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Abstract. The task of generating vector graphics with AI is under-
researched. Recently, large language models (LLMs) have been suc-
cessfully applied to many downstream tasks. For example, modern
LLMs achieve remarkable quality in code generation tasks and are
open for public access. This study compares approaches to vector
graphics generation with LLMs, namely ChatGPT (GPT-3.5) and
GPT-4. GPT-4 has noticeable improvements compared to Chat-
GPT. Both models easily generate geometric primitives but struggle
even with simple objects. The results produced by GPT-4 visually
resemble the prompts but are inaccurate. GPT-4 is able to correct
the output according to instructions. Additionally, it is challenging
for both models to recognize an object from an SVG image. Both
models recognize only primitive objects correctly.

§1. Introduction

Despite impressive results in generating raster images, generating vector
images with AI models remains a less developed field of research. Reasons
for this gap include the prevalence and wider usage of raster graphics,
lack of specialized AI models, lack of large-scale datasets containing vec-
tor graphics, and complexity of representation for vector images. Generat-
ing vector images requires modeling the relationships between geometric
shapes, their attributes, and their arrangement in the image. These require-
ments impose an additional layer of complexity on the modeling process
and make it challenging to generate vector images with AI models.

Recently, large language models (LLMs) have achieved huge improve-
ments in a lot of tasks, including the generation of meaningful source code
in different programming languages [4]. To facilitate the encoding of vector
graphics into textual descriptions, SVG (Scalable Vector Graphics) code
serialization can be used. Thus, vector graphics can, in theory, be easily
processed by LLMs.

Key words and phrases: large language models, vector graphics, generative AI, im-
age generation, text-to-image synthesis.
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This study is guided by a research question of generating coherent and
visually appealing vector graphics in SVG file format [18] with LLMs. Two
methods of SVG source code generation are developed and compared in
both ChatGPT [2] and GPT-4 [14].

Additionally, both models are challenged to recognize an object from an
SVG image. The ability of LLMs to recognize and interpret objects within
SVG source code be used data in the visualization, user interface design,
and even make the Web more accessible for disabled individuals.

§2. Related Work

Scalable Vector Graphics (SVG) [18], an XML-based vector image for-
mat, uses mathematical equations for resolution-independent graphics,
supporting interactivity and animation. Widely used for web graphics,
SVG files are human-readable and editable using text editors or vector
graphics software. SVG tags define various graphical elements, such as
shapes, paths, and text.

Several studies have explored generating SVG through various methods.
Ha et al. [8] proposed Sketch-RNN, a recurrent neural network trained to
generate human-like sketches. The authors demonstrate the model’s ability
to produce coherent and visually appealing vector images in the form of
SVG paths. While Sketch-RNN focuses on stroke-based sketch generation,
it demonstrates the potential of using deep learning for SVG generation.

DiffVG [12] is a differentiable vector graphics model that aims to op-
timize raster-based images into high-quality vector graphics. The model
leverages differentiable rendering, allowing gradient-based optimization
techniques to be applied to the vector graphics. By introducing differen-
tiability into the vector graphics rendering process, the model allows for
a more effective optimization of raster images into vector graphics, sur-
passing traditional raster-to-vector conversion techniques. The framework
is highly flexible and can be used for various tasks, such as style transfer,
image vectorization, and animation optimization. The model’s usefulness
in SVG generation is evident in its ability to produce high-quality vector
graphics while maintaining the original image’s characteristics.

ClipDraw [7] is an innovative model that explores the synthesis of vec-
tor drawings from textual descriptions using the interaction between lan-
guage and image. By combining the strengths of OpenAI’s CLIP (Con-
trastive Language-Image Pretraining) [16] model with a sequential gener-
ative model for SVG drawings, ClipDraw is able to generate coherent and
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detailed vector graphics based on natural language inputs. The model’s
usefulness in SVG generation lies in its ability to understand and inter-
pret textual descriptions, which allows it to produce vector graphics that
closely match the provided context.

VectorFusion [10] is an innovative model designed to fuse vector-based
drawings with raster images for context-aware image synthesis. The model
combines the benefits of the rich textures and colors of raster images with
the flexibility and scalability of vector graphics. By incorporating context
information from raster images, VectorFusion generates detailed and real-
istic vector graphics. Some challenges may arise when working with Vec-
torFusion, such as managing the complexity of combining raster and vector
data, and ensuring that the generated vector graphics are both coherent
and aesthetically pleasing. Additionally, the computational efficiency of
the model could be a concern, particularly when dealing with large-scale
or high-resolution raster images.

LIVE (Layer-wise Image Vectorization and Editing) [13] is a deep lear-
ning-based model for image vectorization that operates in a layer-wise
manner. Unlike traditional vectorization methods that generate a single
layer of vector graphics, LIVE represents an input raster image as multiple
layers, each containing individual vector graphics. This approach enables
more efficient editing and manipulation of the resulting vectorized images,
offering greater control over the final output. LIVE may face some chal-
lenges, such as handling complex images with multiple overlapping layers
and maintaining the coherence of the resulting vector graphics.

The work [5] presents a method for generating SVG images from raster
inputs, focusing on the conversion of raster images into vector represen-
tations. The authors propose a coarse-to-fine attention mechanism that
enables the model to synthesize vector images, and evaluate it in the con-
text of image-to-LaTeX generation. Their approach outperforms classical
mathematical OCR systems by a large margin on in-domain rendered data,
and, with pretraining, also performs well on out-of-domain handwritten
data.

In the work [3], the authors propose DeepSVG, a novel deep generative
model designed for vector graphics generation and animation. DeepSVG
employs a hierarchical architecture that encodes vector images at both
the object level and the command level. This hierarchical representation
allows the model to capture complex relationships between objects and
the individual commands that make up the vector image. The model was
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evaluated on UI icons. DeepSVG can generate animations by interpolating
between two vector images in the disentangled latent space. By interpolat-
ing at both the object level and the command level, the model can create
smooth and coherent animations.

Transformers [19] are a class of neural networks that significantly im-
pacted the field of natural language processing (NLP) and have become
the foundation for many state-of-the-art models, such as BERT [6] and
GPT [14]. They are based on the self-attention mechanism, enabling effec-
tive capture of long-range dependencies in input sequences. Transformers
consist of an encoder for processing inputs and a decoder for generating
outputs, both composed of multiple layers with multi-head self-attention,
feed-forward networks, residual connections, and layer normalization. Un-
like previous sequence-to-sequence models, Transformers process input se-
quences in parallel, enabling efficient computation and scalability. They
have become the standard for various NLP tasks and have been extended
to other domains, such as computer vision and reinforcement learning.

Large language models (LLMs) are neural networks, often based on the
Transformer architecture [19], designed for understanding and generating
human-like text. They consist of layers with self-attention mechanisms
and feedforward neural networks, capturing dependencies among words.
Pre-trained on massive text corpora, LLMs can be fine-tuned for various
tasks, such as machine translation, summarization, and conversational AI.
OpenAI’s GPT series are notable examples. Despite their remarkable per-
formance, LLMs exhibit limitations like sensitivity to input phrasing and
potential biases. Ongoing research aims to improve performance, efficiency,
and robustness.

Currently, there are no academic papers on generation of SVG graph-
ics with LLMs, but some blog posts have appeared recently. In the blog
post [15], the author explores SVG source code generation with ChatGPT
with varying levels of success. UI icons, abstract art and text generation are
considered. The author suggests that with enough patience and prompt-
ing, ChatGPT can draw basic shapes and simple scenes, but cannot handle
much complexity.

In the blog post [17], the author prompts ChatGPT to resemble the
painting of Mona Lisa in SVG format. Several methods of prompt-tuning,
including specifying number of lines in the output, or suggesting an art
syle, are explored with little to no success. Additionally, ChatGPT was
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prompted to generate abstract art in the style of Malevich, with better
success.

ASCII graphics, a form of computer art, use the ASCII character set
to create images and designs by employing characters as visual building
blocks. Images represented in this manner can be more easily processed by
language models, because they consist only of symbols.

The work “ASCII Art Synthesis with Convolutional Networks” [1] delves
into the task of generating ASCII art using convolutional neural networks
(CNNs). Researchers present a novel approach to transform raster images
into their corresponding ASCII art representations, leveraging the power
of CNNs for this purpose. The paper describes the process of training a
CNN on a dataset comprising raster images and their respective ASCII
art, resulting in a model that demonstrates a remarkable ability to pro-
duce visually appealing and coherent ASCII art. By addressing challenges
associated with the inherently limited set of ASCII characters and the
complex task of mapping raster images to these characters, this research
contributes significantly to the field of ASCII art generation and offers a
promising foundation for future developments in the domain.

The exploration of SVG generation has led to the development of vari-
ous models and techniques, each with its unique approach and capabilities.
From Sketch-RNN’s focus on human-like sketch generation to DiffVG’s
differentiable vector graphics rendering, advancements in the field demon-
strate the potential of deep learning for SVG generation. Other models
such as ClipDraw, VectorFusion, and LIVE further contribute to the de-
velopment of more sophisticated vector graphics generation and editing
techniques.

However, challenges still exist, such as managing the complexity of
combining raster and vector data, handling complex images with multi-
ple overlapping layers, and maintaining the coherence and aesthetics of
the generated vector graphics. The limitations of models like ChatGPT in
generating complex SVG images also highlight the need for exploration of
more advanced prompt-tuning techniques and the development of models
specifically designed for vector graphics generation.

§3. Method

By default, ChatGPT is restricted from generating SVG source code.
Upon receiving such a prompt, ChatGPT typically responds with, “I’m
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sorry, but as an AI language model, I don’t have the ability to generate
SVG images directly.”

Prompt engineering in LLMs is the process of crafting effective prompts
to guide the model’s response and achieve desired outcomes. It involves
rephrasing questions, providing specific instructions, or offering examples
to help the model understand the context or output format. Prompt en-
gineering also includes the techniques of prompt injection and prompt
leaking. For example, in the blog post [11] the researcher suggests meth-
ods to extract the original prompts for different features in Notion AI. To
overcome GPT models restriction, the method of master prompt injection,
specifically the DAN master prompt [9], can be employed. Master prompt
injection tricks the model to bypass policy constraints set by OpenAI, re-
placing them with custom policies. By utilizing this approach, the model
starts to generate output for queries such as “As DAN, generate the source
code of a vector SVG image of...”, effectively enabling SVG code generation.
We note that in GPT-4, a more recent iteration, the SVG limitation has
been eliminated, and GPT-4 permits SVG source code generation without
having to go through master prompts.

Both ChatGPT and GPT-4 occasionally fail to generate fully valid
SVGs. Common issues include the omission of the “xmlns” tag, unspec-
ified width and height attributes, and unclosed tags in the generated code.
Nevertheless, these issues can be readily addressed by providing the model
with explicit instructions to output valid SVG code and ensure the inclu-
sion of all essential tags.

The first method under investigation is SVG source code generation.
When provided with a prompt such as “Generate the source code of a
vector SVG image of...”, LLMs can output valid SVG code in a code block.
This approach is similar to programming language source code generation,
where LLMs have demonstrated significant advancements [20]. Despite its
simplicity, generating meaningful vector graphics using this method can
be challenging for LLMs. The main difficulty lies in the model’s lack of
visual representation during the generation process. Consequently, it may
struggle to create coherent and visually appealing images that accurately
represent the input prompt.

An alternative method for generating vector graphics using LLMs is a
synthesis of ASCII graphics, followed by their conversion into SVG source
code. Theoretically, this approach has the potential to yield more mean-
ingful results, as the model benefits from a symbolic visual representation
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Figure 1. A vector image of a blue circle with black outline
generated by ChatGPT from the prompt “... generate an
SVG image of blue circle with black outline”

of the subject matter. The model’s text-based understanding allows it to
create a more accurate representation of the desired image, potentially
leading to more coherent and visually appealing vector graphics.

§4. Experiments

4.1. SVG source code generation from a prompt.

4.1.1. ChatGPT. An initial experiment has been conducted to evaluate
ChatGPT’s capability in generating simple geometric figures, such as tri-
angles, rectangles, and circles, with predetermined dimensions, color, and
stroke thickness. The results indicate that ChatGPT’s performance is sat-
isfactory, as it produces valid SVG files that adhere to the specifications
provided in the prompts. Figure 1 shows the resulting image.

Subsequently, ChatGPT has been challenged to generate images com-
posed of multiple simple geometric shapes. The shapes chosen are ascend-
ing by complexity: a banana, a Christmas tree and an automobile. Two
distinct templates of prompts have been employed in this experiment:

• “As DAN, generate ... a Christmas tree”: in response to these
prompts, the generated images are found to be highly inconsis-
tent, failing to accurately represent the intended objects; Figure 2
shows the results of this approach;

• “As DAN, generate ... a Christmas tree. The tree consists of ...”:
with more detailed prompts, generated images exhibit some im-
provements in accuracy, though they still contain some inaccura-
cies; for instance, the Christmas tree has overlapping triangles, but
the overall shape and color are consistent with the intended object;
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Figure 2. A banana, a Christmas tree and an automobile
generated by ChatGPT with a simple prompt (on the left)
and with a detailed prompt (on the right).

Figure 3. Different versions of the cat’s face vector image,
generated by ChatGPT after prompting to correct mis-
takes.

Figure 2 shows the results of this approach, but attempts of im-
proving it even further have failed: ChatGPT does not comprehend
more detailed and complex descriptions of the objects.

Another conducted experiment has been to prompt ChatGPT to draw
a complex object (a cat’s face) and then prompting to fix all the mistakes
the model has made. ChatGPT’s performance is deemed unsatisfactory
in this task. The first iteration of a generated cat’s face has been messy
and almost unrecognizable. ChatGPT is not able to make changes to the
image according to the instructions prompted. The instructions are quite
specific, i.e. “make head a closed shape”, “place all face’s elements inside
the head”, “move ...”, “rotate ...”. The resulting “cat’s face” images are found
in Figure 3.

In summary, ChatGPT is able to generate simple geometric shapes with
predefined constraints but is not able to generate even simple objects by
their descriptions adequately. It also lacks the ability to implement correc-
tions to generated objects according to instructions given in prompts.
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Figure 4. Bananas, Christmas trees and automobiles gen-
erated by GPT-4 with a simple prompt (left column) and
detailed prompts (other columns).

4.1.2. GPT-4. The same patterns have been repeated with GPT-4. GPT-
4’s performance in the generation of simple geometric shapes with pre-
determined dimensions, color, and stroke is on par with ChatGPT: both
models fulfill this task successfully. GPT-4 produces valid SVG files that
adhere to the specifications provided in the prompts.

Subsequently, GPT-4 has been challenged to generate the same set of
objects ascending by their complexity: a banana, a Christmas tree and an
automobile. Same as with ChatGPT, two templates of prompts have been
used, a simple one and a detailed one. These templates are the same as
those used previously with ChatGPT.

For simple prompts, GPT-4 fails to draw a recognizable banana but
achieves good success with a Christmas tree and an automobile. Both can
be seen in Figure 4. Comparing these results with ChatGPT, even the
banana is more recognizable: it has a black stroke and a yellow fill, and a
curved shape.

As for detailed prompts, the results are mixed. Even with a detailed
description, GPT-4’s attempts to draw a banana have not been successful.
The Christmas tree is almost the same as with the simple prompt, but
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Figure 5. Different versions of the cat’s face vector image,
generated by GPT-4 after prompting it to correct mis-
takes.

the triangle width is messed up: the tree is becoming wider to the top.
Nevertheless, these results are better than with ChatGPT. The automobile
drawings are the most realistic and accurate of all. The results can be seen
in Figure 4.

GPT-4 has also been prompted to draw a complex object (a cat’s face),
and then to fix all the mistakes the model has made. GPT-4 outputs hardly
recognizable results at first, but performs much better than ChatGPT in
the task of correcting the image according to instructions listed in prompts.
Over 12 iterations of prompting, the cat’s face has become more recogniz-
able, going from an almost complete mess to a pretty accurate drawing,
as seen in Figure 5.

In summary, GPT-4 is better than ChatGPT in all the tasks. It still
lacks the ability to produce consistent usable results, but even the worst
attempts produce a better result than ChatGPT. The most important
improvement is GPT-4’s ability to correct the generated SVG according
to prompts with instructions, thus producing a usable result in several
iterations.

4.2. Generation of ASCII graphics with subsequent conversion
to SVG.

4.2.1. ChatGPT. ChatGPT can generate simple ASCII graphics. When
using basic prompts, such as “Draw an ASCII cat. Output the drawing in
the code block”, it outputs a primitive ASCII drawing. However, when the
prompt starts to be more specific, such as “draw ASCII cat’s face 64 by 64
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Figure 6. ASCII cat’s faces and their SVG conversions
generated by GPT-4

symbols in height and width. Try to make it more detailed, all use available
symbolic resolution for that.”, ChatGPT still outputs very primitive results
and does not use the available symbolic resolution. When asked to convert
the ASCII drawing into SVG graphics, it outputs an SVG more or less
resembling the image.

4.2.2. GPT-4. GPT-4 can also generate simple ASCII graphics. When us-
ing basic prompts, such as “Draw an ASCII cat’s face ...”, it outputs a
primitive ASCII drawing. GPT-4 still ignores some of the constraints, such
as image symbolic resolution. In contrast with ChatGPT, GPT-4 can cor-
rectly perform modifications to the drawing, such as “remove cat’s body”. It
also converts the drawing to SVG quite better, as can be seen in Figure 6.

4.3. SVG images objects recognition. Both models were challenged
to explain what is depicted on an SVG image. For this purpose, three
SVG images were used: a primitive smiley face, a cat’s silhouette, and a
simplified house. These images are arranged by increasing complexity. For
all the images, all the metadata, which could help the model, was removed.
The images can be seen in Figure 7.

4.3.1. ChatGPT. ChatGPT effectively identifies the facial image, observ-
ing the presence of two eyes and a facial expression that can be interpreted
as either a smile or a frown, all of which are enclosed within a yellow circle
outlined in black. In the case of the cat, the model’s interpretation remains
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Figure 7. A smiley face, a house and a cat’s silhouette,
used for the task of object recognition in SVG source code

ambiguous, suggesting that the illustration could represent a variety of
four-legged animals, such as a dog, cat, or horse. Concerning the house,
the model indicates that the SVG code portrays a heart accompanied by
an arrow.

4.3.2. GPT-4. In comparison, GPT-4 demonstrates more precision when
analyzing the facial image, identifying it as a simplistic smiley face and
providing a detailed description of its constituent elements. Regrettably,
GPT-4 fails to accurately recognize the silhouette of a cat, mistaking it for
either an elephant or a rabbit. Regarding the house, the model suggests
that the object resembles an open folder icon.

In conclusion, both models exhibit the ability to correctly recognize and
interpret primitive objects, but they encounter difficulties when presented
with even relatively simple shapes. GPT-4 exhibits discernible advance-
ments compared to ChatGPT, as its conjectures are more plausible.

§5. Conclusion

The task of generating vector images in the form of SVG source code
using large language models is of considerable significance due to its po-
tential applications in various domains, including computer-aided design,
digital art, and data visualization. The ability to generate accurate and de-
tailed vector images can enhance the efficiency of numerous creative and
professional endeavors.

GPT-4 has been observed to outperform ChatGPT in this task, achiev-
ing better results in terms of recognizing and interpreting objects within
SVG source code. This superior performance may be attributed to the
more advanced architecture and training data incorporated into GPT-4,
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allowing it to generate more precise and contextually appropriate interpre-
tations of the images.

Both models demonstrate the capacity to recognize objects from SVG
source code by analyzing the geometric primitives and attributes present
in the code, thereby enabling them to infer the visual elements and the
overall structure of the image. However, as evidenced by the results, their
capabilities are still limited, and they struggle to accurately identify more
complex or nuanced shapes.

Future research and improvements should focus on enhancing the mod-
els’ abilities to recognize and generate more intricate vector images. This
can be achieved by refining the training data and incorporating additional
sources of visual information, as well as by exploring more advanced ar-
chitectures and techniques for understanding and interpreting visual ele-
ments within the SVG source code. Ultimately, these advancements will
contribute to the development of more sophisticated and versatile large
language models capable of handling a broader range of visual tasks and
applications.
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