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Abstract. Given two equally long, uniformly random binary strings,
the expected length of their longest common subsequence (LCS)
is asymptotically proportional to the strings’ length. Finding the
proportionality coefficient γ, i.e., the limit of the normalised LCS
length for two random binary strings of length n → ∞, is a nat-
ural problem, first posed by Chvátal and Sankoff in 1975, and as
yet unresolved. This problem has relevance to diverse fields rang-
ing from combinatorics and algorithm analysis to coding theory and
computational biology. In a previous paper [47], we used methods of
statistical mechanics, as well as some existing results on the combi-
natorial structure of LCS, to link constant γ to the parameters of a
certain stochastic particle process. Here, we complement this anal-
ysis by presenting a formulation of the problem in the language of
symbolic dynamics and cellular automata, and reporting some pre-
liminary results of a computational experiment aimed at improving
the existing numerical estimates for γ. We also point out an error
in the previous paper [47], which invalidates some of its claims on
the properties of γ.

§1. Introduction

The longest common subsequence (LCS) for a pair of strings a, b is the
longest string that is a (not necessarily consecutive) subsequence of both a
and b. Given a pair of strings as input, the LCS problem asks for the length
of their LCS (finding the actual characters of the LCS is not required). The
LCS problem is a fundamental problem for both theoretical and applied
computer science, and for computational molecular biology; it is also a
popular programming exercise.

Let strings a, b be of length n, uniformly random over the binary alpha-
bet. Chvátal and Sankoff [14] (see also [53, Chapter 1]) have shown that
the expected LCS length of a, b is asymptotically proportional to n. The

Key words and phrases: random strings, longest common subsequence, the Chvátal–
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Chvátal–Sankoff problem asks for the proportionality coefficient γ, i.e., the
limit of the normalised expected LCS length ELn

n as n → ∞, where the
random variable Ln is defined as the LCS length for strings of length n.
Alexander [2] has shown that 0 6 γ − ELn

n 6 O
((

logn
n

)1/2).
The Chvátal–Sankoff problem has relevance to diverse fields ranging

from combinatorics and algorithm analysis to coding theory (see e.g. Bukh
et al. [9]) and computational biology (see e.g. Pevzner and Waterman [37]).
For such a natural and simply posed problem, it seems to be surprisingly
elusive: neither an exact value nor any closed-form expression for γ are
known, and the existing lower and upper numerical bounds on γ are wide
apart.

Organisation of this paper. This paper is a follow-up to [47]. For com-
pleteness, we restate the related work, main definitions and analysis in
Sections 2–7 of this paper. In Sections 8–9, we complement that analysis
by presenting a formulation of the problem in the language of symbolic
dynamics and cellular automata, and reporting some preliminary results
of a computational experiment aimed at improving the existing numeri-
cal estimates for γ. In Section 10, we point out an error in [47], which
invalidates some of its claims on the properties of γ.

§2. Related work

LCS combinatorics. An important combinatorial feature of the LCS
problem, also relevant to its computational aspect, is the problem’s close
connection with transposition networks and the Hecke monoid (also called
the seaweed monoid or the sticky braid monoid). This connection has been
explored over decades from different angles and using greatly varying ter-
minology. In the rest of this paper, we will describe this connection in more
detail, and will use it as the first step on our path to the Chvátal–Sankoff
problem.

While the computational aspect of the LCS problem is outside the
scope of this paper, it should be mentioned that the problem’s computa-
tional complexity, along with that of the closely related edit distance and
sequence alignment problems, has been thoroughly studied and is well-
understood. Seminal work on LCS algorithms and lower bounds includes
e.g. [1, 7, 33,57].

Random LCS on permutation strings. Apart from binary strings, a
question analogous to the Chvátal–Sankoff problem can be asked about
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pairs of uniformly random permutations of the alphabet {1, . . . , n}. The
LCS problem on such permutation strings is equivalent to finding the
longest increasing subsequence (LIS) of a single permutation of length
n. The LCS (respectively, LIS) length in this case turns out to be asymp-
totically proportional to

√
n. The proportionality constant was found to

be exactly 2 in the classical works of Vershik and Kerov [56] and Logan
and Shepp [29] (see also [40]), as part of a solution for the more general
problem asking for the limit shape of a random Young diagram sampled
from the Plancherel distribution.

Bounds and estimates for γ. Chvátal and Sankoff [14] gave the first
analysis of the problem, and proved the existence of the limit γ. Properties
of the convergence of the normalised LCS length to this limit were studied
since then by numerous researchers. Table 1 lists some results on specific
lower and upper bounds, as well as experimental numerical estimates of γ.

Reference γ > γ ≈ γ <

Chvátal and Sankoff [14] 0.697844 0.8082 0.866595

Deken [19] 0.7615 0.8575

Steele [46] (conjecture attr. to Arratia) γ
?
=2(
√
2−1)=0.8284 . . . (∗)

Danč́ik [17]; Paterson and Danč́ik [35] 0.77391 0.812 0.83763

Baeza-Yates et al. [4] 0.8118
Boutet de Monvel [18] 0.812282
Bundshuh [10] 0.812653

Lueker [27] 0.788071 0.826280, refutes (∗)
Bukh and Cox [8] 0.8122

this work 0.81169 . . .

0.81175 . . .
0.81182 . . .
0.81187 . . .
. . .→ γ

Table 1. Bounds and estimates on γ

The best currently known analytic bounds on γ are due to Lueker [27].
Despite the ingenious methods of obtaining these bounds and numerous
related results, the gap between the upper and the lower bounds remains
quite wide: in particular, not a single digit of γ after decimal point is known
exactly.
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Stochastic evolution models. Due to the combinatorial properties of
the LCS problem that will be presented in the next section, the Chvátal–
Sankoff problem turns out to be closely related to the theory of stochastic
evolution models, which is a vast and actively developing field of study.
Particularly relevant areas within this field include particle processes, ran-
dom Young diagrams, stochastic cellular automata. Asymptotic properties
of such models are studied with the help of partial differential equations
(PDEs), which describe a model’s evolution at the macroscopic level.

In the rest of this paper, we will describe these connections in more
detail, and will build upon them to obtain a restatement of the problem in
the language of symbolic dynamics, as well as a new type of computational
experiment, aimed at improving the existing numerical estimates for γ.

§3. Combinatorics of the LCS problem

LCS grid. Let strings a, b be of length m, n respectively. The LCS grid
defined by a, b is a directed graph on an (m+ 1)× (n+ 1) grid of nodes;
we visualise the nodes as being indexed top-to-bottom and left-to-right.
Every pair of horizontally or vertically adjacent nodes are connected by an
edge, directed rightwards (respectively, downwards). A pair of diagonally
adjacent nodes (i, j), (i+ 1, j+ 1), 0 6 i < m, 0 6 j < n, are connected by
an edge whenever ai = bj (the two characters match); this edge is directed
towards below-right. The LCS grid can also be viewed as an m×n grid of
cells, each formed by a quadruple of adjacent nodes and their four connect-
ing horizontal and vertical edges. The cell is called match cell, if the two
corresponding characters match (and therefore the cell contains a diagonal
edge), otherwise a mismatch cell. The LCS problem is equivalent to asking
for the length of a path in the LCS grid from the top-left node (0, 0) to the
bottom-right node (m,n), that maximises the number of diagonal edges
along the path.

Example 1. Figure 1 (left) shows the LCS grid for a pair of binary strings.
The horizontal and vertical edges are shown in light-blue, and the diagonal
edges in solid red. The left-to-right, top-to-bottom direction of the edges
is left implicit.

Sticky braids. The combinatorial structure of the LCS problem is de-
scribed algebraically by the Hecke monoid (also known as the sticky braid
monoid), which is defined similarly to the classical braid group, but with
element inversion replaced by the idempotence relation on the monoid’s
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Figure 1. LCS grid with a sticky braid (left), transposi-
tion network (centre), particle evolution model (right) for
strings a = “IOOO”, b = “OIOO”.

generators. Given an LCS grid, strands of the corresponding sticky braid
are formed by paths in the dual graph, i.e., the plane graph whose nodes
are the faces of the LCS grid, and the edges go across the edges of the
LCS grid. Multiplication of sticky braids in the Hecke monoid (also known
as Demazure multiplication) describes precisely how LCS lengths of input
strings and their substrings behave under string concatenation.

Example 2. Figure 1 (left) shows a sticky braid embedded into the LCS
grid of the previous example. The braid’s strands are shown in darker blue
and dotted red.

The connection outlined above between the LCS problem and the Hecke
monoid has been rediscovered many times in different forms. In particular,
it underlies implicitly the algorithms for various string comparison prob-
lems by Schmidt [45], Crochemore et al. [15,16], Alves et al. [3], Hyyrö [23],
and was made explicit by Tiskin [48, 51, 54]. More recently, new algorith-
mic applications of this connection were found by Sakai [42, 43], Tiskin
[49,50,52,55], Gawrychowski et al. [21], Hermelin et al. [22], Matarazzo et
al. [34], Charalampopoulos et al. [12, 13].

Transposition networks. Another convenient tool for exposing the com-
binatorial structure of the LCS problem comes in the form of transposition
networks. These are a special case of comparison networks, which are a
classical type of computational circuits studied by Batcher [5], Knuth [24]
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and many others. In a comparison network, input values travel on an ar-
ray of parallel wires; any prescribed pair of values can be sorted by a
comparator connecting their respective wires. In a transposition network,
an additional restriction is imposed that only adjacent pairs of wires can
be connected by a comparator.

Given a pair of strings a, b of lengths m, n respectively, their LCS grid
can be overlayed by a transposition network on m+n wires, extending di-
agonally from above-left to below-right and passing through the midpoints
of the grid’s edges. These intersection points of the network’s wires and the
grid’s edges will be called sites; we will distinguish horizontal and vertical
edge sites. A wire passes through an alternating sequence of horizontal and
vertical edge sites; the value of a given site is the value carried through
it by the wire. A cell is crossed by two wires: one connecting its left and
bottom boundary edges, the other its top and right boundary edges. The
two sites at the cell’s left and top boundary edges are its entry sites, and
the two sites at its right and bottom boundary edges are its exit sites. The
network’s comparators are specified as follows: a mismatch cell always con-
tains a comparator between the two wires that cross it, while a match cell
never contains a comparator. A cell can therefore be of one of two types:
“match” (denoted ‘ ’), containing a diagonal grid edge, and “mismatch”
(denoted ‘ ’), containing a network’s comparator; the notation indicates
the direction of the diagonal edge and of the comparator, respectively. Oc-
casionally, we identify cell type ‘ ’ with value zero, and cell type ‘ ’ with
value one.

Example 3. Figure 1 (centre) shows the LCS grid of the previous example,
overlaid with its respective transposition network.

Given an input of m+ n distinct values sorted in reverse order, the set
of values’ trajectories through such a transposition network forms a sticky
braid corresponding to the comparison of strings a, b; each particular value
traces a strand in this braid. The network’s output permutation provides
detailed information about LCS lengths between various substrings of a,
b. For our purposes, the above construction can be simplified as follows:
instead of all distinct values, let the transposition network’s input consist
of m ones, followed by n zeros; note that such an input array is still sorted
in reverse. In this context, value zero will be called a hole (denoted ‘◦’),
and value one a particle (denoted ‘•’). This is done not only to distinguish
the (binary) values in the network from (also binary) string characters
and (again binary) cell types, but also to reflect in our terminology the
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important connection with particle interaction models, that we will develop
further in the remainder of this paper.

An assignment of values/types to a subset of sites/cells of a transposi-
tion network will be called a configuration. In particular, the input config-
uration formed by m particles entering the LCS grid at its left boundary,
and n holes entering at the top boundary, will be called the step initial
condition.

Example 4. The transposition network in Figure 1 (centre) is shown
with the step initial condition input sequence at the top-left, and the cor-
responding output sequence of particles and holes at the bottom-right.

The LCS length of strings a, b is particularly easy to obtain from the
transposition network with step initial condition: it is equal to the number
of particles among the network’s n outputs exiting the grid at the bottom
(equivalently, the number of holes among its m outputs exiting the grid
at the right). This observation underlies implicitly the bit-parallel LCS
algorithms of Crochemore et al. [15] and Hyyrö [23], and was made explic-
itly e.g. by Majumdar and Nechaev [31] and by Krusche and Tiskin [26].
Let a, b be of equal length m = n; in this case, the LCS grid has the
shape of a square, and the LCS length is equal to the number of particles
(equivalently, the number of holes) that have never crossed the grid’s main
diagonal.

Example 5. In the previous example, there are three particles among the
n = 4 outputs at the grid’s bottom; the LCS length for strings a, b is also
3. In the course of the evolution of the transposition network, 4 − 3 = 1
particle has crossed the main diagonal from left to right; accordingly, one
hole has done so from top to bottom.

§4. Model CS

The combinatorial properties of the LCS problem allow us to reformu-
late the Chvátal–Sankoff problem in the language of stochastic particle
interaction models. By a network evolution model, we will understand the
evolution of site values from a given input configuration in an infinitely
wide transposition network, under a certain probabilistic rule that deter-
mines the type of each of the network’s cells.

Cell dependencies. Let a, b now be infinite strings, where all characters
are independent uniform binary random variables. We define model CS
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(the Chvátal–Sankoff model) as a network evolution model where cell types
are determined by character matches and mismatches between strings a,
b, as described in the previous section.

Proposition 1. In model CS , the types of any three distinct cells are
mutually independent. The types of any three distinct cells within a -
shape determine uniquely the type of the fourth cell.

Proof. The first statement is straightforward by the independence and
uniformity of character distribution in strings a, b. The second statement
is also straightforward, since the sum of the four cells’ types must be
even. �

In particular, the types of any three cells adjacent in a -shape are
mutually independent; we shall call this property -independence. Note
that -independence relies crucially the uniform distribution of string
characters, and would not hold for a non-uniform character distribution,
even if it were independent and identical.

Evolution. Let strings a, b be indexed by i, j respectively. The state of
model CS can be thought of as evolving in several different ways — verti-
cally, horizontally or diagonally, with the discrete time dimension indexed
by i, j and i+j

2 , respectively. We will focus mainly on the diagonal evolu-
tion, due to its symmetry and locality properties. The model’s state under
such evolution corresponds to an anti-diagonal doubly-infinite sequence of
particle-hole values, alternating between horizontal and vertical edge sites.
Let us index the transposition network’s wires entering the grid through its
top boundary with nonnegative integers 0, 1, 2, . . ., and the wires entering
the grid through its left boundary with negative integers −1,−2,−3, . . .;
the count in both cases starts from the top-left cell. A time step under
diagonal evolution then consists of two half-steps: the first involves com-
parators operating on pairs of adjacent sites with an odd and an even index
(in that order), the second on pairs with an even and an odd index (in that
order).

As discussed in the previous section, the behaviour of model CS reflects
the LCS combinatorics of its underlying string pair a, b.

Proposition 2. Let 0 6 k 6 2n. Consider the prefixes of infinite strings
a, b of length k, 2n − k respectively, and let l be the LCS length of these
prefixes. Under diagonal evolution of model CS from step initial condition
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after n time steps, there are k− l particles at sites with indices 2n− 2k or
greater.

Proof. Well-known from the combinatorial properties of LCS; see e.g.
[26, 31]. �

Example 6. Figure 1 (right) shows the evolution of model CS from
step initial condition on strings a, b of the previous examples. Wires with
negative (respectively, nonnegative) indices are those below (respectively,
above) the network’s main diagonal. Let n = k = 4. The LCS length of
the input strings, regarded as prefixes of length k = 2n − k = 4 of a pair
of infinite strings, is l = 3; as before, we note that after n = 4 time steps,
exactly n − l = 4 − 3 = 1 particle has crossed over the main diagonal to
wires with nonnegative indices.

Duality. The definition of model CS is symmetric with respect to the
reflection of the network about its main diagonal. A pair of configurations
will be called dual, if one of them is obtained from the other by a reflection
about an above-left to below-right axis (exchanging the directions towards
below-left and above-right), with simultaneous exchange of sites’ values
between particles and holes. In particular, the step initial condition is a
self-dual configuration.

In the remainder of this paper, we will consider model CS with step
initial condition. Our analysis will concentrate on the model’s behaviour
in a small neighbourhood of the main diagonal, where the particle and hole
densities should be asymptotically equal by symmetry. Duality will help to
simplify the exposition, since in such a setting, a pair of dual configurations
will have equal probabilities.

§5. Special notation

Configuration probabilities. We consider configurations of a network
evolution model as random events. The probability of an event will be
denoted by its graphical representation. Thus, = 1 − represents the
probability of a given vertical edge site holding a particle, as opposed to a
hole, and = 1− represents the probability of a given cell being of type
“mismatch”, as opposed to “match”.

We extend this notation to represent conditional probabilities as follows.
We juxtapose the conditioning event and the conditioned event in the same
picture; the elements of the conditioning event will be highlighted in red,
while the elements of the conditioned event will be shown in the ordinary
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black. For example, the probability of a given cell being of type “mismatch”,
conditioned on the cell’s left (respectively top) entry value being a particle
(respectively, a hole), will be denoted by = / .

Some events that we consider may be forced by other events: a forced
event, conditioned on the forcing event, occurs with certainty. We jux-
tapose the forcing event and the forced event in the same picture; the
elements of the forced event will be highlighted in blue, while the elements
of the forcing event will be shown in either black or red, as appropriate. In
the previous example, the cell’s exit values are forced: = . Showing
forced sub-events is a notational decoration that can formally be omitted;
however, it is meant to serve as an intuition aid, especially so when some
non-forced sub-event becomes forced in a chain of equalities. For example,
we have = + .

Annotated equalities. Standard annotated equality A def
= B (“A is de-

fined as B”) will be used to introduce new notation. Additionally, we will
use some other annotations on the equality sign, as an aid to the reader.
Notation A r

= B (“A and B are obtained from each other by reversal with
an exchange of particles and holes”) will indicate that the equality holds
by the duality property of network configurations.

§6. Scaling limits

Informally, the scaling limit of a particle evolution model is the contin-
uous limit of the distribution of particle densities at the model’s sites, as
both time and space are simultaneously scaled down at appropriate rates,
so that the magnitude of both time and space units tends to zero. A general
introduction to the theory of scaling limits is given e.g. by Kriecherbauer
and Krug [25].

Scalar conservation laws. Partial differential equations (PDEs) are an
indispensable tool in studying the asymptotic behaviour of particle evolu-
tion models. Using PDEs, one can relate the global behaviour of the model,
such as its non-stationary evolution from a given initial condition, with its
local behaviour, such as its stationary state in a small space-time region.
A classical example of such a relationship is the asymptotic behaviour of
the continuous-time totally asymmetric simple exclusion process (TASEP)
with step initial condition, which was shown to be governed by the inviscid
Burgers’ equation by Rost [41] (see also [20,25,40]).
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In general, the scaling limit of a conservative particle model with one
spatial dimension can be associated with a scalar conservation law (see
e.g. [25]), which is a PDE of the form

∂
∂ty + ∂

∂xf(y) = 0

where y = y(t, x) is the density function of time t and the spatial dimension
x, representing the conserved quantity (typically, the mass of some fluid),
and f = f(y) is a strictly concave smooth function of density y called the
(rightward) flux. We are particularly interested in the step initial condition:

y(0, x) =

{
1 x < 0

0 x > 0

In the language of PDEs, the step initial condition is a special case of the
Riemann problem for a scalar conservation law. The discontinuity of y at
x = t = 0 is known as shock. This initial shock dissipates over time in a
rarefaction wave, governed by the equation’s solution (see e.g. [25, 44])

y(t, x) =

{
(f ′)−1(x/t) f ′(1)t 6 x 6 f ′(0)t

y(0, x) otherwise

where f ′ is the derivative of f , and superscript −1 denotes its functional
inverse.

Since the solution scales linearly with t, it is sufficient for the analysis
to consider a single time moment t > 0; a natural choice is t = 1. Let
y(x) = y(1, x). We impose further constraints 0 6 y 6 1, f(0) = f(1) =
0, which are natural for the interpretation of y as a fluid’s density. The
maximum flux f̃ is determined by f ′(y) = 0, and is therefore attained at
density ỹ = (f ′)−1(0) = y(0); we will call these peak flux and peak density,
respectively.

Recall that under the step initial condition, all the fluid’s mass is con-
centrated in the negative half-line at time t = 0. The key characteristic
of the system is the amount of mass transported across the origin to the
positive half-line by the time t = 1, which turns out to be precisely the
peak flux:

+∞∫
0

y(x)dx =

f ′(0)∫
0

(f ′)−1(x)dx =

ỹ∫
0

f ′(y)dy = f(ỹ)− f(0) = f(ỹ) = f̃
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We will call the function 1 − f = f̄ and the value 1 − f̃ =
¯̃
f respec-

tively the flux complement function and the peak flux complement. A close
relationship between the peak flux complement and the constant γ of the
Chvátal–Sankoff problem will be exposed in the rest of this section.

Network model limit. For a network evolution model, density y in the
above equations is the limiting marginal probability of a site to contain a
particle (as opposed to a hole). The flux for a model X is determined as
the (unconditional) probability that a particle and a hole are exchanged by
a comparator within the cell. This probability, as well as its complement,
have a straightforward expression in terms of marginal site probabilities:

fX def
= = = − = − = 1− 2 f̄X def

= 1− fX = 2 (1)

(This form of expression simplifies the one given in [47].) For a model
evolving vertically or horizontally, every cell is accounted for in the above
expession for the flux in a given time step. For a model evolving diagonally,
one half of the cells is accounted for in the first half-step of a time step,
and the other half of the cells in the second half-step.

For a model that has mirror symmetry of cell type probabilities about
the main diagonal (such as model CS and all the others considered in this
paper), and that evolves diagonally from the (skew-symmetric) step initial
condition, the site probabilities will be skew-symmetric about the main
diagonal: particle probability at a site on one side of the main diagonal
must be equal to the hole probability at the symmetrically opposite site.
By symmetry, the peak density for such a model in the scaling limit is
ỹ = 1

2 , realised in a small neighbourhood of the main diagonal.
From now on, we will consider the model’s state in an infinitesimally

small neighbourhood of the scaling limit point t = 1, x = 0 on the main
diagonal. At that point, both the model’s peak flux and peak density are
realised, so we will write simply y for ỹ and fX for f̃X . The peak density
y is composed from particle probabilities at horizontal and vertical sites,
or, symmetrically, particle and hole probabilities at just the horizontal, or
just the vertical sites: y = u + ū = + = + = + = 1

2 . The
evolution of the model in such a small neighbourhood can be considered
to be in a stationary state; we will use this stationarity to derive the joint
distribution for site probabilities of our models.

A limit for model CS . In general, finding an explicit flux function for
a particle evolution model may be difficult, and even the convergence to a
scaling limit is not guaranteed. Fortunately, the existence of a continuous
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scaling limit for model CS follows directly from Proposition 2. Indeed,
the model’s convergence at a point on the main diagonal is equivalent to
the convergence of scaled LCS length for a pair of equally long uniformly
random binary strings, i.e., to the existence of constant γ. As mentioned in
the Introduction, this was established already by Chvátal and Sankoff [14]
(see also [53, Chapter 1]). In much the same way, the model’s convergence
at any other point is equivalent to the convergence of scaled LCS length for
a pair of random binary strings with a given limiting ratio of their lengths,
which can be established by a slight modification of the same proof.

The Chvátal–Sankoff problem can now be reformulated as finding the
peak flux complement γ = f̄CS for model CS .

§7. Model B

In keeping with the traditional terminology, let us define model B (the
Bernoulli model) as the network evolution model, where a cell is assigned
type “mismatch” with a fixed probability p def

= , called the model’s (jump)
rate, independently of any site values or types of any other cells (this
initial definition will be generalised later). Intuitively, every cell tosses an
independent biased coin p to determine its type.

Model B has been applied to the study of the Chvátal–Sankoff problem
by Boutet de Monvel [18], Majumdar and Nechaev [31], Priezzhev and
Schütz [38], Bukh and Cox [8]. It is closely related to a classical particle
model known as the totally asymmetric simple exclusion process (TASEP).
The TASEP consists of an of array of sites, each occupied by a particles
or a hole. It evolves by a particle jumping at a random time into a hole
on its right; symmetrically, the hole “jumps” to its left to the site pre-
viously occupied by the particle. Updates may occur in continuous time
(classical TASEP, which we do not consider any further) or in discrete
time (DT-TASEP). Within a time step of DT-TASEP, the update pol-
icy may be parallel (the process also known as multi-corner growth of a
Young diagram, which we do not consider any further), forward-sequential,
backward-sequential, or sublattice-parallel. The latter three update poli-
cies essentially only differ by a change of coordinates, and correspond to
model B evolving vertically, horizontally or diagonally, respectively. An
analysis of DT-TASEP with different update policies has been given by
Rajewsky et al. [39] and by Martin and Schmidt [32]. Model B and DT-
TASEP can be considered as a special case of the six-vertex model analysed
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by Borodin et al. [6], with weights assigned according to measure P(p, 0)
defined therein.

Model B and other network evolution models presented in this paper
can also be considered as special cases of stochastic cellular automata (see
e.g. [11,30]). However, the simplifying “well-mixing” assumptions, that are
usually made in that context, do not hold for our models.

Cell type probabilities. We note that a cell’s type only affects the
model’s behaviour when its entry pair is , distinguishing the events

and . For any other entry pairs, the cell’s exit values are forced by
the entry values and are independent of the cell’s type: the corresponding
events are , , . In these cases, the cell’s type probability can be
set differently from p, without affecting the model’s behaviour. Therefore,
we can generalise the definition of model B by introducing a formal depen-
dency of a cell’s type on its entry pair, while making sure that the model’s
new definition is still invariant with respect to duality of configurations.

Definition 1. We say that a cell’s type depends exclusively on a set of
sites’ values in a given half-step, if, conditioned on this set, it is condition-
ally independent of any other site values in the same half-step.

We define 4 = 1 · 2 + 2 (one dual pair and two self-dual singletons) con-
ditional probabilities for a cell’s type, specifying its exclusive dependence
on the entry site pair:

p0
def
=

r
= p3

def
= p1

def
= p2

def
=

The subscripts correspond to the entry pair values being read as a two-
digit binary number, bottom-left to top-right: p0 = p◦◦, etc. Intuitively, a
cell now has four biased coins p0, p1, p2, p3, including a dual pair p0

r
= p3.

The cell reads its entry pair (as a binary number), and then tosses the
corresponding coin to determine its type; the combination of the cell’s
entry pair and its chosen type then determines the cell’s exit pair.

Conditional probability p2 corresponds to the rate p in the original
definition of model B, and determines solely the model’s behaviour (in
particular, its flux). We will therefore reserve the term rate for p2, whereas
the remaining conditional probabilities p0

r
= p3, p1 will be called pseudo-

rates. These pseudo-rates do not affect the behaviour of the model, and
therefore can temporarily be left unconstrained. This leaves us the freedom
to set them later, in an attempt to fit model B to the constraints of model
CS . (This idea has been explored in [47, Section 8], and is not necessary for
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this paper; however, we keep the notation for consistency, and for future
reference).

Alternating sequences. Our models, including model B, will have time-
invariant distributions satisfying the following natural property.

Definition 2. An alternating sequence is a doubly-infinite sequence of
(generally dependent) particle-hole random variables (ξi), i ∈ Z, that is
invariant with respect to

• a shift by 1, mapping i 7→ i+ 1
• a reversal about 1

2 , mapping i 7→ −i+ 1

both of these with simultaneous exchange between particles and holes.

Note that both a shift and a reversal of the given type flip the parity of
indices. Definition 2 implies that an alternating sequence is also invariant
with respect to arbitrary shifts and reversals, where holes and particles are
exchanged if and only if the parity of indices is flipped.

We consider alternating sequences of site values in a given half-step of
diagonal network evolution, identifying arbitrarily the even (respectively,
odd) indices of the sequence with the horizontal (respectively, vertical)
edge sites. Annotated equality A r

= B, when applied to such sequences, will
stand for “A and B are obtained from each other by a parity-exchanging
reversal with a simultaneous exchange between particles and holes”; this
is consistent with the previous usage of this notation to express duality of
configurations. Furthermore, annotated equality A s

= B will have similar
meaning, but with a reversal replaced by a shift. Notation A sr

= B will be
used when A s

= B and A r
= B are both applicable.

We denote the marginal site probabilities by

u
def
=

sr
= ū

def
=

sr
= (2)

Substituting (2) into (1), we obtain a simple expression for the peak flux
complement of our models.

Proposition 3. Let X be a network evolution model in a stationary state,
where the time-invariant distribution of site values is given by an alternat-
ing sequence. Then the peak flux complement is

f̄X = + = u+ u = 2u



THE CHVÁTAL–SANKOFF PROBLEM 229

AB sequences. We first consider the most basic special case of an alter-
nating sequence.

Definition 3. An alternating sequence (ξi), i ∈ Z, is an AB (alternating
Bernoulli) sequence, if all its elements are mutually independent.

In particular, an AB sequence of site values in a given half-step of a net-
work evolution model is a product measure with marginal site probabilities
(2).

Time invariance. Consider the evolution of model B on an AB sequence
in a stationary state. The model’s rate and the site densities of the sequence
are connected by the time-invariance equation:

uu = = = ūūp̄2 (3)

We recall a well-known result on the time-invariant distribution for the
diagonal evolution of model B (see e.g. Rajewsky et al. [39], Martin and
Schmidt [32]).

Theorem 1. An AB sequence with parameter u determined by (3) is a
time-invariant distribution for model B with a given rate p2.

Proof. It is sufficient to show that the AB property is preserved in a
single half-step of the evolution of model B. The independence between site
values a, b at the end of the half-step in a configuration a

b is obvious, since
these values are obtained in different cells; independence in a configuration
a
b is established by (3). In the equation (3), the left-hand side expresses

the AB property in a configuration at the half-step’s end, while the right-
hand side relies on the same property at the half-step’s beginning. �

The Arratia–Steele conjecture. Since the marginal probabilities of
cell types in model CS are all equal to 1

2 , and since these types are -
independent and, more generally, three-wise independent, at some point it
was quite natural to conjecture that all cell dependence (i.e., -dependence
and, more generally, all four-wise and higher-order dependence) could
also be ignored, so that model CS would be equivalent to model B with
p = p2 = 1

2 , which we denote B(1/2). Substituting p2 = 1
2 into (3), we ob-

tain a quadratic equation that gives us the peak site marginal probability
and the peak flux complement for model B(1/2), which can be considered
as an approximation for γ:

u =
√

2− 1 = 0.414213 . . . γ ≈ f̄B(1/2) = 2u = 2(
√

2− 1) = 0.828427 . . .
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The conjecture, attributed to Arratia by Steele [46], was that the above
expression gives the exact value of γ. This conjecture was disproved by the
upper bound γ 6 0.826280 due to Lueker [27].

§8. Models B and CS as measures on shift spaces

In this section, we rely on the textbook by Lind and Marcus [28] for the
definitions and background.

Let A be a finite alphabet. The full one-dimensional (1D) shift AZ is
the set of doubly-infinite sequences of symbols from A, equipped with the
prodiscrete topology. A 1D shift (also subshift, short for shift space) is a
closed subset of AZ that is invariant under the action of the shift operator
x 7→ x + 1. A 2D shift is defined similarly as a closed subset of the full
two-dimensional (2D) shift AZ2

, invariant under the action of the shift
operators (x, y) 7→ (x+1, y) and (x, y) 7→ (x, y+1). A 1D (respectively, 2D)
shift X can be specified by a set F of forbidden finite words (respectively,
patterns). A shift is a shift of finite type (SFT), if such a set F can be
chosen to be finite.

Given a shift, we are interested in shift-invariant probability measures
that can be defined on it. Among these, of particular interest are measures
of maximum entropy (MME). It is well-known that MME exist for both
1D and 2D SFTs. However, there is a substantial difference in their level
of complexity. For a 1D SFT, an MME corresponds to a Markov chain of
finite order, and can be obtaned from its set of forbidden words explicitly
via the Perron–Frobenius theorem. For a 2D SFT, no explicit constructions
are known except for a few specific cases; many aspects of 2D SFTs are
algorithmically undecidable.

2D shifts. Both models that we consider in this paper can naturally be
defined on 2D shifts. The alphabet will consist of eight symbols, each
representing a cell’s type and its boundary sites’ contents:

A =
{

, , , , , , ,
}

Model B is specified by the set FB that forbids any - or -shape of cells
that do not agree on the contents of their shared site. Model CS is specified
by the set FCS that forbids, in addition, also any -shape that contains
an odd number of cells of each type (‘ ’ and ‘ ’):

FCS = FB ∪
{

, , , , , , ,
}
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Each -shape in this expression represents a set of patterns that are con-
sistent with it. Clearly, both sets FB and FCS are finite, therefore the shifts
they specify are both SFTs.

Stationary distributions in models B and CS correspond to certain in-
variant probability measures on their 2D shifts. A necessary property that
such a measure must satisfy, apart from shift-invariance, is that it must be
uniform when restricted to the cells’ types, “erasing” the sites’ contents.
Formally, we define a canonical map from alphabet A to a two-symbol
alphabet:

f : A→
{
,
}

This map lifts to a factor map between 2D shifts, which we also denote
f . The stationary distributions in models B and CS in a small neighbour-
hood of the main diagonal can now be characterised (see e.g. [36]) as a
shift-invariant measure µ of maximal relative entropy (MMRE) on their
respective shifts, subject to the pushforward measure of µ under f being
a uniform measure.

1D shifts. It is also quite natural to define both models on 1D shifts. In
general, such shifts are conceptually simpler than 2D ones; however, the
complexity of the models’ definitions increases relative to the 2D case. In
contrast to the 2D case, where a shift’s single element defines the whole
evolution of the model, here we consider the state of the model’s evolu-
tion at a given time step. Therefore, a shift’s element will correspond to
an antidiagonal configuration of cells. Space invariance of the model will
correspond to the invariance under the 1D shift operator, while the time
invariance will have to be captured separately.

The alphabet will now consist of 15 symbols:

A =
{

, , , , , , , , , , , , , ,
}

These symbols will be joined up to form an infinite zigzag antidiagonal
strip in the grid. The sub-alphabet of the first eight symbols represents the
(say) odd positions of the strip, and one of the remaining seven symbols
the (complementary) even positions; the parity of the positions will change
under the shift operator, but the alternation of the sub-alphabets will not.

Model B is specified by the set FB that forbids any - or -shape of cells
that do not respect the alternation of the sub-alphabets or do not agree
on the contents of their shared site. Model CS is specified by the set FCS

that forbids, in addition, also an infinite set of words that are inconsistent
with the current configuration resulting from the model’s evolution over
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an infinite number of steps back in time:

FCS = FB ∪
{

, , , , . . .

}
Set FB is finite, and therefore its corresponding shift is an SFT. However,
FCS is infinite, and clearly cannot be reduced to any finite set specifying
the same shift. Thus, its corresponding shift is not an SFT.

In order to capture the models’ time invariance, we define a cellular
automaton map T : A3 → A, which describes the models’ evolution over a
time step in an obvious way. Some examples of argument-value pairs under
this map are

7→ 7→ 7→ . . .

7→ 7→ 7→ . . .

We say that a measure µ is T -invariant, if µ(u) =
∑

v∈T−1(u) µ(v), when-
ever the left-hand side (and therefore also the right-hand side) is defined.

Finally, as with the 2D version of the shifts, we define a canonical map
from alphabet A to a two-symbol alphabet:

f : A→
{
,
}

This map lifts to a factor map between 1D shifts, which we also denote
f . The stationary distributions in models B and CS in a small neighbour-
hood of the main diagonal can now be characterised as a shift-invariant,
T -invariant measure µ of maximal relative entropy (MMRE) on their re-
spective shifts, subject to the pushforward measure of µ under f being a
uniform measure.

§9. Numerical experiments

In the previous section, we have characterised the stationary distrubu-
tion in model CS as a measure with certain invariance and relativisation
properties on both a 2D and 1D shift. While the characterisation via a
2D shift is conceptually simpler, 2D shifts themselves are in general much
less amenable to analysis than 1D ones. In particular, this characterisa-
tion does not appear to provide a good way to approximate the required
measure numerically, even though it is defined on an SFT.

In contrast, the characterisation of model CS via a 2D shift requires
an additional property of T -invariance, and its underlying shift is not an
SFT. However, having a clearly defined set of forbidden words F for this
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shift suggest a natural technique for approximating the model’s stationary
distribution by obtaining measures with the required properties on a de-
creasing sequence of 1D SFTs, beginning with the shift underlying model
B, and each next shift in the sequence being defined by a finite subset of
F , consisting of words no longer than a specified length n→∞. Within a
certain range of values of n, a stationary distribution of the corresponding
evolution model approximating model CS can be obtained by iterating
the action of the cellular automaton map T . This gives us a reasonably
fast convergence to the parameters Markov chain providing the stationary
distribution, allowing us to approximate it either to the machine precision,
or, for somewhat higher values of n, to at least five decimal points.

The described technique has been implemented as a program in C++,
incorporating a number of quite sophisticated time and memory optimi-
sations. Table 1 gives a sequence of approximations to γ that we have ob-
tained with our implementation for n = 10, 12, 14, 16. Each number gives
an approximation to γ obtained from the corresponding SFT, accurate to
all the decimal points provided. The time and memory required by the
computation grows exponentially; the last approximation in the sequence
required several hours of execution parallelised over an 8-core processor of
an Intel Xeon Gold server. The convergence of the sequence to the value
of γ is relatively slow; however, by scaling up our experiment to a high-
performance computing server, we hope to obtain an approximation for γ
accurate to at least four decimal points.

§10. Model M : a correction

In [47], we introduced a further model that we called model M . It is
essentially a Markov-chain model of the type described in the previous
section, that approximates model CS and corresponds to an SFT defined
by a finite subset of the set of forbidden words for model CS . Unfortunately,
it was claimed in [47] erroneously that the two models were equivalent; in
fact, this is not the case, and cannot be the case for any SFT-based model.
The actual error was in failing to recognise fully the non-local nature of
dependencies between the cells in model CS : an attempt to “localise” the
dependencies in [47, Section 10], and in particular in the proof of Theorem
3 there, was misguided. The statement of Theorem 3 and its restatements
elsewhere in the paper are false.
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§11. Conclusion

In this paper, we have restated the Chvátal–Sankoff problem in the lan-
guage of symbolic dynamics in 1D and 2D, using the problem’s connection
with stochastic particle processes that we explored previously in [47]. In
doing so, we relied on existing results on the combinatorial structure of the
LCS problem and the theory of continuous scaling limits for discrete parti-
cle processes. Obtaining exact solutions for 2D symbolic dynamics models
is notoriously difficult, so such a direct restatement may serve as a par-
tial explanation of the apparent difficulty of the Chvátal–Sankoff problem
itself.

We have demonstrated that our restatement of the Chvátal–Sankoff
problem as a 1D symbolic dynamics problem lends itself to a new approach
to numerical approximation of constant γ. We have reported preliminary
results of a numerical experiment based on this approach. We note that our
estimate is obtained by a new method, completely different from Monte-
Carlo simulation methods that have mostly been employed so far. We also
note that the published details of any previous numerical experiments are
scarce. Improving the computation efficiency and the convergence proper-
ties of our experiment remains a question for further study.

Further challenges outlined in the conclusion of [47] still stand. In par-
ticular, it would be interesting to extend our approach to (in increasing
order of apparent difficulty)

• strings of unequal lengths;
• Levenshtein distance between strings;
• non-uniform and non-independent character distributions within

the strings;
• strings over larger alphabets;
• comparing more than two strings.

We leave these questions open for future work.
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23. H. Hyyrö, Mining bit-parallel LCS-length algorithms. — In: Proceedings of SPIRE,
Vol. 10508, Lecture Notes in Computer Science (2017), pp. 214–220.

24. D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Vol. 3.
Addison Wesley (1998).

25. T. Kriecherbauer, J. Krug, A pedestrian’s view on interacting particle systems, KPZ
universality and random matrices. — J. Phys. A: Math. Theor. 43, No. 40 (2010),
403001.

26. P. Krusche, A. Tiskin, String comparison by transposition networks. — In: London
Algorithmics 2008 Theory and Practice, Vol. 11 of Texts in Algorithmics. College
Publications, 2009.

27. G. S. Lueker, Improved bounds on the average length of longest common subse-
quences. — J. ACM 56, No. 3 (2009), 17:1–17:38.

28. D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, second edition (2021).

29. B. F. Logan, L. A. Shepp, A variational problem for random Young tableaux. —
Adv. Math. 26, No. 2 (1977), 206–222.

30. J. Mairesse, I. Marcovici, Around probabilistic cellular automata. Theor. Computer
Sci. 559 (2014), 42–72.

31. S. N. Majumdar, S. Nechaev, Exact asymptotic results for the Bernoulli matching
model of sequence alignment. — Physical Review E: Statistical, Nonlinear, and Soft
Matter Physics 72, No. 2 (2005), :020901.

32. J. Martin, P. Schmidt, Multi-type TASEP in discrete time. — Latin Amer. J.
Probab. Math. Statist. 8 (2011), 303–333.

33. W. J. Masek, M. S. Paterson, A faster algorithm computing string edit distances.
— J. Comput. System Sci. 20, No. 1 (1980), 18–31.

34. U. Matarazzo, D. Tsur, M. Ziv-Ukelson, Efficient all path score computations on
grid graphs. — Theor Comput. Sci. 525 (2014), 138–149.
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