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WAV2VEC2 WITHOUT ATTENTION: DO YOU NEED
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LEARNING OF SPEECH REPRESENTATIONS?

Abstract. In this work, we consider the possibility of replacing
multi-head attention with dense associative memory (DAM) layers
in the wav2vec2 automatic speech recognition algorithm. We exam-
ine the hypothesis that the concept of modern Hopfield networks
is more suitable for restoration of missing fragments of the audio
signal task and speech-to-text task than multi-head attention. Our
experiments indicate that the model with the new architecture al-
lows to improve the quality of speech recognition and can be used
for pretraining the models on a large amount of audio data.

§1. Introduction

Automatic speech recognition (ASR) is one the most popular tasks in
modern computer linguistics; these algorithms are used in a plethora of
different electronic devices. There are two main approaches to ASR: classic
(component) and end-to-end. Although the second one is more popular
nowadays, component systems were the most used for a long period of
time because some classic systems like Kaldi [20] could be adapted to the
special speech domain only by training the language models involved on
texts from that domain. It made these systems competitive in some special
tasks such as speech processing for low-resource languages. Nevertheless,
modern end-to-end systems have some advantages that make them more
popular. Although the performance quality of these systems depends only
on the training dataset, the transfer learning [21] approach can still be
applied; it considers the use of knowledge and rules of the base model,
which solves a specific problem, to solve another similar task within a
particular language. What is more, neural network algorithms have better
performance, they require less computing resources, and their size can be
reduced by using quantization or pruning techniques.
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Most modern ASR end-to-end systems have Transformer-based archi-
tectures; the Transformer uses a multi-head attention [24] approach to
find dependencies among input tokens. However, some studies show its
disadvantages: Transformers have limitations on a big class of regular lan-
guages [6], self-attention can perform worse because of the rather long
input tokens [23], the construction of abstract representations is always
made from lower layers, although “higher layers are available” [10]. Our
goal in this work was to test the possibility of replacing multi-head at-
tention with associative memories for self-supervised learning of speech
representations from unlabeled data and for transforming these represen-
tations to the words of a natural language. We used a small amount of
audio data to compare different architectures and confirm our hypothesis.

§2. Related work

Transformer-based architectures made a breakthrough for natural lan-
guage processing tasks, and they have been applied in speech recogni-
tion since 2018. The authors of the “Speech-Transformer: A No-Recurrence
Sequence-to-Sequence Model for Speech Recognition” [9] modified the stan-
dard architecture with convolutional neural network (CNN) [17] layers to
process data before passing it to the encoder as inputs. The authors tested
the models based on this architecture with the Wall Street Journal dataset
and they used word error rate (WER) as the evaluation metric. The results
showed that Transformer-based models can compete with other automatic
speech recognition approaches.

A more global change in architecture was proposed in the work “Trans-
former Transducer: A Streamable Speech Recognition Model with Trans-
former Encoders and RNN-T Loss” [27]. The only stack of audio and la-
bel encoders was used. The researchers used a Recurrent Neural Network
Transducer (RNN-T) instead of CTC (connectionist temporal classifica-
tion) as a loss function, making it possible to use probabilities based not
only on the inputs but also based on predicted labels. The training of
the Transformer-Transducer took less time in comparison with the orig-
inal recurrent neural network (RNN) and it had better accuracy on the
LibriSpeech benchmark.

The paper “Conformer: Convolution-Augmented Transformer for Speech
Recognition” [12] introduced an approach that combined the advantages
of Transformers and CNNs. The Conformer architecture had a convolution
module after the multi-head self-attention module. It made it possible to
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take both global and local dependencies of the input audio into account.
This model outperformed the previous Transformer and CNN in terms of
WER results on LibriSpeech dataset. The Conformer-based model for the
Russian language was published in 2022 by NVIDIA, and it had low WER
values on the Russian LibriSpeech dataset [2].

Researchers from Facebook proposed the wav2vec 2.0 framework for self-
supervised learning of speech recognition models in 2020 [5]. The training
of this model meant processing some unlabeled audiodata to learn speech
representations. The second step was to teach a model to predict phonemes
of speech by using fine-tuning techniques with the CTC loss. This model
achieved state of the art on LibriSpeech that year. The developers also
trained a single wav2vec2 model to predict cross-lingual speech represen-
tations by training it on speech taken from several languages [8]. The model
had low WER and phoneme error rate values, and it was fine-tuned to lots
of different domains.

§3. Dense associative memory and self-attention

3.1. Self-attention analogues. The disadvantages of self-attention al-
gorithms motivate researchers to find new ways to learn the dependencies
among input data. The authors of the study “Addressing Some Limitations
of Transformers with Feedback Memory” [10] proposed a different Trans-
former architecture which forms the inputs for the current timestep with
some abstract representations from previous steps, called “memory vec-
tors”. This feedback feature allowed the proposed architecture to improve
the quality and speed parameters in comparison with other Transformer
architectures, and the amount of parameters was reduced by a factor of
two. In the work “Hopfield Networks is All You Need” [22] the researchers
underline the fact that some attention heads perform averaging over a very
large number of patterns in lower layers which leads to lack of attention
to some positions on this level. They propose to use Gaussian averaging
heads with fewer parameters than self-attention heads.

3.2. Hopfield networks evolution. In the same work the authors pro-
posed to use associative memory layers in Transformers. Their work was
based on the research of Hopfield networks.

A Hopfield network is a fully connected recurrent neural network; it is
basically an auto-association mechanism: the network can recover whole
images by using one or several of their fragments as an input. Information
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about the images is stored in the weights of the network after its training,
and it can be described with the following formula [25]:

wij =
∑

d=1..m

(OUTi,dOUTj,d)

where m is the number of memorized input vectors, d is the number or
memorized output vector, OUTi,j is the ith component of the memorized
output vector.

However, Hopfield networks have a memory restriction: the amount of
trainable images can be estimated [13] as

Kmax ≈ 0.14N

where N is the number of neurons.
In the work “Dense Associative Memory for Pattern Recognition” [15],

D. Krotov and J.J. Hopfield presented a modification of the Hopfield energy
function that defines the associative memory mechanism:

E = −
K∑
µ=1

F (
∑

ξµi σi)

where σi are dynamical variables and ξµi are memorized patterns. They
called it “dense associative memory” (DAM) because it allowed to
add more image information to the memory of this network:

Kmax ≈ αnN
n−1

3.3. DAM for speech recognition. The authors of “Hopfield Networks
is All You Need” developed a generalization of the Hopfield energy function
that allowed them to use the Hopfield energy function in place of the
attention mechanism. They developed an implementation of DAM layers
for using it in deep learning architectures for pooling, memory, prototype
learning, and attention tasks. We decided to use this implementation in
our experiments. Our theory is that DAM is better than self-attention in
speech recognition for the following reason: the ASR model with trained
DAM layers contains images of phoneme representations from a natural
language, and they can be recovered from any type of input audio. We
think that using DAM can make this model stable to background noises,
to reverberation effects, to speech features such as dialects or pronunciation
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Table 1. Character error rate values (percents) on test data.

Dataset w2v2-classic-tiny w2v2-hopfield-tiny
voxforge-ru 47.6 35.9
sberdevices-golos-crowd (test) 48.9 35.5
sberdevices-golos-farfield (test) 57.4 45.6

disorders, and it will not be necessary to train this model on a large amount
of augmented data.

We used modern Hopfield network layers for creating a new ASR model
with a wav2vec2-based architecture to test our ideas. We pretrained two
Russian ASR models: a version with the classic wav2vec2 architecture
(w2v2-classic-tiny) and a modified version with Hopfield layers (w2v2-
hopfield-tiny). The pretraining was a self-supervised learning task, the
models learned speech representations by using a part of unlabeled inputs
as labels. We used the implementation of Hopfield layers from the Python
library [1] for the second model: the original Wav2Vec2EncoderLayer was
replaced by HopfieldEncoderLayer for Transformers with the following pa-
rameters: input size = 768, dropout = 0.1, dim feedforward = 2048, acti-
vation = ’relu’.

The second step was to fine-tune both models on correctly labeled data
to make them convert phonemes into words. The hyperparameters were as
follows: batch size = 32, epochs = 8.

§4. Experiments and discussion

4.1. Data evaluation. A part of the SOVA Dataset RuYoutube [3] was
used as a dataset for pretraining both models; it contains 200 hours of
Russian audio records. We used the SOVA Dataset RuDevices [3] which
contained 100 hours of Russian speech for fine-tuning.

The test subsets of the Russian voxforge dataset (voxforge-ru) [4] and
Russian Golos [14] (sberdevices-golos-crowd (test), sberdevices-golos-farfield
(test)) were used for model evaluation. We used the character error rate
(CER) as the comparison metric, and the resulting values are shown in
Table 1.

We have also tested the models on augmented data to confirm our
assumption about model resistansce to noise artefacts. Audio from the
voxforge dataset was augmented with sounds from the Freesound Audio
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Table 2. Character error rate values (percents) on aug-
mented voxforge-ru.

Noise type SNR (dB) w2v2-classic-tiny w2v2-hopfield-tiny
pets noises 5.0 54.9 55.0
pets noises 10.0 48.4 48.4
pets noises 15.0 43.8 43.8
speech noises 5.0 63.9 63.8
speech noises 10.0 54.8 54.9
speech noises 15.0 47.8 47.6

Tagging 2019 research code competition corpora [11] and with different
signal-to-noise ratio (SNR) values. The results are presented in Table 2.

Our experimental results indicate that w2v2-hopfield-tiny has a sig-
nificantly better error rate value than the classic model: it was reduced
by 12.3 percent on average. The model also had better decoding time on
test data: 4 percent faster on Russian Golos and 5 percent faster on vox-
forge thanw2v2-classic-tiny. The test on augmented data shows that the
models have approximately equal CER values for various types of noises
and SNR values.

4.2. Discussion. We did the analysis of predicted labels from the vox-
forge dataset (100 files) to explain these results. The embeddings of stres-
sed vowels (IPA: [a], [æ], [E], [e], [1], [i], [o], [8], [u], [0]), unstressed
vowels (IPA: [5], [@], [o], [I], [1], [U], [0]), affricates (IPA: [ts], [tC]), oc-
clusive consonants (IPA: [b], [bj], [p], [pj], [d], [dj], [t], [tj], [g], [gj], [k],
[kj]), fricative consonants (IPA: [f], [fj], [v], [vj], [s], [sj], [z], [zj], [x], [xj],
[ù], [ü], [C:]), and sonorants (IPA: [r], [rj], [l], [lj], [m], [mj], [n], [nj]) were
collected with the forced alignment method [16]:

(1) the last hidden layer outputs (an array of embeddings) of a model
(w2v2-hopfield-tiny orw2v2-classic-tiny) were extracted after pro-
cessing an input audio;

(2) the big Russian wav2vec2 model [7] was used to get the logits and to
find the time segments of every sound in the input audio while using
the letters of audio transcription as written representations (graphemes)
of the phonemes;
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(a)

(b)

Figure 1. UMAP projections of 768-dimensional contex-
tual embeddings of predicted letters (representations of
stressed vowels) from the last hidden layer of (a) w2v2-
classic-tiny, (b) w2v2-hopfield-tiny.
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Table 3. Silhouette Coefficient scores for some types of
sound embeddings.

Letter representations w2v2-classic-tiny w2v2-hopfield-tiny
stressed vowels 0.0613 0.0615
unstressed vowels 0.0048 0.0050
sonorants (’D’, ’ë’, ’́i’, ’̀i’) 0.1469 0.1365
occlusive consonants 0.1059 0.1073
(’á’, ’̈i’, ’ä’, ’ó’, ’ã’, ’ê’)
affricates (’œ’, ’ö’) 0.2458 0.2763
fricative consonants 0.0842 0.0788
(’ô’, ’â’, ’ñ’, ’ç’, ’ø’, ’ú’, ’æ’, ’õ’)

(3) these time segments were used to collect the arrays of the correspond-
ing embeddings of sounds for every letter from the tiny model outputs;

(4) the arrays of embeddings were averaged.

A grapheme (letter) can correspond to several phonemes and their al-
lophones, and that is why we can use it as a label for our analysis. Forced
alignment of stressed vowels was performed with accents from the russian-
g2p tool [26]. The labels ’øa’, ’þ’, ’ÿ’ of stressed vowels represent other
phonemes in different positions in writing, so they were transformed to
’ý’, ’ó’, ’á’ respectively.

The UMAP projections [19] of stressed vowel embeddings are shown in
Figure 1. The long stressed vowel durations made it possible to show the
bounds of close, mid, open lines and front, central, back columns of the
real Russian vowel chart [18]; it can be seen most clearly in Figure 1(b).
The both models make the similar phonemes representations because the
stressed vowel sounds have the constant frequency sound ranges (two first
formants). However, the w2v2-classic-tiny representation clusters are
more scattered, some of them are tinier like ’û’ in comparison with Fig-
ure 1(b).

We compared the quality of sound representations with the Silhouette
Coefficient (Table 3) and we used the Wilcoxon signed-rank test with all
types of embeddings to find out the statistical significance of the advantage
of w2v2-hopfield-tiny’s performance over w2v2-classic-tiny. The test
statistic was 9.0 with a p-value of 0.84375, which means that the models
have obtained relatively equivalent images of speech representations. The
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w2v2-hopfield-tiny had worse Silhouette Coefficient scores than w2v2-
hopfield-tiny on some groups of consonants but it has better values on
all groups of vowels.

§5. Conclusion

We have confirmed the hypothesis that using the dense associative mem-
ory for self-supervised learning for speech recognition is more efficient
when pretraining tiny models with different architectures on a small au-
dio dataset. We have successfully changed the original Transformer-based
ASR model, and it achieved better error rates on test data than the classic
model. Nevertheless, the reason for this efficiency is not fully explained.
Our assumption about the better compactness of the speech representation
from w2v2-hopfield has been only partially confirmed (for phonetic classes
of longer duration, such as stressed vowels). Since we do not have a solid
foundation, we cannot deny that for larger neural networks the observed
picture may change.

Further work will focus on several goals. The first is pretraining wav2vec2-
hopfield on a larger amount of data to develop a competitive solution for
many speech recognition tasks. Another direction of study will be devoted
to modeling specific associative dependencies among the phonemes of many
languages to create a multilingual ASR model.
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