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Abstract. Currently, dialogue systems have achieved high perfor-
mance in processing text-based communication. However, they have
not yet effectively incorporated visual information, which poses a
significant challenge. Furthermore, existing models that incorporate
images in dialogue generation focus on discussing the image itself.
Our proposed approach presents a novel perspective on multi-modal
dialogue systems, which interprets the image in the context of the
dialogue. By doing so, we aim to expand the capabilities of current
dialogue systems and transition them from single modality (text) to
multi-modality. However, there is a lack of validated English datasets
that contain both images and dialogue contexts for this task. Thus,
we propose a two-stage approach to automatically construct a multi-
modal dialogue dataset. In the first stage, we utilize text-to-image
similarity and sentence similarity to identify which utterances could
be replaced with an image. In the second stage, we replace those
utterances by selecting a subset of relevant images and filtering them
with a visual question answering model. We used this approach, along
with additional labeling, to create the IMage Augmented multi-modal
Dialogue dataset (IMAD), which can serve as a validated dataset for
this task. Furthermore, we propose a baseline model trained on this
dataset, which outperforms model trained on the same data without
images and BlenderBot.

§1. Introduction

Dialogue systems, also known as conversational agents or chatbots, have
become increasingly important in recent years due to their potential to
revolutionize human-computer interaction [37].Furthermore, one can see a
high activity in this field in the recent year, as the usage of ChatGPT [39]
can serve a lot of different goals [10, 20, 35]. In line with ChatGPT, Google
has recently announced Bard, based on LaMDA [57], which can serve for the
same tasks. Additionally, dialogue systems provide a challenging problem

Key words and phrases: Natural Language Processing and Deep Learning and
Machine Learning and IMAD and Dialogue Dataset and Multi-modal Dataset and
Dialogue Systems and Multi-modality.

102



IMAD: IMAGE-AUGMENTED MULTI-MODAL DIALOGUE 103

in AI research, as they require a deep understanding of natural language
and the ability to generate human-like responses [6]. A good confirmation
of this thesis is the abundance of different natural language products, that
are widely used, such as DeepPavlov [4].

Contemporary dialogue models such as DialoGPT, BLOOM, and Di-
alogBERT are predominantly text-based [14,61,68]. This is reasonable in
scenarios where individuals converse solely through textual communication.
However, in real-life situations dialogues frequently incorporate images,
such as when individuals respond to questions with photographs, provide
offers or express emotions [69]. As a result, there is a need for dialogue
models that can accommodate multi-modal inputs.

Just as in the dialogue systems, high activity is being spotted in the
field of text2image generation [44,50,51]. These tools are also helpful in the
art sphere [2], healthcare [8], physics [36] and more. However, these models
are limited to producing only images and taking text information as input.

These problems are solved with multi-modal deep learning models,
that are increasingly important today due to the exponential growth of
multimedia data in various domains [3, 13, 19, 54]. Such models have nu-
merous applications in various domains. There is a strong potential of
incorporating more modalities to dialogue assistants, such as better emo-
tion recognition [7], visual question answering [29,62] and operating with a
wider range of tasks [1, 17,46].

Therefore, one could focus on the task of generating an image description
in a context of dialogue [23,69]. This task is more general compared to the
response generation [39] or describing a picture [28], because it allows for
better response generation with intention knowledge and knowledge about
the image sense in a certain dialogue context.

Proposal. That brings us to the task of interpreting an image in the
context of dialogue, which would provide a solution for the above-mentioned
problem. We present the IMage Augmented multi-modal Dialogue dataset
(IMAD) that contains 4864 dialogues where the last utterance was replaced
with image. To collect it we utilize multiple sources of dialogue datasets,
present a novel approach for image-text dialogue construction, and label a
part of it with 3 assessors. We also present baseline models based on the
BLIP model [29] that outperform text-only BLIP and BlenderBot 400M [49]
on this task. Training data included 4154 samples collected with automated
approach and 582 samples labeled with assessors as "Partial Match". Test
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data included 128 samples, labeled by assessors and authors as "Perfect
Match".

Out dataset and code are published at the IMAD Repository1.

§2. Related Works

Multi-modal Tasks. Multi-modal models involve multiple modalities,
such as images [16, 29, 44, 60], video [25, 64, 65], or audio [56, 58]. In the
field of text and image modalities there are several popular tasks, including
visual question answering [18,28,29,31] and image captioning [22,26,59].
We also distinguish as a separate task image-text matching, where the key
is to match corresponding images and texts [29,43,63]

Multi-modal Embeddings. Modern models [1, 17, 46] focus on con-
necting multiple modalities in a single model. In contrast, we would like to
focus on text with image data. One of the strongest multi-modal model was
CLIP [43], which uses image embeddings to align with text embeddings
for image-text matching loss [38], so images will correspond to relevant
phrases. The same idea was used in BLIP [29] with matching image and
text embeddings [31]. This is a key idea to filter pairs of text and image.

Multi-modal Data. Current multi-modal data contains images with
captions [5, 18,21,34,40,52]. BLIP, BLIP2 and Flamingo were trained on
these. However, these datasets do not contain dialogue contexts.

Previous research has also encountered a similar challenge, as evidenced
by a study on the topic of image-grounded dialogues [69]. The authors of
this study utilized dialogues from Chinese social media and crowd-sourcing
to develop their model. The authors reported an increase in BLEU [42]
scores compared to generated responses that were not conditioned on image
data.

Another study [23] proposes constructing a dataset utilizing image-text
matching via the Visual Semantic Reasoning Network (VSRN) [32] with
images sourced from the MS COCO [34] and Flicker 30k [66] datasets, just
as it was done before [24].

§3. Dialogue Datasets

To produce clean data, it is important to have dialogues created with
humans. They could be collected either from crowd-sourcing or written by
humans, such as in English books. Therefore, we have chosen the dataset

1https://github.com/VityaVitalich/IMAD
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sources listed below to make our data valid and diverse in terms of dialogue
content: DailyDialog, Persona Chat, MuTual, DREAM, Common-sense
dialogues, and Empathetic Dialogues [9, 33, 45, 55, 67, 70]. Detailed reasons
are provided in Appendix B.

With these sources, we have collected 451,611 pairs of utterances with
context and images. This dataset contains all the features and model
predictions described below.

The filtered version of the dataset is named IMage-Augmented Multi-
modal Dialogue Dataset (IMAD) and is used later for modeling. It is
constructed with a combination of the Text-Image Replacing approach and
Human Annotated part. Basic statistics are shown in Table 3.

§4. Text-Image Replacing

Previously, the filtering approach with a filter from VSRN did not show
good results [23]. Therefore, to obtain a more precise and appropriate
dataset we utilized a two-step process to determine the feasibility of replac-
ing an utterance with an image. The first step involved predicting whether
the utterance could be substituted with an image. The second step focused
on matching a better picture utilizing VQA from BLIP.

4.1. Find Replaceable Utterances. The first step is to find utterances
that could be replaced with an image. To accomplish this task, we have
labeled a small subset, created features (we will name them scores), and
built a random forest model [41].

4.1.1. Human Annotation. For the initial step, we labeled 1000 random
samples from the DailyDialogue [33], denoting them as U = {u1, . . . , u1000},
that are utterances with contexts. To label them, we were using a heuristic
formulated as "This phrase potentially can be described with a picture".

4.1.2. Replacing Features. The matching process involves pairing each
utterance with an image from Unsplash. This is achieved by maximizing the
cosine similarity between the embeddings of the utterance and the image
extracted from CLIP [43].

To optimize the matching process, we conducted experiments using
various text and image features that were deemed important for predicting
if the utterance is replaceable. The most promising results were obtained
when each utterance was accompanied by the following features: Image
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Score, Maximum Entity Score, Sentence Similarity, BLEU Score, Threshold.
A detailed description is provided in Appendix A.

4.1.3. ML Labeling. For classification we employed the random forest al-
gorithm that demonstrated the best precision [41]. This behavior is likely
attributed to the high variance in the data, as evidenced by the standard
deviation.

Multiple tests were conducted with stratified K-fold cross-validation
with 3 folds and 40 repeats. Precision was deemed to be the key metric,
given the importance of minimizing errors, as even the exclusion of valid
utterances is preferable to making errors.

The resulting model metrics are shown in Table 6 and feature importances
are shown in Fig. 2.

4.2. Text-Image Matching. The criterion from the first step, which
considers only the text and not the image, serves as a primary filter for
the text-image task. However, it is insufficient on its own, as evidenced
by a relatively low correlation in previous works [23]. The image dataset
limitations impose constraints on the ability to form a pair of utterance
and image, even if the utterance is replaceable. To overcome this, it is
necessary to introduce a step to match utterances with better images.

4.2.1. ML Labeling. In order to improve the quality of the images, we
utilized the BLIP VQA [30]. To select proper images we use confidence of
the model output, which is defined as sum of the log probabilities of each

token in the utterance. Confidence(out, u) =
length token(u)∑

i=1

outi,token(u)i .

The process of selecting a better image for an utterance was carried out
using the following steps.

(1) Create scoring for all images. For each utterance we have cosine
similarity with every image in dataset{

cosine(embCLIP (u), embCLIP (i)) ∀i
}

=: ISSu.

(2) Create set of N images. From all that set we take set of N
images, which are the top-N for cosine similarity{

i | cosine(embCLIP (u), embCLIP (i)) ≥ ISSu(N)

}
=: TopImgu,N .
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(3) Query the VQA. The model was queried with the text input
“Which phrase can describe this image?” for each image in the
aforementioned set.

(4) Calculate confidences. For each image in aforementioned set
we calculate confidence

{
Confidence(out,u)

∣∣ out = VQA(quest, i)

∀i ∈ TopImgu,N

}
=: ConfSetu,N .

(5) Select the most confident. Then we select image with the highest
confidence score argmax{ConfSetu,N} =: imgN .

We conducted a test of our methodology by labeling image-text matching
in the context of dialogue pairs that were previously identified as replaceable.
The labeling process involved 3 classes: “Image matches”, “Image does not
match” and “Unknown” in cases where determination was difficult. Our
results, as presented in Table 2, confirm that our initial assumptions were
correct. Specifically, our findings indicate that, at best, only half of the
pairs with replaceable utterances were found to have matching images.

4.2.2. Human Annotation. With the above method we obtained a subset of
4154 samples. In order to enlarge the dataset, samples with lower RF scores
were selected and labeled by three expert assessors, resulting in the addition
of 4644 more samples to the dataset. The labeled dataset was organized into
4 distinct categories: “Perfect Match”, “Partial Match”, “Undefined ” and
“No Match”. A detailed description and labeling instructions are provided
in Appendix D.

The inter-rater reliability of their annotations were evaluated using the
Fleiss kappa statistic. The refined version of the IMage Augmented multi-
modal Dialogue dataset (IMAD) is constructed from samples obtained with
our initial approach and samples from dataset labeled with assessors, that
had the label “Perfect Match” or “Partial Match”. Basic statistics are shown
in Table 3, numbers of samples from different sources and Fleiss kappa are
shown in Table 1.

§5. Multi-modal Dialogue Language Model

To validate our approach we train a model on the proposed dataset
using both image and text data and compare it to text-only models. We
choose the task of reconstructing the substituted utterance since the visual
signal is clearly beneficial in this setting.
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Table 1. Accuracy for each data source for each label in
assessor’s validation dataset, where the ground truth label-
ing was done with authors. Fleiss kappa across assessors
for each data source. Number of samples in the resulting
dataset from each data source.

Dataset 1 class 2 class 3 class 4 class Fleiss Kappa # of samples
PersonaChat 0.29 0.43 0.82 1.0 0.83 2483
DailyDialog - 0.50 - - 0.80 899
EmpatheticDialogues - - - - 0.76 754
Commonsense-Dialogues - - 1.0 - 0.83 220
MuTual - - - - 0.88 333
DREAM - - - - 0.81 175
Mean across all sources 0.29 0.46 0.9 1.0 0.82 810.67

Table 2. Number of image-text matches for different N in
VQA image-text matching approach.

N Image Matches No Match Unknown
1 37 51 8
5 46 46 4
10 48 44 4
15 47 45 4
50 42 51 3

Table 3. Basic statistics of the dataset.
Total Dialogues 4864
Average Speaker Turns Per Context 5.1
Average Number of Tokens Per Context 56.4
Average Number of Tokens Per Replaced Utterance 14.5
Size of Context Vocabulary 12375
Size of Replaced Utterances Vocabulary 7962

We choose a pre-trained BLIP [29] model for experiments as it is one of
the best open source models utilising both visual and text modalities and
has a convenient interface in the LAVIS library [27]. The model consists
of a visual transformer [12] for image encoding and a BERT [11] with a
language modeling head for text decoding, both initialised from a BLIP
checkpoint. Training details shown in Appendix C.
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Figure 1. Examples of finetuned models’ generation: grey
blobs represent the context, white blobs represent ground
truth utterances, and dashed blobs represent model gener-
ation outputs with or without using visual input.

To validate the resulting dataset we finetuned two BLIP models from a
pre-trained checkpoint. These models consist of ViT-B/16 image encoder
and BERT text decoder with 12 layers, 12 attention heads, hidden size
of 768, intermediate size of 3072, and GeLU activations [15]. The total
number of parameters is 224M.

5.1. Evaluation. For evaluation we use 128 samples annotated by both
us and the assessors. For each trained model we choose the best checkpoint
using validation metrics and use it to compute metrics on the test split. We
compare BLIP finetuned on the proposed dataset to zero-shot performance
of a distilled BlenderBot 400M [49] and BLIP finetuned in text-only setting.
We choose BLEU [42] with n-grams lengths from 1 to 4 as quality metrics
and also report perplexity for the models we trained. During evaluation we
use beam search sampling with 3 beams. We also divide the test split of the
dataset into parts corresponding to the source dialog corpuses and report
the metrics for each of them in Table 5 and for the whole set in Table 4.

5.2. Generation examples. Figure 1 show some examples of model
generation results. We find that the model finetuned using visual data
uses that information in its answers as opposed to the one finetuned using
constant visual inputs. As we have only one ground truth label for one
sample sometimes model outputs do not exactly align with them, but
usually make sense and come close.
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Table 4. Test split metrics for both finetuned models and
BlenderBot 400M.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 Perplexity

image+text 23.73 ± 1.25 14.37 ± 1.06 9.19 ± 0.84 6.33 ± 0.77 44.19 ± 1.00
text-only 10.63 ± 0.60 5.76 ± 0.35 4.01 ± 0.28 3.23 ± 0.24 90.21 ± 1.04
BlenderBot 10.93 4.75 2.62 1.61 -

Table 5. Metrics on test split by source for both finetuned
models and BlenderBot 400M. We report metrics for top-3
most frequent sources.

Persona-Chat DailyDialog EmpatheticDialogues
BLEU-1 BLEU-4 BLEU-1 BLEU-4 BLEU-1 BLEU-4

image+text 22.81 5.52 26.51 6.27 27.64 9.23
text-only 9.73 2.68 13.81 3.79 8.98 0.00
BlenderBot 13.29 2.83 12.17 0.00 10.24 1.62

§6. Results and Discussion

Dataset. We have presented a dataset (IMAD) with a considerable
amount of multi-modal dialogues, sourced from validated text-only datasets.
The creation of our dataset is automated with a two-step process, involving
the filtering of the most relevant utterances and the selection of the most
suitable image. Additionally, we developed a methodology for labeling the
data, which proved to be easy to understand and valid. This is demonstrated
by the high Fleiss kappa score, which measures the consistency between
3 assessors, as shown in Table 1. The basic statistics of our dataset are
presented in Table 3, and statistics per dialogue are quite similar to those
of DailyDialogue, which is a well validated dataset.

Baseline Model. In this study, we propose a model for the task of
generating an utterance that is replaced with an image, using the IMAD.
It is based on the BLIP architecture and achieves a relatively high BLEU
score compared to other models that use only text information (as shown
in Table 4). This result demonstrates the validity of our dataset, which
is consistent across different sources of data (as shown in Table 5). We
have overcame the issue of noisy and irrelevant pairs of utterances and
images by incorporating a filtering stage and creating the IMAD, resulting
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in a model that potentially could outperform a previous approach due to
cleaner data [69].

Further Work. These promising findings are expected to significantly
contribute to the advancement of research in the field of multi-modal dia-
logue models. The methodology presented in this paper could aid researchers
in the creation of more accurate filters for dialogue data, which could lead
to improvements in the quality and efficiency of collecting multi-modal
dialogues. We were limited with resources and yet tested model accuracy
with a lot of repeats on a subset, that could have led to distribution bias
across datasets. As well, low recall means we do not include a lot of valid
samples, which reduces our total dataset size. Therefore, the approach
presented in this work could facilitate the development of more effective
multi-modal models. There is also potential to further improve the size of
the dataset through labeling or model upgrades, as mentioned above.

Moreover, it is essential to conduct extensive research to compare multi-
modal approaches for solving this task. This involves comparing models
using cross-attention and concatenation of embeddings to that task, as
well as conducting experiments with different language models and visual
encoders. Such an investigation can lead to the development of more effective
and accurate multi-modal models.

§7. Conclusion

In conclusion, our work presents a new task of interpreting images in
the context of dialogue and proposes a novel approach to construct a
multi-modal dialogue dataset to tackle this challenge. We utilize a two-
stage process that involves identifying utterances that can be replaced
with images and selecting relevant images using visual question answering
models. Through this process, we have created the IMage Augmented
multi-modal Dialogue dataset (IMAD), which is validated and labeled,
providing a valuable resource for further research in this area. Additionally,
we have proposed a baseline model trained on IMAD, which outperformed
existing models that do not incorporate images. Our work demonstrates
the potential of incorporating visual information in dialogue systems and
highlights the need for more research in this area. Future work can explore
the use of more advanced techniques for identifying relevant images and
developing more sophisticated models that can effectively incorporate visual
information into dialogue systems.
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Appendix A. Implementation details

Formally pairs of utterance and images are made in the following way.
Given a set of images I, we created pairs

∀u ∃ (u, img) : img = argmaxi∈I{cosine(embCLIP (u), embCLIP (i))}
, where embCLIP (u) is taking embedding from CLIP for utterance and
embCLIP (i) is taking embedding from CLIP for images and cosine(a, b) =

a·b
‖a‖·‖b‖ is calculating cosine similarity between vectors in a usual sense.

Main features are described in depth below:
Image Score. For utterance IS(u) is the maximum cosine similarity

between utterance and all images embeddings extracted from CLIP.
max
i∈I
{cosine(embCLIP (u), embCLIP (i))}

Maximum Entity Score. We follow the idea, that most of entities in the
NER datasets are nouns [48]. First, each utterance undergoes a noun extrac-
tion process and has corresponding noun set ENTu = {noun | ∀noun ∈ u}.
Second, for each entity in the set Image Score is calculated IS(entity).
That forms set of Image Scores of utterance nouns which we call Entity
Scores for utterance ESu = {IS(entity) | ∀entity ∈ ENTu}. Finally, we
take maximum of Entity Scores MES(u) = maxESu.

Sentence Similarity. It is obtained from comparing image caption and
initial utterance. First, for each corresponding image captions are gener-
ated caption(img). We do this with VIT-GPT2 model [22]. Then we find
similarity between utterance and generated caption with cosine distance be-
tween their embeddings from SentenceBert SS(u, img) = cosine(embSB(u),
embSB(caption(img)) [47] .

BLEU Score. BLEU [42] metric for only unigrams between generated
caption and utterance BLEU1(u, caption(img)).

Threshold. Binary feature that shows if utterances features listed above
are greater than founded thresholds. We found thresholds for Image Score
tIS , Sentence Similarity tSS and Maximum Entity Score tMES by maximiz-
ing precision on labeled subset U via grid-search on triplets (tIS , tSS , tMES).
To reduce the computations, each threshold was chosen as k-th statistic
in set of train values sorted in descending order. Therefore we were grid
searching through k-th statistic for each parameter with step equals 10.
Formally, threshold is THRu,img = 1{SS(u, img) >= tSS}1{MES(u) >=
tMES}1{IS(u) >= tIS}

The hyperparameters were determined via grid search that maximized
the precision score. The resulting model consisted of 500 estimators with
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class weights of 5 to 1 for not-replaceable and replaceable, respectively. The
model used the Gini criterion, a maximum depth of 2, and the square root
of the number of features in each estimator.

Thresholds features were tested on labeled dataset and brute forced
on the 10 step grid. We report on listed below thresholds, that results in
precision = 0.921171 and recall = 0.068.

• Image Score = 0.33265801843083337
• Sentence Similarity = 0.12116438820166667
• Maximum Entity Score = 0.3103302687291667

There is a list of pictorialization features that were tested, but resulted
in worse metrics.

• Embedding representations from SentenceBERT and subsets of
embeddings representation

• Image-text matching loss from BLIP
• Answers from VQA model to the question "does statement *utter-
ance* describe picture well?" transitioned to binary feauture for
model output "yes" and "no"

• Answers from VQA model to the question "Can the utterance
*utterance* be described by the picture?" transitioned to binary
feauture for model output "yes" and "no"

• Cardinality of intersection between nouns from utterance and ob-
jects that VQA answers to the question "what objects are in the
picture?"

• Confidence of model on "The picture shows *utterance*". It was
calculated as sum of logarithmic probabilities of tokenized phrase
without taking in account pattern phrase "The picture shows".
• Text feauteres: Number of parts of speech in utterance, punctuation
in utterance, utterance length, number of words, SMOG Index,
LIX Index, Flesch–Kincaid readability tests, Coleman–Liau index.
Lexical diversity metrics: TTR, RTTR, CTTR, HTTR, STTR,
MTTR, DTTR, MATTR, MSTTR, MTLD, MAMTLD, HD-D [53]

Appendix B. Dataset Reasoning

DailyDialog [33]. Daily Dialog is a popular source of human-written
dialogues, contains 76k utterances with context. Moreover, dialogues stick
to the certain topic or object and they end after reasonable turn. These
features are essential for building context related models.
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Figure 2. Feature Importance in the Random Forest model
for predicting if an utterance could be replaced with an im-
age. Image Score is the maximum cosine similarity between
utterance and images embeddings from CLIP. Threshold is
binary feature, indicating if Image Score, Sentence Similar-
ity and Maximum Entity Score is bigger than empirically
founded values. Sentence Similarity is cosine distance sim-
ilarity between utterance embedding and caption embed-
ding, that were generated from corresponding image with
VIT-GPT2, where embeddings come from SentenceBert.
BLEU is calculated between utterance and generated cap-
tion with taking only unigrams into account. Maximum
Entity Score is maximum out of Image Scores for each
noun in utterance.

Mutual dataset [9]. This dataset was crawled from English students
books, writtend with expert linguists and contains dialogues with reasonings.
Contains 18k utterance with context.

Common Sense Dialogues [70]. This dataset focuses on real-life
common sense dialogues. It contains 43k utterances with context from
human-written dialogues, collected from assessors on Amazon Mechanical
Turk (MTurk).
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Table 6. Metrics for best (in terms of Precision) Random
Forest model for predicting if utterance is replaceable.

Metric Mean Standart Deviation Median
Precision 0.975000 0.156125 1.000000
Recall 0.030990 0.006374 0.031250
F1 0.060042 0.012072 0.060606

Table 7. Comparison for different ML Algorithms in terms
of Precision and Recall.

Algorithm Precision Recall
Random Forest 0.975000 0.030990
Kernel SVM 0.958333 0.037500
Gradient Boosting 0.816667 0.026302
KNN 0.500188 0.035677

Empathetic Dialogues [45]. This dataset was also collected via MTurk.
The main goal is to focus on emotional and personal dialogues. It contains
76k utterances with context.

Dream Dataset [55]. This dataset contains 14k utterances with context
from dialogues from English students books. The goal is to make wide range
of dialogues, that would include both common knowledge and reasoning.

Persona Chat [67]. We have utilized Persona Chat because it was
collected using assessors and contains 223k utterances with context from
small real life dialogues. It was well validated and contains dialogues with
personas.

Appendix C. Training Details

To evaluate the contribution of visual information into solving the task
we finetune two models in different settings: using both image and context
as input and replacing image feature vector with constant input. We expect
the model which has access to visual modality to perform better, which
would mean that images in the composed dataset are actually relevant and
useful for utterance prediction.

To train our models we utilise a prefix LM learning paradigm as opposed
to usual next token prediction used to finetune BLIP on captioning tasks.
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Figure 3. Training metrics: left figure shows train and
validation loss for both finetuned BLIP models during
training, right figure shows BLEU-1 metrics on validation
during training.

We use the image and the last utterance before the image as inputs for the
model and aim to predict the substituted utterance. We let the decoder use
a square attention mask for the context tokens and a triangular attention
mask for the utterance tokens we want to predict.

For both models we freeze the image encoder part during training for
efficiency and to reduce compute cost.

Both models are trained on 4336 samples from the composed dataset,
leaving 400 samples for validation, for 20 epochs with batch size of 10
samples, learning rate of 1e-5, and cosine learning rate scheduler with linear
warmup (Figure 3). For each setting we train 5 models initializing from
different seeds for better quality estimation.

Appendix D. Labeling methodology

The detailed descriptions for classes are as follows.
(1) Perfect Match. This label is assigned when utterance has only 1

sense, and it is fully transferred with an image. If image could not
transfer fully the sense of utterance and it could be done only with
context knowledge, then also this label is assigned. There should
be no factual mistakes, image should not be specific to cultural
differences. The heuristic rule was to question yourself "Could i
possibly came to this phrase, knowing image and context?".
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Figure 4. Labeling Methodology.

(2) Partial Match. This label is assigned when utterance has 2 or
more distinct senses and image transfers one of them fully. It also
should not be specific to culture or contain mistakes. In fact rules
are the same as for Perfect Match, but applied to one of the senses
in the utterances contains 2 or more senses.
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(3) Undefined. This label is assigned when image is specific to cultural
differences or when image can not transfer one of the senses of the
utterance and the context could not help to recover untransferred
sense.

(4) No Match. This label is assigned when image contains factual
errors about utterance or when none of the entities from utterance
present in the image.

A decision tree was designed as the primary instruction for the labeling
process, which aimed to assist the assessors in assigning appropriate labels
to the samples. The decision tree was presented in Figure 4 and consisted
of closed questions at each node, or terminal nodes containing the desired
label. The assessors were instructed to follow the decision tree, starting from
the root node and answering the questions until the label for each sample
was reached. This strategy yielded high inter-rater reliability among the 3
assessors, indicating its efficacy in achieving consistent labeling outcomes.
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