.

§7. Conclusion

In this work, we have suggested an automatic method to measure human-
grounded explainability of interpretation techniques in text categorization
tasks. We calculate the semantic similarity of explanations with the cat-
egory label using word embeddings and NDCG measure adapted from
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information retrieval. We applied our approach to two datasets: 20News-
Group and WOS dataset of scientific articles. We compared three well-
known methods of explanation: LIME, SHAP, and Self_Attention. We
used GloVe and fastText embeddings to calculate the semantic similarity.

We found that the LIME technique achieves the best NDCG scores
of semantic similarity for the both datasets and both embeddings, which
means that LIME is better suited to explain the obtained category for a
specific example.

In the future, we plan to continue the study of interpretability for ma-
chine learning models, including trying to adjust the parameters of LIME
and SHAP methods and considering whether these results can be im-
proved. In particular, we plan to use Sentence Transformers to compare
the formulation of a category’s name and word lists generated by interpre-
tation methods.
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