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Abstract. The interrelation between classicality/quantumness and
symmetry of states is discussed within the phase-space formulation
of finite-dimensional quantum systems. We derive representations
for classicality measures QN [H%] of states from the stratum of given
symmetry type [H%] for the Hilbert–Schmidt ensemble of qudits.
The expressions for measures are given in terms of the permanents
of matrices constructed from the vertices of the special Wigner func-
tion’s positivity polytope. The supposition about the partial order
of classicality indicators QN [H%] in accordance with the symmetry
type of stratum is formulated.

§1. Introduction

Not all things admit to be ordered, but some do. It is remarkable that
sometimes after their ordering is recognized, the other things, at first
glance independent from the former, reveal the corresponding order as
well, thereby showing their hidden interrelations with one another. In the
present note we would like to draw attention to a similar situation oc-
curring in statistical description of finite-dimensional quantum systems.
Namely, we argue that if quantum states are ordered with respect to their
“symmetry”, then they exhibit also the ordering with respect to their “clas-
sicality” in a way that can be formulated as:
“The larger symmetry quantum states possess, the more classical they are!”
Below, attempting to alter the above sonorous utterance into the rigor-
ous statement, we briefly recapitulate two issues – the equivalence and
partial order from unitary symmetry and classicality of states:

• Equivalence and partial order relations from the unitary
symmetry — the equivalence relation between quantum states of
an N -level system related to the unitary group SU(N) transforma-
tion. This equivalence results in the partition of a state space into

Key words and phrases: symmetry, partial order, Wigner quasiprobability distribu-
tion, measures of nonclassicality of states.
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a strata with the symmetry characterized by the partially ordered
isotropy subgroups Hα ⊆ SU(N);

• Classicality of states — the notion of classical states based on
the non-negativity of their quasiprobability distributions and the
idea of geometric indicators of classicality QN [Hα] of quantum
states defined as the geometric probability to find a classical state
on a stratum with symmetry type [Hα],

QN [Hα] =
Volume of classical states on stratum type [Hα]

Volume of all states on stratum type [Hα]
. (1)

Bearing in mind the above underlying features of partial ordering of iso-
tropy groups and the corresponding classification of strata in PN , we pose
the question about the order of the classicality measures (1). Based on our
computations of QN [Hα] for 3- and 4-dimensional systems we formulate
the following conjecture.

The hierarchy conjecture: Let us arrange the isotropy groups Hα in
ascending order, starting from the maximal torus TN up to the whole group
SU(N),

TN = Hmin < H1 < · · · < Hmax = SU(N) , (2)
then the set of classicality indicators QN [Hα] inherits the hierarchy,

QN [TN ] < QN [H1] < · · · < QN [SU(N)] = 1 . (3)

In the present note we describe two methods of analytical calculations
of measures (1) for an arbitrary N -level quantum system. For the readers
convenience, before describing these technical tools, in the next section
we start with the generic issues of the unitary symmetry representation in
closed quantum systems putting an accent on geometrical features of phase
space description of finite-dimensional quantum systems mainly following
our recent publications [1, 2].

§2. Symmetry and geometry

Here we briefly summarise how the unitary symmetry of the under-
ling Hilbert space CN of N -dimensional quantum system1 imposes certain
constraints on geometric and statistical properties of its state space (for
generic concepts see review [3] and references therein).

1For brevity, we will henceforth call N -level system “N -qudit”, or simply “qudit”, if
a specific dimension is irrelevant.
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The unitary symmetry, equivalence classes and partial order. The
state space PN of an N -qudit can be identified with the subspace of N×N
Hermitian, trace-one positive semidefinite matrices:

PN = { % ∈MN (C) | % = %† , % > 0 , tr (%) = 1 } . (4)

The U(N) automorphism of CN induces the adjoint SU(N) transforma-
tions of density matrices % ∈ PN :

% 7→ %′ = Adg% , g ∈ SU(N) (5)

and sets up the equivalence between points of the orbit O% = {Adg%, g ∈
SU(N)} through the state % ∈ PN . In a view of this equivalence the orbits
provide partition ofPN , but being not locally finite (every non-empty open
set intersects infinitely many orbits) it can not serve as decomposition
of PN . However, with this equivalence relation there is another kind of
partition named the “orbit type”, which is based on the notion of the
isotropy group (stabilizer) Hx ⊂ SU(N) of point x ∈ PN ,

Hx = { g ∈ SU(N) | Adgx = x } .

Two points x, y ∈ PN are declared to be of the same type if their stabilizers
are conjugate subgroups of SU(N). If the stabilizer Hx of some/any point
x in the orbit belongs to the conjugacy class of subgroup H in SU(N) , we
say that the type of the orbit is [H] and by P[Hα] denote the set of points
of PN , whose stabilizer is conjugated to the subgroup Hα:

P[Hα] :=
{
x ∈ PN | Hx is conjugate to Hα

}
. (6)

Here α is the set enumerating the conjugacy classes of the isotropy groups.
The isotropy group of density matrix is determined by the algebraic de-
generacy of its spectrum and therefore the number of conjugacy classes is
equal to the number P (N) of different representations of integer N as the
sum of positive natural numbers, α = {1, 2, . . . , p(N)}. The subsets P[Hα]

are termed as strata and can be partially ordered in accordance with the
partial order of the corresponding isotropy groups2. Hence we arrive at the
orbit type decomposition of state space:

PN =
⋃
α

P[Hα] . (7)

2If H and K are isotropy subgroups of G , we define a partial ordering on equivalence
classes by writing (H) < (K) if H is G-conjugate to a subgroup of K . This defines a
partial ordering on the set of the isotropy types of orbits.
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Each stratum in (7) can be described in terms of states with a fixed degen-
eracy as follows. Consider (N − 1)-dimensional simplex CN−1 of ordered
eigenvalues:

CN−1 := { r ∈ RN
∣∣∣∣ N∑
i=1

ri = 1 , 1 > r1 > r2 > . . . > rN−1 > rN > 0 } .

(8)
For our further aims it is enough to restrict ourselves by considering only
the positive density matrices of maximal rank, i.e. remove from the simplex
the subset {r1 = 1} ∪ {rN = 0} . This truncated simplex is a union of
eigenvalues of non-singular density matrices of the fixed degeneracy k =
(k1, k2, . . . , kn),

Pk = { % ∈ PN , ki ∈ Z+ | det(%−λ) =

n∏
i=1

(ri−λ)ki ,

n∑
i=1

ki = N } . (9)

Finally, taking into account an admissible transposition of eigenvalues, we
arrive at the decomposition of a given stratum:

P[Hα] =
⋃
ω∈Sn

Pω.k . (10)

In (10) by ω · k = {kω(1), kω(2), . . . , kω(n)} we denote the action of a
symmetric group Sn on a given partition of N into n natural numbers
k1, k2, . . . , kn .

Unitary invariance of probability distributions on strata. Let us
assume that the probability density function of the qudit ensemble is in-
variant under (5):

P (%) = P (g%g†) , ∀ g ∈ SU(N) . (11)

Due to the invariance property (11) one can get convinced that the prob-
ability density function on a given stratum P[Hα] reduces to the following
expressions:

P (%) =
∑
ω∈Sn

Pω·k(r1, . . . , rn) dr1 ∧ · · · ∧ drN ∧ dµU(N)/H , (12)

which shows that the measure factorizes into the factor corresponding to
the measure on subset Pk of the simplex CN−1 and the Haar measure on
the coset U(N)/H .



242 A. KHVEDELIDZE, A. TOROSYAN

The Hilbert-Schmidt ensemble of qudits on principal stratum.
One of the widely used unitary invariant probability density function orig-
inates from the Hilbert–Schmidt (HS) metric on PN :

gHS ∝ Tr (d%⊗ d%) . (13)

If a density matrix % belongs to the principal stratum with maximal torus
isotropy group, % ∈ P[T (N−1)], then the metric (13) defines the standard
Hilbert–Schmidt ensemble of random full-rank N -qudits with the well-
known joint probability distribution of distinct eigenvalues,

P (r1, . . . , rN ) ∝ δ(1−
N∑
j=1

rj)

N∏
j<k

(rj − rk)2 . (14)

The Hilbert-Schmidt ensemble of qudits on degenerate strata. If
the full-rank density matrix is degenerate with multiplicity of eigenvalues
{k1, k2, . . . , kn}, i.e., its isotropy group is H = U(k1)× · · · × U(kn) , then
the joint probability distribution of eigenvalues reads:

Pk1,...,ks(r1, . . . , rs) ∝ δ(1−
n∑
i=1

kiri)

1...n∏
i<j

(ri − rj)2kikj . (15)

§3. Classicality and geometry

In this section we formulate the notion of classicality of qudit states as
an existence of a corresponding proper probability distributions. Namely,
we relate the classicality with the Wigner function (WF) positivity and de-
scribe the underlying geometry of the state space. In our consideration we
use the (N −2)-parametric family WFs given by the dual pairing of a den-
sity matrix % and Stratonovich–Weyl (SW) matrix valued kernel ∆(z|ν)
on the phase space ΩN (cf. for details in [1, 2]):

W (ν)
% (z) = tr(%∆(z|ν)) , z ∈ ΩN . (16)

Classical states and WF positivity polytope. The “classical states”
form the subset PCl

N ⊂ PN of states whose Wigner function W
(ν)
% (z) in

a given representation with moduli parameters ν = {ν1, ν2, . . . , νN−2} is
non-negative everywhere over the phase space:

PCl
N = { % ∈ PN | W (ν)

% (z) > 0 , ∀z ∈ ΩN }. (17)

The “classical states on a fixed stratum” PHα are defined respectively as:

PCl
Hα = PCl

N ∩PHα . (18)
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In order to describe explicitly the classical states (17) and (18) one can
consider the following linear functional PN → R:

w[%] := inf
g∈U(N)

W
(ν)

g%g†
(z) (19)

and exploit the following observation.
Proposition I. The zero-level set of functional w[%],

HN : {% ∈ PN |w[%] = 0} , (20)

describes the supporting hyperplane

(r↓,π↑) = r1πN + r2πN−1 + · · ·+ rNπ1 = 0 (21)

of the convex set of classical states. The tuples r↓ = {r1, r2, . . . , rN} and
π↓ = {π1, π2, . . . , πN} in (21) denote the eigenvalues of the density ma-
trix % and the SW kernel ∆(z |ν) respectively, both arranged in decreasing
order. The SW kernel eigenvalues π satisfy the following equations:

N∑
i

πi = 1 ,

N∑
i

π2
i = N . (22)

Proposition II. The intersection of the hyperplane H with the simplex
(8) defines the Wigner function’s positivity polytope corresponding to the
canonical projection p : PN 7→ PN/SU(N) of the classical states.

The Propositions I and II follow from the results of [2], where the image
of classical subsets P

(Cl)
[Hα]

under the canonical quotient mapping where
introduced:

C∗N−1(Hα) = { p(x) | x ∈ PCl
Hα } . (23)

The set of classicality measures. A knowledge of the WF positivity
polytope allows one to extract information on the classicality/quantumness
of states. Based on the definition of region of classical states (17), we can
define sequence of classicality/quantumness indicators evaluating relative
weight of the classical states. Namely one can consider the collection of dif-
ferent geometric probabilities of finding a classical state in a given unitary
invariant statistical ensemble (12), among them [4, 5]:

(1) The global indicator of classicality of ensemble,

QN =

∫
PCl
N

dµ∫
PN

dµ
. (24)
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(2) The indicator of classicality of a stratum ensemble,

QN [Hα] =

∫
PCl

[Hα]

dµ∫
P[Hα]

dµ
. (25)

Here it is in order to make a few comments, in (24)-(25) the measure dµ
is assumed to be the unitary invariant of the form (12). In the subse-
quent section we will specify the measure corresponding to the ensemble
of Hilbert-Schmidt qudits (13) and (15) for N = 2, 3, 4, i.e. qubit, qutrit,
and quatrit respectively. Note that we expect that QN = QN [H0], since
the principal stratum with H0 = U(1)N differs from the whole space state
PN by a measure-zero set only.

§4. Computing the indicators

According to (10), the stratum P[Hα] consists from subsets of matrices
with a certain degeneracy type. Due to the unitary invariance of probabil-
ity distribution functions (11), any above introduced classicality indicator
depends only on the joint probability distribution of eigenvalues of the
density matrix and thus can be rewritten as:

QN [Hα] =

∑
ω∈Ss

∫
C∗N−1(Hα)

Pkω(1),...,kω(s)(r1, . . . , rs) dr1 ∧ · · · ∧ drs∑
ω∈Ss

∫
CN−1(Hα)

Pkω(1),...,kω(s)(r1, . . . , rs) dr1 ∧ · · · ∧ drs
. (26)

In (26) the integral in the denominator represents the volume of the orbit
space of stratum P[Hα] . The integration in the nominator of (26) is over
the WF positivity polytope C∗N−1(Hα):

C∗N−1(Hα) =
{
π∈spec (∆(ΩN )) | (r↓,π↑) > 0, ∀ r∈CN−1(Hα)

}
. (27)

Hence, for the Hilbert-Schmidt qudits with probability distribution func-
tions (13) and (15) the evaluation of the classicality indicators reduces to
the problem of integration of polynomials over the convex polytopes.

Simplicial decomposition. It is known that computation of the volume
of polytopes of varying dimension is #P-hard and that even approximating
the volume is hard [6]. Currently, the most powerful method for an effi-
cient approximation of integrals in (26) over polytopes remains the Monte
Carlo-type algorithms. However, often when the polytopes are functions of
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parameters (as in our case, when its structure depends on representation of
SW kernel), an exact analytical calculations of the volume is requested, the
situation becomes extremely complicated. In this case the computational
methods stem from the observation that a convex polytope admits decom-
position into a union of simplices, satisfying certain properties. Based on
this idea of triangulation, the polytope volume might be computed either
summing up volumes of simplices or using the signed decomposition meth-
ods if a given polytope is decomposed into signed simplices such that the
signed sum of their volumes gives the volume of the polytope. Leaving aside
the question of an efficient simplicial decomposition, below we describe two
methods of evaluation of integrals from homogeneous polynomials over the
simplex.

The 1st Lasserre–Avrachenkov (LA) method of integration over
simplex. We are interested in calculation of the integral of the polynomial
p(x1, x2, . . . , xn) over the n-simplex Cn ∈ Rn with vertices v0,v1, . . . ,vn

V (p; Cn) =

∫
Cn

p(x)dx (28)

with respect to the n-dimensional Lebesgue measure. With this aim we
recall an elegant analytical method reducing calculation of integrals from
homogeneous polynomials to the integration of the corresponding polar-
ization form of those polynomials [7]. Briefly it can be stated as follows.
Let p(x) be q-homogeneous polynomial,

p : Rn → R , p(tx) = tqp(x) , ∀ t ∈ R and x ∈ Rn , (29)

and letHp(X1,X2, . . . ,Xq) be the polarization of p, the mapping (Rn)q 7→
R , which is symmetric q-linear form such that3

Hp(x,x, . . . ,x) = p(x). (31)

According to the Lasserre-Avrachenkov theorem [7], the integration in (28)
results in summation of the values of polarization Hp(X1,X2, . . . ,Xq)

3The well-known formula,

Hp(X1,X2, . . . ,Xq) =
1

q!

∂

∂t1

∂

∂t2
· · ·

∂

∂tq
p(t1X1 + t2X2 + · · ·+ tqXq)

∣∣∣∣
t=0

, (30)

gives a compact representation for the polarization.
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evaluated at the vertices v0,v1, . . . ,vn of a simplex:

V (p; Cn)=
vol(Cn)(
n+q
n

) ∑
∑n

0 ai=q

Hp(

a0︷ ︸︸ ︷
v0, . . . ,v0,

a1︷ ︸︸ ︷
v1, . . . ,v1, . . . ,

an︷ ︸︸ ︷
vn, . . . ,vn) .

(32)

The 2nd Lasserre method of integration over simplex. Another
important for us result has been noted by J. Lassere [8]. He proved that
integrating a polynomial of degree q on an arbitrary simplex (with respect
to Lebesgue measure) reduces to evaluating q-homogeneous polynomials
of degree j = 1, 2, . . . , q each at a unique point sj of the simplex. Bear-
ing in mind that the integration over an arbitrary simplex can be reduced
to the integration over the canonical simplex4 by a certain affine trans-
formation, we give the formulation of the method for the canonical sim-
plex case. Namely, let the polynomial p(x) of degree q be rewritten as

p(x) =
q∑
j=0

pj(x) , where pj(x) =
∑
|α|=j

pαx
α is a homogeneous polyno-

mial of degree j. Then according to [8] the integration over the canonical
n-dimensional simplex Kn gives∫

Kn

p(y)dy = vol(K)

p̂0 +

q∑
j=1

p̂j(sj)

 , (33)

where sj = 1
j
√

(n+1)...(n+j)
(1, 1, . . . , 1) and p̂(x) stands for the associated

“Bombieri” polynomial:

p̂(x) =
∑
α∈Nn

pαα1! . . . αn!xα , α = (α1, α2, . . . , αn) . (34)

Note that expression (33) differs from the well-known cubature formulae.
In (33) instead of evaluating a single polynomial at several points, as it
takes place in the case of cubature formulae, one evaluates polynomials of
degree j at a single point only.

Applying methods to the Hilbert–Schmidt measure. Both the abo-
ve mentioned methods of integration can be used analyzing the classicality
indicators QN [Hα] of the Hilbert–Schmidt ensembles of qudits. Here we
outline the general scheme of calculation while in the next section consid-
ering low-dimensional systems N = 2, 3, 4, some principal technical details

4The canonical n-simplex Kn ⊂ Rn is defined as Kn={x ∈ Rn
+ |x1+x2+. . .+xn61}.
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will be elucidated. As a first step, we decompose the WF positivity poly-
tope into the sum of simplices, i.e.,

QN [TN ] =
∑

simplices

IC(π) , (35)

where the typical element of the sum is integral over a certan n-simplex Cn
given as the convex hull of n vertices Cn(π) := conv(v0, v1(π), . . . , vn(π)):

IC(π) ∝
∫

Cn(π)

dr δ(1−
n+1∑
i

ri)

n+1∏
i<j

(ri − rj)2 . (36)

Note that in the case we are interested in, the vertices vi(π) are rational
functions of the SW kernel eigenvalues. Their exact form follows from
the separating hyperplane equation (21). The integrand in (36) due to δ-
function factor is not a homogeneous polynomial and thus the LA formula
(32) is not applicable directly. But, using the map from the canonical
(standard) simplex Kn to the simplex Cn :

Kn 7→ Cn(π) : r = v0 +

n∑
α=1

(vα(π)− v0)uα , (37)

the integral reduces to the integral over the canonical n-simplex

IC(π) ∝ volE(Cn(π))

∫
Kn

duµ(u) , (38)

where volE(Cn(π)) denotes the Euclidean volume of the simplex Cn(π)5

and µ(u) is homogeneous polynomial of order q = n(n− 1):

µ(u) =
∏
i<j

(
n∑
α=1

(viα(π)− vjα(π)uα)

)2

. (39)

The polynomial (39) can be rewritten as

µ(u) = (−1)n
q∏
s=1

(αs, l(u)) , (40)

5The Euclidean volume of n-simplex in Rn in terms of (n+ 1)-vertices reads:

volE(Cn) :=
1

n!

∣∣∣∣det(v0 v1 . . . vn

1 1 . . . 1

) ∣∣∣∣ .
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where

l(u)i =

n∑
α=1

viαuα , (41)

and αs = {ei − ej , i, j = 1, 2, . . . n} are n-vectors constructed out of
the standard unit n-dimensional vectors ei. Linearity of l(u)i implies q-
linearity of the associated to the polynomial µ(u) polarization form H,

Hµ(X1,X2, . . . ,Xq) :=
1

q!

∑
σ∈Sq

q∏
s=1

(αs, l(Xσ(s))) . (42)

The expression (42) shows that the polarization form corresponding to the
Hilbert–Schmidt measure is given by the normalized permanent of q × q
matrix,

Hp(X1X2, . . . ,Xq) =
1

q!
perm||(αi, l(Xj)|| . (43)

Hence, using the LA formula (32) and noting that l(ej) = vj , we arrive at

IC(π) ∝ κ(π)

q!

∑
n∑
i=1

ai=q

perm ||M(a1, a2, . . . , an)| | , (44)

where
κ(π) =

volE(Cn(π))volE(Kn)(
n+q
q

) , (45)

and q × q matrices M :

Mst(a1, a2, . . . , an) := (αs, V t) , s, t = 1, 2, . . . , q , (46)

constructed out of tuples V = {
a0︷ ︸︸ ︷

v0, . . . ,v0,

a1︷ ︸︸ ︷
v1, . . . ,v1, . . . ,

an︷ ︸︸ ︷
vn, . . . ,vn} for

all admissible partitions of degree of homogeneity
∑
ai = q in integers.

We finalize this paragraph noting that the above scheme of calculations
is applicable to the evaluation of the classicality indicators Q[Hα] for the
lower-dimensional strata as well.

4.1. Qubit. The ordered eigenvalue simplex of a qubit represents the line
segment in R2:

C1 : {r1 + r2 = 1, 1 > r1 > r2 > 0} .
This interval is convex hull of points v0 = {1/2, 1/2} and v1 = {1, 0} .
Among qubit states the maximally mixed state at vertex v0 has maximal
symmetry, the SU(2) isotropy group, while all the other states % ∈ P2
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have the torus T2 ∈ SU(2) as their isotropy group. Noting that for the
maximally mixed state %∗ = 1/2 I2 the Wigner function is positive, we can
formally assign the value one to the classicality indicator, Q2[SU(2)] = 1 .
The indicator Q[T2] for the principle stratum can be calculated along the
methods described in previous section noting that the spectrum of SW
kernel is uniquely determined from (22):

π1 =
1 +
√

3

2
, π2 =

1−
√

3

2
, (47)

and the supporting hyperplane π1r2 + π2r1 = 0 intersects the segment C1

at v1(π) = { 12 + 1
2
√
3
, 12−

1
2
√
3
} . The integration over the intervals is trivial

and as a result the qubit global indicator of classicality is

Q[T2] =
1

3
√

3
. (48)

4.2. Qutrit.

Unitary strata of qutrit state space. The ordered eigenvalue simplex
of qutrit is triangle in R3 :

C2 : {r1 + r2 + r3 = 1, 1 > r1 > r2 > r3 > 0} .
It is convex hull of three points v0 = {1/3, 1/3, 1/3} , v1 = {1/2, 1/2, 0}
and v2 ={1, 0, 0} . The possible multiplicity of eigenvalues are k=(1, 1, 1),
k = (1, 2) and k = (2, 1) , and there are three corresponding strata of P3:

• the 8-dimensional principal stratum with isotropy class [T3] con-
sisting of matrices with a simple spectrum, 1 > r1 6= r2 6= r3 > 0,

P[T3] : {% ∈ P3 | spec(%) := (r1, r2, r3) , 1 > r1 > r2 > r3 > 0};
• the 5-dimensional degenerate stratum with isotropy class

[S(U(2)×U(1))] is the locus of density matrices with the degen-
eracies k = (2, 1) and k = (1, 2) ,

P[S(U(2)×U(1))] : P1,2

⋃
P2,1 ,

with components

P1,2 : {% ∈ P3 | spec(%) := (r1, r2, r3) , 1 > r1 6= r2 = r3 > 0},
P2,1 : {% ∈ P3 | spec(%) := (r1, r2, r3) , 1 > r1 = r2 6= r3 > 0};
• the 0-dimensional stratum, P[SU(3)], the mixed state with the

triple degeneracy k = (3) , r1 = r2 = r3 = 1/3 .
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Figure 1. Triangle 4AOB as the ordered 2-simplex of
qutrit eigenvalues, and the hatched triangle 4COD cor-
responds to the classical states.

Global indicator Q[T3]. The regular stratum P[T 3] consists of density

matrices with a simple spectrum: 1 > r1 > r2 > r3 > 0 ,
3∑
i=1

ri = 1. The

plane separating classical and quantum states of qutrits,

H3 : π1r3 + π2r2 + π3r1 = 0 (49)

intersects the partially ordered simplex of qutrit eigenvalues by the straight
line passing through the points

C =
1

3π3 − 1
(π3 − 1, π3, π3) , D =

1

3π1 − 1
(π1, π1, π1 − 1) . (50)

Hence, the eigenvalues of qutrit classical states belong to WF positivity
triangle 4COD with the vertices (50) and the vertex of maximally mixed
state O = ( 1

3 ,
1
3 ,

1
3 ) with triple degeneracy. Note that

min
π
|OD| = 1

2
√

6
at π =

1

3
(5,−1,−1),

max
π
|OD| = 1√

6
at π = (1, 1,−1),

min
π
|OC| = 1

2
√

6
at π =

1

3
(5,−1,−1),

max
π
|OC| = 1

2
√

2
at π = (1, 1,−1),
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and the line H3 is tangent to the disc of the “absolutely” classical states:
r 6 1

4 . Here we use the relation r21 + r22 + r23 = 1/3 + 2/3r2 between
eigenvalues of a qutrit and its Bloch radius r.

Following the suggested generic scheme, the evaluation of volume of
classical states of qutrit reduces to the integration over the WF positivity
triangle4COD. The integrand of equivalent canonicalK2-simplex is given
by a sextic homogeneous polynomial of the following form:

I(π) ∝ 1

(3π1 − 1)3(1− 3π3)3

∫
K2

dudv u2v2
(

u

3π1 − 1
+

v

1− 3π3

)2

. (51)

Based on the 2nd Lasserre method (33), we evaluate the associated Bombie-
ri polynomial at point s6 = ( 2

8! )
1/6 (1, 1) and arrive at the following exact

expression for the indicator Q3 = I(π)/I(1, 0, 0):

Q[T 3] =
1

(3π1 − 1)3(1− 3π3)3

×
[

4

(3π1 − 1)2
+

4

(1− 3π3)2
+

6

(3π1 − 1)(1− 3π3)

]
(52)

for all possible SW kernels of qutrit states from the principle stratum.

Q3-indicator of qutrits from degenerate stratum. The stratum
P[S(U(2)×U(1))] has two pieces, associated to density matrices with the de-
generate eigenvalues r1 = r2 6= r3 and r1 6= r2 = r3 , respectively. Hence,
the Q3-indicator for the degenerate stratum of a qutrit reads:

Q[S(U(2)×U(1))] =
volHS(PCl

1,2

⋃
PCl

2,1)

volHS (P1,2

⋃
P2,1)

. (53)

Exploiting the suggested techniques of integration for (53), we obtain:

Q[S(U(2)×U(1))] =
25

1 + 25

(
1

(3π1 − 1)5
+

1

(1− 3π3)5

)
. (54)

Order relations between indicators. Now we are in position to com-
pare the classicality indicators for different strata. Introducing the ζ-angle
parameterization (ζ ∈ [0, π/3]) for the SW kernel eigenvalues

π1 =
1

3
+

2√
3

sin ζ+
2

3
cos ζ , π2 =

1

3
− 2√

3
sin ζ+

2

3
cos ζ , π3 =

1

3
1−4

3
cos ζ ,

(55)
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one can easily verify the inequalities for the classicality indicators of qutrit:

0 < Q[T3] < Q[S(U(2)×U(1))] < 1 . (56)

The Fig. 2 demonstrates how the partial order of the corresponding isotropy
groups [T3] < [S(U(2) × U(1))] is reproduced at the level of their classi-
cality indicators.

Figure 2. Comparing indicators of qutrit regular (solid
curve) and degenerate strata (dashed curve).

4.3. Quatrit.

Q4-indicator for quatrit regular stratum. The orbit space of quatrit
represents tetrahedron and the stratum P[T4] is given by the density ma-

trices with the regular spectrum, 1 > r1 > r2 > r3 > r4 > 0,
4∑
i=1

ri = 1.

In order to describe the subset of classical states of quatrit, we analyse
intersections of 3-simplex with the supporting plane

H4 : {r∈C3,π∈P3 |π1 =(π1−π4)r1+(π1−π3)r2+(π1−π2)r3}, (57)

where

P3 :

3∑
i=1

πi = 1 ,

3∑
i=1

π2
i = 4 . (58)

The possible cross-sections of the plane (57) with the tetrahedron are either
a triangular, or a quadrilateral depending on the moduli space P3. Indeed,
one can see that the maximally mixed state r∗ = (1/4, 1/4, 1/4, 1/4) has
positive WF and the rays emanating from r∗ along the edges of tetrahedron
intersect the plane H4 at three points. Then there are two possibilities and
hence, only two types of admissible cross-sections:
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(A) triangles, if the intersection points belong to edges of the tetrahe-
dron emanating from vertex of maximally mixed states;

(B) quadrilaterals, if an intersection point lies outside the edge of the
tetrahedron.

An explicit form of intersection points, taking into account the eigen-
values order π1 > π2 > π3 > π4 , are:

(1) Intersection with edge OC at point with symmetry S(U(3)×U(1)):

P
OC

=
1

4π1 − 1


π1
π1
π1

π1 − 1

 , if π1 > 1; (59)

(2) There is no intersection with the edge AB. The plane H4 intersects
the ray passing through the edge AB:

P
AB

=
1

π3 − π4


π3
−π4

0
0

 ; (60)

and this point belongs to the edge AB if

π3 > π4 &π4 < 0 &π3 + π4 > 0 &π3 > 0 ,

but these conditions never hold.
(3) Intersection with the edge AC at point with symmetry U(1) ×

SU(2)× U(1):

P
AC

=
1

1− π1 − 3π4


1− (π1 + π4)
−π4
−π4

0

 , if π1 6 1 &π4 6 0; (61)

(4) Intersection with edge AO at point with symmetry S(U(1)×U(3)):

P
OA

=
1

1− 4π4


1− π4
−π4
−π4
−π4

 , if π4 6 0; (62)
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(5) Intersection with the edge OB at point with symmetry S(U(2)×
U(2)):

P
OB

=
1

2((π1+π2)− (π3+π4))


(π1+π2)
(π1+π2)
−(π3+π4)
−(π3+π4)

 , if π3+π460; (63)

(6) Intersection with the edge BC at point S(U(2)× U(1)× U(1)):

P
BC

=
1

π1+3π2 − 1


π2
π2

(π1 + π2)− 1
0

 , if
1

2
6π261 &π26π161. (64)

As we will see below, theA-type configurations have either the maximal
symmetry groups, SU(4), or sub-maximal, S(U(1)×U(3)), S(U(3)×U(1)
and S(U(2)×U(2)) respectively, while for the B-type configurations, when
the cross-section of separating plane with the simplex of quatrit eigenval-
ues represents a quadrilateral, the isotropy groups are S(U(1) × U(2) ×
U(1)), S(U(2)× U(1)2).

WF positivity polytope of A-type. For this class of SW kernels π1 > 1
the cross-section WF positivity polytope is a 3-simplex (see Fig. 3). Follow-
ing the suggested method, in order to compute the H-S volume of classical
states, we map the WF positivity simplex – the conv (O,POA, POB, POC)
– to a canonical 3-simplex K3. As a result, we arrive at calculation of the
following integral:

I(π) ∝ 1

32(4π1 − 1)3(1− 4π4)3(π1 + π2 − π3 − π4)3

×
∫
K3

du dv dt u2v2t2
(

u

4π1 − 1
+

t

1− 4π4
+

v

2 (π1 + π2 − π3 − π4)

)2

×
(

u

4π1−1
+

v

2(π1+π2−π3−π4)

)2(
t

1−4π4
+

v

2(π1+π2−π3−π4)

)2

.

(65)

Evaluating then the associated Bombieri polynomial at

s12 =

(
6

15!

)1/12

(1, 1, 1)
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Figure 3. An ordered quatrit 3-simplex with the ver-
tices, O =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
,C =

(
1
3 ,

1
3 ,

1
3 , 0
)
,B =

(
1
2 ,

1
2 , 0, 0

)
,

and A = (1, 0, 0, 0) and WF positivity simplex
conv (O,POA, POB, POC) .

and using the Lasserre formula (33), we arrive at the following expression
for (65):

I(π) ∝ 1

(4π1 − 1)3(1− 4π4)3(π1 + π2 − π3 − π4)3

×

[
480

(4π1 − 1) 2 (1− 4π4) 4
+

480

(4π1 − 1) 4 (1− 4π4) 2
+

35

(π1 + π2 − π3 − π4) 6

+
105

(4π1 − 1) (π1 + π2 − π3 − π4) 5
+

105

(1− 4π4) (π1 + π2 − π3 − π4) 5

+
180

(4π1 − 1) 2 (π1 + π2 − π3 − π4) 4
+

180

(1− 4π4) 2 (π1 + π2 − π3 − π4) 4

+
200

(4π1 − 1) 3 (π1 + π2 − π3 − π4) 3

+
540

(4π1 − 1) (1− 4π4) 2 (π1 + π2 − π3 − π4) 3

+
540

(4π1 − 1) 2 (1− 4π4) (π1 + π2 − π3 − π4) 3

+
120

(4π1 − 1) 4 (π1 + π2 − π3 − π4) 2
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+
120

(1− 4π4) 4 (π1 + π2 − π3 − π4) 2

+
912

(4π1 − 1) 2 (1− 4π4) 2 (π1 + π2 − π3 − π4) 2

+
360

(4π1 − 1) (1− 4π4) 4 (π1 + π2 − π3 − π4)

+
960

(4π1 − 1) 2 (1− 4π4) 3 (π1 + π2 − π3 − π4)

+
960

(4π1 − 1) 3 (1− 4π4) 2 (π1 + π2 − π3 − π4)

+
800

(4π1 − 1) 3 (1− 4π4) 3

+
600

(4π1 − 1) (π1 + π2 − π3 − π4) 2 (1− 4π4) 3

+
200

(π1 + π2 − π3 − π4) 3 (1− 4π4) 3

+
315

(4π1 − 1) (π1 + π2 − π3 − π4) 4 (1− 4π4)

+
600

(4π1 − 1) 3 (π1 + π2 − π3 − π4) 2 (1− 4π4)

+
360

(4π1 − 1) 4 (π1 + π2 − π3 − π4) (1− 4π4)

]
. (66)

WF positivity polytope of B-type. For the class of SW kernels with
1
4 6 π1 < 1 the cross-section of the separating hyperplane of quatrit with
the ordered 3-simplex of eigenvalues represents the quadrilateral which is
the base of the WF positivity cone with vertex at maximally mixed state
O depicted in Fig. 4. For computation of the H-S volume of WF positivity
polytope one can use either its decomposition into simplicies or signed
simplices. An example illustrating the signed simplices decomposition is
shown in Fig. 4b,

Vol
[
OCP

AC
P
BC
P
OB
P
OA

]
= Vol

[
OP

OC
P
OA
P
OB

]
−Vol

[
CP

OC
P
AC
P
BC

]
. (67)
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(a) (b)

Figure 4. The WF positivity 3-polytope formed by a
cross-section (P

AC
P
BC
P
OB
P
OA

) of the quatrit simplex
and the maximally mixed state .

Using the LA method of computation, we obtain the representation for
the classicality indicators in the form of the piecewise rational functions
of the SW kernels eigenvalues. Due to the combinatorial complexity, the
corresponding expressions are too cumbersome to be written explicitly in
the text. However, being interested in comparing the classicality indicators
Q4 for different strata in relations to their symmetry type, we can effec-
tively use these expressions. In the next section we briefly summarize the
relevant observations.

§5. Summary

Our calculations reveal interrelation between hierarchy of quantum sta-
tes symmetry and their classicality/quantumness which in our opinion de-
serve a certain attention.

We found that the classicality indicators of qutrit and quatrit for the
regular stratum and degenerate strata respect the order of the correspond-
ing isotropy groups in agreement with their Hasse diagram for partially
ordered subgroups of unitary groups (Fig. 5).

The curves for qutrit Q3−indicators in Fig. 2 and the surfaces in Fig.
6 describing quatrit Q4-indicators for all possible strata as function of a
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quatrit moduli parameters ψ1 and ψ2
6 illustrate the mentioned hierarchical

structure of classicality in relation with the symmetry properties of states.
Making the corresponding slices of Q4-indicators for the fixed values

of the moduli parameter ψ2 = {0, π/6, π/3} in Fig. 7, we distinctly see
that for the groups at the same “level” in Hasse diagram the values of
Q-indicators are of the same order (even equal for certain WF representa-
tions), otherwise their magnitudes significantly vary.

N = 3 N = 4 N = 5

Figure 5. Hasse diagram for SU(N) group, N = 3, 4, 5.
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Figure 6. Q4-indicators for strata of different isotropy
types: Q[S(U(3)×U(1))] (red surface); Q[U(1)×SU(2)×U(1)]

(blue surface); Q[SU(2)×U(1)2] (magenta surface); and reg-
ular Q[T 4]-indicator (gray surface).

ψ2 = 0 ψ2 = π/6 ψ2 = π/3

Figure 7. A quatrit classicality indicators for different
strata as a function of WF moduli parameter ψ1 for the
fixed values ψ2 = {0, π6 ,

π
3 }.
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