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D. Kushchuk, M. Ryndin

NEURON COVERAGE MAXIMIZATION FOR
EFFECTIVE TEST SET CONSTRUCTION WITH
RESPECT TO THE MODEL

ABsTRrRACT. Real world data is not stationary and thus models must
be monitored in production. One way to be sure in a model’s per-
formance is regular testing. If the labels are not available, the task
of minimizing the labeling cost can be formulated. In this work, we
investigate and develop various ways to construct a minimum test
set for a given trained model, in a fashion where the accuracy of the
model calculated on the chosen subset is as close to the real one as
possible. We focus on the white box scenario and propose a novel
approach that uses neuron coverage as a observable functional to
maximize in order to minimize the number of samples. We evaluate
the proposed approach and compare it to Bayesian methods and
stratification algorithms that are the main approaches to solve this
task in literature. The developed method shows approximately the
same level of performance but has a number of advantages over its
competitors. It is deterministic, thus eliminating the dispersion of
the results. Also, this method can give one a hint on the optimal
budget.

§1. INTRODUCTION

The modern world contains a lot of data, and machine learning tech-
niques are actively used to process and analyze it. In addition, the data is
constantly changing over time in response to events in the environment.
Due to the so-called feature and concept drifts, model performance may
degrade [15], [8]. If we use a model in production, quality loss can lead to
a large material loss. Therefore, to effectively use a model one must always
know how well a given model performs and adapts to changes in data.

To confirm the above, as an example, consider the results of the com-
petition SentiRuEval-2015 [6]. During this competition, participants had
to develop a machine learning model to determine if a message from Twit-
ter has positive or negative sentiment. In 2015, data was collected from
Twitter, separately for model training and separately for model testing.

Key words and phrases: minimum test dataset, neuron coverage, model monitoring.

51



52 D. KUSHCHUK, M. RYNDIN

As a result, competitors managed to develop models that show a quality
of about 80% [11]. Further, in 2016, a similar competition SentiRuEval-
2016 [7] was held, during which new data was collected from Twitter to
train and test the model. Interestingly, existing models that were used in
2015 showed a quality of 60% on the new test data from 2016. This hap-
pened because there have been significant changes in data over this year.
Over time, the political situation in the world has changed, the comments
have changed their subject matter, they used various new expressions,
modern jargon, words borrowed from other languages, and so on.

Note that there are many ways to get the data to test the model, but
without manual labeling of the collected data it is impossible to assess
the quality of the algorithm. One needs to know the correct answers that
have to be obtained manually, that is, labeled. In practice, this is always
a laborious process that requires time and resources. Imagine building an
automatic moderator of social network comments that filters toxic mes-
sages. If one manually labels all the data for testing, then the meaning of
using the model is lost, since verification will be completely performed by
people, and not by the algorithm.

Thus, let us assume that there is a large unlabeled dataset and a trained
machine learning model. We propose to choose a minimal subsample from
this test set in such a fashion that it will be possible to estimate the
performance metric of the model with the greatest accuracy.

§2. RELATED WORK

We note that the stated problem is not novel and methods to solve
it have already been described in literature. For example, there are ap-
proaches that employ active Bayesian estimation [3], active learning [4],
or sample stratification [1], which form the desired subsample. In some
methods, the authors also check whether the dataset itself is suitable for
testing the model, and can also generate new data that is ideal for testing.

However, in many previous works the number of required test samples
was reduced only by a factor of 2-3, so that with the initial set size of 10000
samples it would be necessary to manually label 3-5 thousand examples,
which is a lot. If we want to test our model often, we want to label at
most 200-500 examples every time. Moreover, all these methods are non-
deterministic, that is, a unique subset is constructed during each algorithm
run, and therefore these methods are characteristic by some variance of
the difference between real and predicted accuracy. It may happen that at
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some specific run of a non-deterministic algorithm, the difference will be
too large, and as the result users will decide to make unnecessary changes
to their models.

Also, all previous works that we have considered from the literature
assume that the model is a black box and only the input and output of the
model are known. In practice, when checking the quality of models, one
almost always has access to their inner layers and weights. That is, it is
possible to analyze the values of each neuron of the model for each input
element. It makes sense to assume that these values can help in choosing
suitable examples for testing and methods that use information about the
model can be more powerful that model-agnostic ones.

§3. APPROACH

3.1. Formal definitions. Consider a large test set D = {x1,z2,..., 2N}
of size N, classifier C(x), and function a(y, C(x)), which is equal to ¥{y =
C(z)}, where y is the real answer, which is unknown.

The ultimate goal is to determine the real accuracy of the classifier C
on the entire set D:

1
n= ﬁ ;a(yi, C(xi))

We want to construct a subset L of human-labeled elements for which
n = |L] << N. Our task is to construct the set L in such a way that
the accuracy fi;, of the classifier C' calculated on the set L is as close as
possible to p. That is, the quadratic error Err(jiz) = (1 — fiz)? has to be
minimal.

3.2. Idea of Neural Coverage. Safe and reliable use of deep learning
systems requires an accurate interpretation of their behavior. Unfortu-
nately, testing methods developed for traditional software systems are not
well suited for deep learning systems. Similar to code coverage metrics for
testing conventional software, researchers have proposed neuron coverage
metrics for testing the quality of a test suite and for creating new test
cases [16].

Neural coverage measures the proportion of neurons that are activated
in a network. It can be used to measure the quality of a test set’s per-
formance, that is, it determines how extensively the test set covers the
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internal neurons of the model [5,14]. This can be useful for finding exam-
ples that contribute more to the loss [12]. Also, using neural coverage one
can generate new test cases to increase the coverage value. This has been
done, e.g., in the works [2,10].

In this work, we intend to use the following types of neural coverage.

3.2.1. NC. The first type of neural coverage has been introduced in [13].
Suppose that the set N = {ny,na,...} comprises all neurons in the model.
The input test data is represented by the set T = {z1,z2,...}, and
out(n,x) is a function that returns the value of neuron n for element
x. Also, t is the threshold value of the neuron at which it is considered
activated. Formally, the value of neural coverage is defined by the formula

NCou(T, ) = {1132 € T’E:;t(”’x) >t

That is, if a neuron has been activated by some test example, then it is
considered that the entire test sample activates this neuron.
In this work, we use the threshold ¢ = 0.75.

3.2.2. k-section coverage, boundary coverages, top-k neural coverage. The
following three types of neural coverage have been introduced in [9]. The set
of neurons N = {ny,ns, ...} is also considered here. For each neuron, the
values low,, and high,, are calculated, which are the smallest and largest
value of the neuron taken on the training data. Thus, we get the segment
of possible values [low,; high,] for every neuron.

Note that for a test element x € T the model is located in its main
functional area if Vn € N : out(n,x) € [lowy; highy,].

(i) k-sectional neural coverage (K M NCov). For an exhaustive coverage
of the main functional area, the segment [low,;highy] is divided into k
equal parts, and each such part is required to be covered by test cases.

In this work, we use k = 1.

However, for some neuron n, it may turn out that the value of out(n, x)
lies outside the interval [low,; high,], i.e., either out(n,z) € (—o0;low,)
or out(n,z) € (highy,;+00). For such examples z, the model is said to lie
in the corner region if In € N : out(n,x) € (—oo;lowy,) U (highy,; +00).

(ii) Neuron boundary coverage (nbc). This coverage measures how many
corner regions were covered by the test set.

(#ii) Top-k neural coverage (T K NCouv). For an example 2 and neurons
ni, ng in the same layer, n; is considered to be more active than no if
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out(ny,x) > out(nsg, z). For the ith layer, topy(x,i) denotes the k neurons
in layer 4 that have the largest out(n,x) for a particular input .

Top-k neural coverage measures how many neurons were the most active
at least once, that is, they were included in topg(z,4) for some z.

3.3. Subsampling neural coverage algorithm. Our goal is to build
the smallest subset of the full test suite that covers all possible neurons.

We hypothesize that this subset might be ideal for testing the model.

For each of the considered neural coverage definitions, it is necessary to
choose the minimum number of examples so that the value of the neural
coverage on these selected examples is equal to the value of the coverage
on the entire test set.

Finding the smallest subset with given properties is a hard computa-
tional task, and we approximate its solution with a greedy algorithm.

We use the following algorithm:

e calculate for each test example how many neurons it covers;

e choose an example that covers as many neurons as possible;

e choose the next example that covers the largest number of remain-
ing uncovered neurons, and so on.

Thus, as a result we obtain a subset such that the value of neural cover-
age on it is equal to the value in the entire test set, but containing a much
smaller number of elements.

Now combining all minimal subsets for all neural coverages, we get the
minimum set for full neural coverage. The size of this set will be used as
the maximum for other methods.

Note that this method is completely deterministic, which means that it
eliminates the variance of the accuracy result on the constructed subset.
In the methods considered previously in literature, this is not the case; in
them, the variance can reach 20% on some data.

Also, the developed method itself determines the optimal number of
examples for labeling, but in black box methods this is a hyperparameter.

It should be noted that if one has a fixed budget, it is possible to limit
the number of examples to choose and sacrifice a part of the coverage to
fit into the given budget. In the above algorithm it is necessary to stop
when this threshold is reached. In this case, the constructed subset will
cover the neurons of the model as much as possible, taking into account
the restriction on the number of samples.
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§4. EXPERIMENTS

4.1. Quality metric. First of all, it is necessary to determine which as-
sessment of the quality of the model is the reference. Usually, the full test
set is very large, and the actual quality of the model can be considered to
be close to the quality measured on the entire large test set. Let us call
this result the reference quality, or reference accuracy.

Recall that the neural coverage method is deterministic, that is, for a
given trained model this method always forms the same specific test subset.
For other methods from the literature, this is not the case, they are non-
deterministic and the subset can always be constructed in different ways.
Moreover, in some cases, the accuracy calculated on the constructed test
subset is far from the reference accuracy.

That is why we do 1000 iterations of subsampling for non-deterministic
methods. For each of the 1000 constructed subsets, we compute the accu-
racy of the model on this subset. As a result, for such methods we have
1000 values of accuracy. For the neural coverage method, since it is de-
terministic and the subset is always the same, there is only one accuracy
value. Now we need to somehow compare the neural coverage method with
third-party methods.

The first way is to compare the absolute values of the accuracy differ-
ences between the reference value and the value calculated on the subset.
Since there are 1000 accuracy values for non-deterministic methods, we
need to average them. For this, we take the arithmetic mean. The method
for comparing absolute values of differences is shown in Fig. 1.

Also, in order to be able to compare our method with methods from the
literature, we introduce a quality metric called proportion of bad cases.

For a third-party non-deterministic method, this metric shows the per-
centage of iterations out of a thousand in which the accuracy value on the
constructed subset is further from the reference than the accuracy value
calculated on the subset constructed by the neural coverage method.

That is, suppose we trained the model and the accuracy of the model on
the test subset constructed by the neural coverage method is 91%, while the
reference accuracy on full test set is 90% (the difference in accuracy values
is 1%). Then, for the third-party method all accuracy values on constructed
subsets (out of a thousand) that do not fall into the interval (89, 91) are
considered to be further from the reference accuracy than neural coverage
method. For example, in 600 cases out of 1000, the accuracy values do
not fall within the interval (89, 91), but in 400 cases they do. Then the
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Figure 1. Comparison of the difference in absolute values
of the accuracy for a third-party method and the neural
coverage method.

proportion of bad cases for this third-party method is 60%. The higher the
value of the metric, the worse the third-party method is relative to the
neural coverage method.

The calculation of this metric is shown in detail in Fig. 2.

4.2. Experiment steps. First, we fix the dataset and the architecture
of the model for it. Section 4.3 shows tables with the architecture of the
models for each dataset.

Next, the model is trained on the training data. As a result, we have a
trained model and we want to compare the neural coverage method with
third-party non-deterministic methods.

Since third-party algorithms for test subsampling are non-deterministic,
we run 1000 subsampling iterations for such methods. On every iteration,
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cases

Figure 2. Calculation of the proportion of bad cases met-
ric for one selected third-party method and trained model.

we get a subset and calculate the accuracy of the model on it. For each of
the methods, the absolute value of the accuracy difference and the propor-
tion of bad cases metric from Section 4.1 are calculated.

Note that during model training, the weights are initialized randomly.
This means that the final weights of the trained model may differ. The
neural coverage method directly uses the weights of the model, and there-
fore, for each new initialization of the weights, the neural coverage method
can produce different subsets. To take this into account, for each model
architecture, 10 training runs are carried out with different initial weights.
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Figure 3. 10 model training runs with different initial
weights and metrics calculation.

method n

Remembering the previously introduced metrics and ten different
trained models for one dataset, for each trained model we conduct experi-
ments with each sampling algorithm and obtain the value of the mentioned
metrics. This is shown in Fig. 3.

As a result, for each dataset we create 2 tables. The first contains in-
formation about the model: layers and hyperparameters.

The second table shows the arithmetic mean value of the absolute value
of the difference of the accuracy from the reference among all 10 trained
models, as well as the required number of examples for labeling.

For each third-party method, a vector of 10 metric values of the pro-
portion of bad cases is obtained (for 10 different model training runs).
The results are shown on the plotted graphs. For each method, the graph
displays an 80% confidence interval and marks the median.

4.3. Experimental implementation. Experiments were carried out on
the MNIST10, CIFAR10 and 20 Newsgroups datasets with the respective
models shown in Tables 1, 3, and 5.

Tables 2, 4, and 6 show the average absolute values of the difference of
accuracy from the reference for the model for different datasets.

Figures 4, 5, and 6 show the proportion of bad cases for each model.
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Table 1. Layers and parameters of the LeNet5 model for
the MNIST10 dataset
epochs = 2, optimizer = adam, loss = categorical crossentropy
Layer (type) Output Shape Param #
InputLayer [(None, 28, 28, 1)] 0
Conv2D (None, 24, 24, 6) 156
MaxPooling2D (None, 12,12, 6) 0
Conv2D (None, 8, 8, 16) 2416
MaxPooling2D (None, 4, 4, 16) 0
Flatten (None, 256) 0
Dense (None, 120) 30840
Dense (None, 84) 10164
Dense (None, 10) 850
Activation (None, 10) 0
Total params: 44,426
Trainable params: 44,426
Non-trainable params: 0
Table 2. Average absolute value of the difference of ac-
curacy from the reference for the LeNetb model for the
MNIST10 dataset
Method Avg # of examples | Difference of accuracy, %
Full test set 10000 0
Neuron coverage | 122 1.23
IPrior 122 0.86
IPrior+T8S 122 0.89
Perc, pps 122 0.84
Opt conf online 122 1.99
Random choosing | 122 0.87

§5. CONCEPT DRIFT EXPERIMENT

In these experiments, we introduce artificial concept drift, using the
Amazon review dataset for that. This dataset consists of positive and neg-
ative user reviews for various types of products. We want to train a model
that will distinguish between a positive comment and a negative one.



NEURON COVERAGE MAXIMIZATION FOR TEST SETS

61

=
o
]

©
o
L

®
o
L

~
o
L

o
o
L

Proportion of bad cases, %

T T T T T
IPrior IPrior+TS Perc, pps Opt conf Random

Method

Figure 4. Proportion of bad cases for the LeNet5 model
for the MNIST10 dataset

Table 3. Layers and parameters of the 3VGG model for
the CIFAR10 dataset

epochs = 10, optimizer = SGD, loss = categorical _crossentropy

Layer (type) Output Shape Param +#

Conv2D (None, 32, 32, 32) 896
Conv2D (None, 32, 32, 32) 9248
MaxPooling2D (None, 16, 16, 32) 0
Conv2D (None, 16, 16, 64) 18496
Conv2D (None, 16, 16, 64) 36928
MaxPooling2D (None, 8, 8, 64) 0
Conv2D (None, 8, 8, 128) 73856
Conv2D (None, 8, 8, 128) 147584
MaxPooling2D (None, 4, 4,128) 0
Flatten (None, 2048) 0
Dense (None, 128) 262272
Dense (None, 10) 1290

Total params: 550,570
Trainable params: 550,570
Non-trainable params: 0
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Table 4. Average absolute value of the difference of ac-
curacy from the reference for the 3VGG model for the
CIFARI10 dataset

Method Avg # of examples | Difference of accuracy, %
Full test set 10000 0

Neuron coverage | 202 2.5

IPrior 202 2.73

IPrior+TS 202 2.63

Perc, pps 202 2.67

Opt conf online 202 4.57

Random choosing | 202 2.78
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Figure 5. Proportion of bad cases for the 3VGG model
for the CIFAR10 dataset

First, a model with an LSTM layer is trained on one of the types of
comments. Then it is being tested on a different type of comments, thus
implementing an artificial replacement of the subject. For this experiment,
two types of reviews were used: about clothes and about cosmetics.

The model was trained on comments about clothes, but tested on com-
ments about cosmetics.
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Table 5. Layers and parameters of the model for the 20
Newsgroups dataset

epochs = 10, optimizer = rmsprop, loss = categorical _crossentropy

Layer (type) Output Shape Param #
GloVe Embedding (None, 1000, 100) 1000000
LSTM (None, 128) 117248
Dense (None, 128) 16512
Dense (None, 20) 2580

Total params: 1,136,340
Trainable params: 136,340
Non-trainable params: 1,000,000

Table 6. Average absolute value of the difference of accu-
racy from the reference for the model for the 20 News-
groups dataset

Method Avg # of examples | Difference of accuracy, %
Full test set 4000 0

Neuron coverage | 177 2.88

IPrior 177 2.63

IPrior+T8S 177 3.69

Perc, pps 177 2.69

Opt conf online 177 17.0

Random choosing | 177 2.65

§6. CONCLUSION

In this work, we propose a novel approach to sampling a test subset
from a large unlabeled set. This method is based on the idea of model
neural coverage. The algorithm selects examples from a large unlabeled
set that cover as many neurons as possible.

For experiments, several problems from different fields were considered.
In the field of natural language processing and image processing, the neural
coverage algorithm showed relatively good results.
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Figure 6. Proportion of bad cases for the model for the
20 Newsgroups dataset

Table 7. Layers and parameters of the model for the Ama-
zon review dataset

epochs = 5, optimizer = rmsprop, loss = binary crossentropy

Layer (type) Output Shape  Param #
InputLayer [(None, 32)] 0
Embedding (None, 32, 64) 768000
GRU (None, 32, 128) 74496
GRU (None, 128) 99072
Dense (None, 32) 4128
Dense (None, 100) 3300
Dense (None, 1) 101

Total params: 949,097
Trainable params: 949,097
Non-trainable params: 0

In experiments with text sentiment detection with artificial domain
shift, the neural coverage algorithm also shows good results and outper-
forms third-party methods in more than 60% of cases. Thus, these experi-
ments confirm that this algorithm can potentially be used in real problems
with natural concept drift.
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Table 8. Average absolute value of the difference of ac-
curacy from the reference for the model for the Amazon

review dataset

Method

Avg # of examples

Difference of accuracy, %

Full test set

10000

0

Method

Neuron coverage | 178 2.19
IPrior 178 3.03
IPrior+TS 178 3.03
Perc, pps 178 3.0
Opt conf online 178 2.97
Random choosing | 178 3.02
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