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Abstract. The advertising industry employs several content modal-
ities to deliver implied messages: images, videos, text, music, and
all of them combined. “Decoding” a message implied by multimodal
content often requires both text and visual components. We study
the tasks of multimodal symbolism prediction, topic detection, and
sentiment type classification. Motivated by the difference in parts of
the message conveyed by two modalities in advertisements, we train
separate models for images and texts and significantly improve upon
current state of the art by blending image- and text-based predic-
tions (with OCR-extracted text), providing a comprehensive exper-
imental validation of our approach.

§1. Introduction

Modern advertising uses visual representations (still images and video)
to efficiently convey persuasive messages to potential customers. Much of
this persuasion power stems from combining several layers of messaging.
Researchers distinguish three layers of messaging in a visual ad: symbol,
topic, and sentiment [27,31,37]. The symbol layer shows a symbolic event
or an abstract entity that the spectator has to extract a more direct mes-
sage from; i.e., the WWF campaign ad in Fig. 1 shows trees in the shape
of human lungs. This image conveys a symbol of well-being or health, con-
tains the topic of deforestation (more broadly, nature), and has negative
sentiment. These three aspects together reinforce the message of preserving
the health of the planet and fight against deforestation.

Thus, it is important for both advertisers and consumers to automat-
ically recognize these three components. These aspects are important as
features, especially when used to develop better combinations of ads, and
for customers it is important to recognize how an ad can affect a user.

Key words and phrases: multimodal and ads understanding and topic detection and
sentiment and sentiment classification.
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The message is often far from direct, and both modalities are needed: e.g.,
Fig. 1 has no text explaining that the ad is about deforestation, while sen-
timent and topic are hard to understand without the slogan “Before it’s
too late”. The image on Fig. 2 blends the product (Audi symbol) and the
“New bad boy on the block” slogan; without the image, there is only a very
tenuous connection between the car and the slogan. This intertwining of
modalities is very common in advertising, and it presents unique challenges
for machine learning.

Hussain et al. [12] present a crowdsourced dataset of such advertise-
ments, including images and videos, and formulate several annotation
tasks: topic detection, sentiment type detection, symbolism recognition,
strategy analysis, slogan annotation, and Q/A for texts related to the ads’
messages and motivation. We focus on the first three tasks, each of which
can be formulated as a classification problem. In symbolism prediction,
each annotated image has several bounding boxes and textual description
of symbols mapped to several categories of symbols. We use multimodal
(visual and textual) features to predict specific symbols in a multilabel
task setting, extracting text by OCR engines. For symbol prediction, the
most important modality is visual: in many cases the symbol is not written.
The topic prediction task uses the same data, but now both modalities are
very important. Finally, sentiment analysis is mostly done with extracted
texts; for text samples, see Figure 3 and Table 1. In this work, we propose
a multimodal blending mechanism that achieves new results in symbol-
ism detection, topic prediction, and sentiment type analysis, significantly
exceeding existing state of the art. One key advantage of our blending ap-
proach over most multimodal end-to-end models is that it does not need
full retraining to change one modality. New data or even a completely new
OCR or language model can be plugged in without changing the image-
based part and vice versa, which allows for faster experiments, debugging,
and deployment. The resulting models are lighter, less complex, and more
robust than fully multimodal approaches.

A preliminary version of this work has appeared in [46]. In Section 2
we present related work, Section 3 describes the data and problem setting,
Section 4 introduces our approach, Section 5 describes experimental re-
sults, Section 6 provides error analysis, and Section 7 concludes the paper.



178 ALEKSEEV, SAVCHENKO, TUTUBALINA, MYASNIKOV, NIKOLENKO

Figure 1. WWF anti-deforestation ad. Topic: environ-
ment. Sentiment: alarmed. Symbols: environment.

Figure 2. Audi ad: a
new bad boy on the
block. Topic: cars.
Sentiment: inspired.
Symbols: N/A

Figure 3. Ad ex-
ample.

§2. Related work

The multimodal processing of texts and images reached a great progress
nowadays with appearance of CLIP [38] and GPT-4 [32]. A core challenge
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Table 1. Sample texts obtained via OCR/captioning.

Tesseract
[51]

Maybe all that raven wants is to wet its beak in a’cold glass
of milk. poe mea lo EISsTo) aU eg

EAST+
Tesseract
[21]

Maybe are Gein) eu SH Hostel S to wet its ake cold Me TS
10a milk. eee me glass 0) aa Penal see

PSENet
[56]

Elle that eV WM eMey iy is 10 Wed Mey in beak | Ey milk.
of (eek glass | ranlll@a a me al eee) glass be at jeffreycombs-
com

EasyOCR
[15]

Maybe all that raven poe me a glass ofmik? beak in a cold
glass ofmik. wants is to wet its seen 3t jefieycomlzesolm

Charnet
[60]

MAYBE ALL THAT RAVEN WANTS WET ITS
BEAKIN COLD GLASS MILK POE GLASS MILK?
SEEN ATJ COM

CloudVision
[33]

Maybe all that raven wants is to wet its beak in a cold glass
of milk. poe me a glass of milk? seen at jeffreycombs.com

in ads understanding is to join information from two or more modalities
since different modalities may have varying predictive power with possibly
missing or noisy data [3, 14]. The works [12, 62] provided an annotated
dataset of ads, implemented and compared several simple baselines. Sev-
eral mappings of multimodal data can be mapped into a joint embedding
space with triplet losses that bring together features of image segments,
textual ad descriptions, and symbol labels [64]; another way to fuse visual
and symbolic information used an iterative co-attention mechanism [1].
Extracting opinions from texts or discerning sentiment attitudes between
named entities mentioned in texts is a well-established topic, typically ex-
plored through machine learning and language models [13,41–43,55]. More
information can be extracted from images by fusing image features with
bag-of-words features for extracted text for semantic classification and vi-
sual question answering [8]. Image captioning can be used in addition to
OCR [16], with captions processed with BERT [7]. A visual question an-
swering system has been augmented with extracted texts and a matched
Wikipedia article [69], while the work [67] notes that image-text align-
ment is especially difficult for ads and proposes hand-crafted features to
resolve this issue. All these works use only still images; video understand-
ing has been considered in [18, 63, 65]. In [30], new ad text is generated
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from an image; this work also proposes novel approaches for ranking text
keyphrases and predicting the tags of appropriate ad images. Multimodal
Bitransformers (MMBT) fuse text with images or other information, rep-
resenting non-textual data as additional tokens in the word sequence [19].
VisualBERT aligns input text and image regions by self-attention [22].
A multimodal factorization model is able to factorize representations into
discriminative factors and modality-specific generative factors [54]. In [23],
tensor rank regularization is used to learn language, acoustic, and visual
representations for multimodal video data. The work [24] uses a recurrent
multistage fusion network with cross-modal interactions based on interme-
diate representations of monologue videos.

Our blending approach differs from most multimodal end-to-end models
in the aspect that it does not require retraining “from top to bottom” to
update one modality. “Hot swapping” new data/LM/OCR/etc. provides
means for faster experiments, debugging, and deployment. The resulting
models are less complex, more robust, and often faster than fully multi-
modal approaches.

§3. Data

The term symbolism comes from the classic work by [57], who applied
the ideas of de Saussure’s semiotics [5] to advertising: the object or con-
tent that stands for a symbol is called the “signified” or “concept”, and
the symbol is the “signifier”. Relations between them come from human
associations: e.g., in Fig. 1 vegetation symbolizes health. The work [12]
presented a list of symbols (concepts, signifiers) and labeled ads with these
symbols via crowdsourcing. Annotators first decided if an ad is literal or
requires a non-literal interpretation, the latter interpreted as symbolism
for simplicity. If most annotators say that an ad is non-literal, it enters
the second stage where they are asked to label the signifier and signified,
draw a bounding box (marking the signifier), and label it with the sym-
bol it refers to (the signified). There were 221 symbols in total, the most
common being “danger”, “fun”, “nature”, “beauty”, “death”, “sex”, “health”,
and “adventure”. Images were also annotated for topics and sentiment,
with topics that the images advertise or campaign for coming from a spe-
cially developed taxonomy [12]. They also built a taxonomy of sentiments,
asking annotators to write free-form topics and sentiments for a small
batch of images and videos, similar to “self-reporting” used to measure
emotional reactions [45, 47, 61] to ads [37]. Topics and sentiments were
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Figure 4. The proposed blending scheme.

clustered into 38 topics and 30 sentiment types, with a representative set
of words describing each. In further annotations, an image was labeled
with a single topic and one or more sentiments. Note that compared to
popular multimodal datasets on visual question answering and common-
sense reasoning [2,36,52,66], texts on images in ads are much more varied
in font/shape/placement/color etc., which makes it a much harder task for
OCR and hence NLP.

We use a train/test split similar to [12], with 9856 training and 2464
test images with annotated symbols. We also used 53 clusters of similar
symbols for which the train and test sets contain 8394 and 2099 images
respectively. Due to heavy class imbalance in all problems, for topic and
sentiment recognition we split the dataset at the 80/20 ratio in each class
to avoid missing labels or randomly missing training data. Since we need
to train multi-task models, training and validation sets for different tasks
(topic/sentiment/symbols classification) cannot intersect. As a result, the
training set for 39 topic labels (38 topics + “unclear”) contains 51460 im-
ages, while the test set has 12865 images. We used 24272 training and
6068 test images for 30 categories of sentiments. Images can have multiple
labels, so we used the most frequent topic/sentiment as the ground truth,
as recommended by [12].

§4. Methods

Image-based methods. We have explored two image-based approaches:
training models separately for classifying symbols, topics, and sentiments,
and a multitask approach that solves all three tasks simultaneously. We
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compared several classical feature extraction backbones: ResNet-50 and
ResNet-152 [10], MobileNet v1/v2 [6, 11, 44], and EfficientNet B0/B3 [47,
53]. We added a new head with C outputs for each task, where C is the
number of categories, learned over 5 epochs with the Adam optimizer [20],
freezing backbone weights. Next, the entire model with unfrozen weights is
trained over 5 epochs with Adam. Third, the entire model is trained over
3 epochs with stochastic gradient descent, learning rate 0.001. Symbolism
prediction is a multi-label task, so binary cross-entropy loss and sigmoid
activations were used on the last fully connected layer, while for topics and
sentiments we used categorical cross-entropy and softmax activations. For
the multitask approach, training was implemented by using a multi-head
CNN with common feature extraction layers. Every head is trained sepa-
rately with frozen backbone over 3 epochs, and then the entire network is
trained over 10 epochs.

OCR approaches. Text recognition accuracy has proven to be cru-
cial in our approach. We have compared several recent optical character
recognition (OCR) methods, including: (1) Tesseract 4 OCR library (Tes
4.00) with an LSTM-based neural network; (2) EAST [68] and Advanced
EAST-based two-phase approaches (EastTes): first detect text with EAST
and then recognise it with Tesseract; (3) a two-phase approach based on
Progressive Scale Expansion Network (PSENet) [56]: first generate a dif-
ferent scale of kernels for each text instance, then gradually expand the
minimal scale kernel to the text instance with the complete shape; on the
second phase, Tesseract is used to recognize text fragments detected with
PSENet; (4) convolutional character networks (Charnet) [60], a one-stage
CNN that uses characters as basic elements and directly outputs labeled
bounding boxes of words and characters; (5) EasyOCR engine [15]; (6) text
recognition functionality provided by Google’s Cloud Vision API, which
was used by the winner of the Automatic Understanding of Visual Ad-
vertisements challenge for a different task on the same dataset [33]. Note
that even if commercial engines perform best, choosing the best openly
available engine is still important for practical projects.

Text-based methods. We consider a simple BERT-based [7] model
with a classification layer on top of encoded representations. Specifically,
we first filter out items without recognized text and lowercase the texts.
For each item in the dataset, we combine all recognized text fragments in
a consistent order separated by a [SEP] symbol and input the result to
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the encoder, for which we have compared (i) BERT-base (12 hidden lay-
ers, 768 hidden dimensions, 12 attention heads, 110M parameters) [7] and
(ii) RoBERTa-base (125M parameters) [26]. We used the Simple Trans-
formers library [40] based on [58], fine-tuning the underlying BERT pa-
rameters and training all models for 15 epochs with the Adam optimizer,
learning rate 4e-5, and other parameters at default values.

Text-based models usually yield results inferior to image-based ones;
this is natural because text is not always present, often short, and even
the best OCR methods make quite a lot of mistakes. However, combi-
nations of image- and text-based models can yield significant improve-
ments. For comparison, we used text representations from a Bag-of-Ngrams
baseline, tokenizing extracted texts and preserving only 10,000 most fre-
quent unigrams and bigrams. Importantly for imperfect OCR-extracted
text, BERT-based models along with NGram-based baselines help with
out-of-distribution text. We have also experimented with multi-output lo-
gistic regression trained on SGNS [28,29] and fastText [4] representations,
but prediction quality was significantly lower. We have also applied multi-
task BERT- and RoBERTa-based approaches, training as above, but they
yielded no improvement in prediction quality.

Blending predictions. To avoid overfitting, we use a straightforward
ensembling strategy, aggregating per-class probability scores from image-
based and OCR+text classifiers. For every ad a, each model in the ensem-
ble yields a vector f(a) ∈ [0, 1]|L|, where L is the set of labels (classes).
The resulting ensemble outputs 1 if λfimg(a) + (1 − λ)ftxt(a) > θ0 for
symbolism multi-label prediction, and for topic and sentiment classifica-
tion outputs argmax (λfimg(a)+(1−λ)ftxt(a)) (argmax taken over vector
components), where f∗(e) ∈ [0, 1]|L| are model predictions, and coefficient
λ and threshold θ0 are tuned parameters.

The final model is illustrated in Fig. 4. For tuning, we have used the pre-
dictions of image- and text-based “elementary models”, sampling 5 times
a fraction of the training set (0.1 and 0.05 for 221 and 53 labels in sym-
bolism prediction, 0.05 for both sentiment and topic prediction). We have
tuned the weights on a subset of the training set and not on a special
hold-out set since the dataset is relatively small. Then we sample λ from
the Dirichlet distribution and evaluate the F1macro (not F1micro as an
extra measure against overfitting) as implemented in scikit-learn [35] on
the chosen subsample for every θ0 ∈ {0.0, 0.05, ...1.0} and average the 5
(resp. 10, 3) sets of parameters for symbolism prediction (resp. topic and
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sentiment classification). We have also tested: (i) Multimodal Bitrans-
formers (MMBT) [19], using the original MMBT with ResNet-152 and
BERT-base and “updated” MMBT with EfficientNet-B3 backbone instead
of ResNet-152; (ii) ConcatBERT with ResNet-152, (iii) VisualBERT [22]
with ResNet-152. All models are implemented in the MMF framework [50].
MMBT (orig.) had slightly greater accuracy and F1-score over Concat-
BERT and VisualBERT. Specifically, VisualBERT’s accuracy is 2.2% (top-
ics) and 3.1% (sentiments) lower than MMBT; for ConcatBERT, F1-score
on topic classification is much worse (0.45 vs 0.53 for Charnet OCR).

§5. Results and discussion

Symbolism prediction. The best purely image-based model, which
has been using EfficientNet-B3 for feature extraction, is able to obtain an
F1-score of 0.1912, while the previous state of the art for this task was
0.1579 [12]. Thus, even at this level we have already significantly exceeded
state of the art by using better convolutional backbones and tuned training
schedules. Fig. 5 shows how the average F1-score for all classes depends
on the threshold t0, which is used to select classes for which the CNN
prediction exceeds this threshold. The best result is obtained for t0 = 0.1.
Next, we repeated the training procedure of EfficientNet-B3 for 53 clusters
of symbols and obtained F1-score 0.2774, which is also slightly better than
the previously best F1-score of 0.2684 for this problem [12].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 5. F1-score for image-based symbol recognition
(221 categories).

Topic/sentiment recognition. Table 2 shows test set accuracies for
topic and sentiment classification. Here the baseline results of [12] were
obtained with ResNet-152. Our best models are 2% and 6% more accurate
than the baseline in topic and sentiment recognition respectively. Note
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Table 2. Image-based topic/sentiment classification.

CNN Topics Sentiments
Baseline [12] 60.34 27.92

Curriculum learning [34] — 27.96
ResNet-50 53.90 34.34
Resnet-152 52.67 27.58

Resnet-152 V2 52.12 27.64
MobileNet v1 50.56 33.50
MobileNet v2 54.76 34.58
EfficientNet-B0 60.06 34.03
EfficientNet-B3 62.62 34.12

Our multitask model 62.99 36.27

that the absolute numbers are low in sentiment recognition in part due
to the fact that most classes are underrepresented, and their recognition
accuracy is virtually zero.

Multi-task model. We used the multi-task learning procedure shown
above with the best architecture from our previous experiments, namely
EfficientNet-B3. The multitask model showed the following results on test
sets for the three tasks: accuracy 0.6299 for topics, accuracy 0.3627 for
sentiment types, and precision 0.5508 and recall 0.0826 for symbols. It
is clear that multitask learning has led to an improvement for all tasks;
we expect that further improvements may be possible with more research
investigating other backbone networks and developing a better joint loss
function for the three tasks. Individual networks have also led to quality
improvement compared to [12], with the most significant improvement
achieved for sentiment classification.

Blending. Tables 3 and 4 present our results on texts extracted by
Charnet and Cloud Vision for topic, sentiment, and multilabel symbol clas-
sification in both 221 and 53 label settings. They show F1micro and F1macro

scores; “text-based” rows show results for OCR-extracted text from ads
with nonempty extracted text; “Blend (backoff)”, results for the entire test
set with image-based prediction when text is empty; “MMBT (ResNet)”,
multimodal bitransformers with ResNet-152 for images; “MMBT (EffNet)”,
same with EfficientNet-B3.

Unsurprisingly, the best performance is shown by Transformer-based
models BERT and RoBERTa, which achieve accuracy higher than 0.75
and 0.3675 for topic and sentiment classification respectively with both
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Table 3. Symbol classification results.

OCR Model Text-based (w/texts) Blend (backoff)
F1micro F1macro F1micro F1macro

Multilabel symbol classification, 221 labels.
Image-based results: F1micro 0.1928, F1macro 0.1025.

Charnet
Bag-of-NGrams 0.1684 0.0967 0.2156 0.1146

BERT 0.1354 0.0203 0.1964 0.0998
RoBERTa 0.1441 0.0253 0.1974 0.0995

MMBT (orig.) – – 0.0962 0.0671
MMBT (upd.) – – 0.1078 0.0757

Google
Cloud
Vision

Bag-of-NGrams 0.1830 0.1060 0.2249 0.1175
BERT 0.1520 0.0252 0.1968 0.1014

RoBERTa 0.1580 0.0263 0.2017 0.1004
MMBT (orig.) – – 0.1202 0.0825
MMBT (upd.) – – 0.1099 0.0812
Multilabel symbol classification, 53 labels.

Image-based results: F1micro 0.2796, F1macro 0.2182.

Charnet
Bag-of-NGrams 0.2434 0.1914 0.3025 0.2345

BERT 0.2618 0.2080 0.3264 0.2528
RoBERTa 0.2769 0.2254 0.3315 0.2606

MMBT (orig.) – – 0.2424 0.2069
MMBT (upd.) – – 0.2781 0.2358

Google
Cloud
Vision

Bag-of-NGrams 0.2446 0.2015 0.3041 0.2344
BERT 0.2624 0.2033 0.2966 0.2213

RoBERTa 0.2896 0.2150 0.3137 0.2324
MMBT (orig.) – – 0.2611 0.2291
MMBT (upd.) – – 0.2951 0.2619

Cloud Vision and Charnet, while end-to-end neural multimodal approaches
MMBT and VisualBERT shows performance inferior to Bag-of-Ngrams.
However, replacing the original ResNet-152 backbone with EfficientNet-
B3 we have improved over state of the art for topics but not for sentiment
types. The results should be compared to the baseline values of 0.6034
for topic classification in [12] and 0.6923 in [9] (best known result) and
0.2792 for sentiment classification. Symbolism prediction models in prior
works scored no higher than 0.1579 for 221 labels and 0.2684 for 53 la-
bels in terms of the F1micro-score [12]. Interestingly, Bag-of-Ngrams-based
logistic regression is almost on par with BERT/RoBERTa for sentiment
classification, and results of open source Charnet are only a little worse
than Google Cloud Vision OCR. This correlates with one of our basic as-
sumptions: we do not see a reason here to unite latent spaces for textual
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Table 4. Classification results.

OCR Model Text-based (w/texts) Blend (backoff)
Acc. F1macro Acc. F1macro

Topic classification. Image-based: accuracy 0.6299, F1macro 0.3800.

Charnet
Bag-of-Ngrams 0.6340 0.4502 0.7213 0.4816

BERT 0.6985 0.5515 0.7536 0.5793
RoBERTa 0.6933 0.5473 0.7545 0.5722

VisualBERT – – 0.676 0.514
VisualBERT (COCO) – – 0.677 0.518

ConcatBERT – – 0.736 0.454
MMBT (ResNet) – – 0.6821 0.5357
MMBT (EffNet) – – 0.7534 0.5441

Google
Cloud
Vision

Bag-of-Ngrams 0.6391 0.4531 0.7227 0.4840
BERT 0.7149 0.5573 0.7599 0.5736

RoBERTa 0.7109 0.5492 0.7557 0.5623
VisualBERT – – 0.667 0.497

VisualBERT (COCO) – – 0.655 0.524
ConcatBERT – – 0.728 0.450

MMBT (ResNet) – – 0.7031 0.5396
MMBT (EffNet) – – 0.7686 0.5700

Sentiment classification. Image-based: accuracy 0.3627, F1macro 0.1041.

Charnet
Bag-of-Ngrams 0.2705 0.0905 0.3675 0.1062

BERT 0.2497 0.1000 0.3675 0.1093
RoBERTa 0.2774 0.1211 0.3717 0.1093

VisualBERT – – 0.340 0.108
VisualBERT (COCO) – – 0.344 0.103

ConcatBERT – – 0.371 0.096
MMBT (ResNet) – – 0.2836 0.1049
MMBT (EffNet) – – 0.3053 0.1141

Google
Cloud
Vision

Bag-of-Ngrams 0.2641 0.0859 0.3676 0.1061
BERT 0.2595 0.1023 0.3731 0.1117

RoBERTa 0.2750 0.1165 0.3697 0.1072
VisualBERT – – 0.336 0.109

VisualBERT (COCO) – – 0.338 0.112
ConcatBERT – – 0.371 0.088

MMBT (ResNet) – – 0.3152 0.0925
MMBT (EffNet) – – 0.3224 0.1219

and visual embeddings, as many multimodal methods do when text and
image are assumed to represent the same concepts. We train models for
image and text classification independently and create diverse ensembles.

Our blending approach uses a very small number of parameters to join
the two modalities, which makes it important to analyze the per-class
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performance on each of them and on the final resulting ensemble. For
this purpose, we have used Google Cloud Vision OCR texts and BERT-
based and EfficientNetB3 predictions for text- and image-based predictions
respectively.

Results for topic and sentiment type classification are shown in Tables 5
and 6, respectively. We show per-class recall and support (total number of
data points with the corresponding label in the test set) for EfficientNet-
B3 multi-task model image-based predictions and BERT model (fine-tuned
on Google Cloud Vision OCR texts) for text-based predictions. When no
text was extracted, we assume that the text-based model made a mistake.
For many labels, text-based prediction is superior in both tasks, but for
several large classes it is not (see the support column “#”), and hence the
overall accuracy is higher. The tables show that the F1macro score often
increases for blended models, probably due to the complementary nature
of the multimodal ensemble: when one classifier fails, another modality
may enable a correct prediction.

§6. Discussion and Error Analysis

We have analyzed the outputs of three topic classification models: text-
based, image-based, and their blend (Table 7). We identify four major er-
ror types. First, ads contain text fragments in non-standard font and small
size, so input to the text-based model is noisy and limited (Ex. 1). Sec-
ond, ads may contain the company name instead of product details (Ex. 2
and 4); this confirms that additional information about the company can
help, which we leave for future work. Third, the difference between some
topics is vague; e.g., Ex. 5 shows that topics soda and alcohol are both re-
lated to drinks, which may indicate the need for a better data annotation
scheme. Finally, advertisers use highly abstract visual metaphors and sym-
bols that require additional knowledge (recall also Figs. 1 and 2). In Ex. 3,
the deer head is shown as a reward for hunting sports, so text-based models
predict the topic correctly due to words such as hunter and archery, while
the image-based model sees the deer head as a sign for animal rights adver-
tising. Ex. 5 shows that pretrained OCR models that support only Latin
characters and English words may work incorrectly when other languages
are present: a Russian disclaimer was partially recognized by Charnet with
English chars. We believe that such scenarios should be handled by mul-
tilingual OCR models and adding more variability to the dataset, which
may allow for better fine-tuning of language models in future work. Visual
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Table 5. Per-class topic
prediction performance;
darker color corresponds
to higher scores.

Class # Recall (%)
Image Text Blend

alcohol 485 66.80 73.61 71.34
animal right 107 51.40 67.29 54.21
baby 16 37.50 43.75 50.00
beauty 1124 80.96 77.49 83.36
cars 1267 85.40 83.82 87.21
charities 15 0.00 33.33 6.67
chips 316 53.16 66.46 58.86
chocolate 681 72.83 73.72 76.65
cleaning 36 25.00 38.89 30.56
clothing 1585 79.43 72.05 82.33
coffee 130 59.23 73.08 61.54
dom. violence 37 37.84 54.05 40.54
education 44 4.55 43.18 6.82
electronics 806 71.46 72.46 74.69
environment 73 34.25 42.47 42.47
financial 323 44.27 71.83 50.77
gambling 7 0.00 28.57 0.00
game 115 28.70 51.30 30.43
healthcare 204 23.53 60.29 30.88
home appliance 117 43.59 56.41 43.59
home improv. 53 9.43 33.96 9.43
human right 45 11.11 53.33 22.22
media 256 19.92 42.97 26.95
other service 240 9.58 30.83 15.42
petfood 6 0.00 16.67 0.00
phone tv internet 167 23.35 71.86 31.74
political 15 13.33 20.00 13.33
restaurant 772 74.74 75.00 77.07
safety 86 37.21 66.28 43.02
seasoning 135 62.22 68.15 64.44
security 16 0.00 25.00 0.00
self esteem 39 15.38 51.28 25.64
shopping 330 52.12 59.70 53.64
smoking alc. abuse 98 61.22 62.24 67.35
soda 717 69.04 76.29 73.36
software 81 4.94 28.40 3.70
sports 464 44.61 51.51 49.57
travel 403 49.88 67.00 57.82
unclear 91 4.40 7.69 3.30

Table 6. Per-class
sentiment prediction
performance.

Class # Recall (%)
Image Text Blend

active 605 33.06 26.94 35.54
afraid 31 0.00 6.45 0.00
alarmed 74 1.35 4.05 0.00
alert 529 18.71 16.64 19.85
amazed 103 0.00 1.94 0.97
amused 205 0.49 9.76 2.93
angry 23 0.00 0.00 0.00
calm 135 0.00 4.44 0.00
cheerful 233 1.29 10.30 2.15
confident 148 0.00 4.73 0.00
conscious 240 2.50 7.50 2.92
creative 984 49.80 30.28 50.41
disturbed 27 0.00 0.00 0.00
eager 856 76.52 43.93 78.62
educated 141 0.71 4.96 1.42
emotional 33 0.00 0.00 0.00
empathetic 15 0.00 0.00 0.00
fashionable 634 76.50 47.00 76.97
feminine 176 12.50 18.75 14.77
grateful 3 0.00 0.00 0.00
inspired 117 0.85 8.55 1.71
jealous 0 – – –
loving 6 0.00 0.00 0.00
manly 46 0.00 4.35 0.00
persuaded 35 0.00 2.86 0.00
pessimistic 0 – – –
proud 1 0.00 0.00 0.00
sad 1 0.00 0.00 0.00
thrifty 32 40.62 12.50 40.62
youthful 26 11.54 0.00 11.54

and textual components are both necessary for successful predictions: text
and image in advertisements are complementary in that sense.
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Table 7. Five sample results of three models; the text-
based model is based on RoBERTa and Charnet for OCR.

(1) (2) (3)

OCR
(Charnet)

ALL DECKED OUT

IRL TAYLOR SWIFT COM-
ING 12/26 WAIMART SAVE
MONEY LIVE BETTER. FOR
NEW NATURE ELUXE LUXURY
TOUCHED NATURE FOR EXCLU-
SIVE TAYLOR SWIFT CONTENT
VISIT WAIMART.COM /COVER-
GIRL

CLASSWHITE-
TAIL THE
NEW HUNTER
THE CHOKE
HUNTER
BEAR
ARCHERY

Text restaurant clothing sports
Image beauty beauty animal_rights
Blend beauty beauty animal_rights
Gr. truth beauty beauty sports

(4) (5)

OCR
(Charnet)

ARC LAYS FEEL NEW MILER SUMMER!
ANN YPE3MEPHORO

Text cleaning soda
Image electronics alcohol
Blend electronics soda
Gr. truth financial alcohol

§7. Conclusion

In this work, we have presented a unified blended system that com-
bines several state of the art models, e.g., BERT for text embedding and
MobileNet and EfficientNet for image embedding. This led to significant
improvements in symbolism detection (by 3% over baseline quality of 16%
F1) and sentiment detection (by 7% over 28% F1), all of this using only
well-known models for individual components. Interestingly, topic detec-
tion/classification was improved by a mere 2% from the baseline quality
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of 60% F1; this could be due to an already high quality achieved by the
baselines, but future research may reveal other interesting reasons for this
effect. Another important point is that we train our system in the multi-
task fashion, so the image embedding is shared among all three tasks, while
the text embeddings are specific for each of the three tasks. This discrep-
ancy also leaves an open question: why has this led to better results than
other approaches? One possible answer is that the language used to detect
sentiments, topics, and symbols is different, but further research is needed
to test this answer. Another interesting observation is that Charnet, a non-
commercial OCR system, shows performance comparable to Google Cloud
Vision on the tasks in question. We also note that our models have been
able to significantly outperform an end-to-end neural pipeline from [19],
which also suggests that even better results may appear in this direction.
In closing, we hope that our work will foster more research on multimodal
problems and draw attention to advertisement understanding in general.

One of important future research directions is application of our ap-
proach to understanding of video advertisements [12]. In such case, it will
be possible to obtain text not only by using OCR, but with the automatic
speech recognition techniques [18,39,49]. Another important future study
is related to usage of modern visual transformers instead of convolutional
networks [17, 25]. Finally, it is important to implement the proposed ap-
proach for mobile applications [48] to measure emotional reactions and
analyze understanding of symbolism by a concrete user [34,37,59].
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