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COOPERATIVE ENVY-FREE DIVISION

Abstract. Relying on configuration spaces and equivariant topol-
ogy, we study a general “cooperative envy-free division problem”
where the players have more freedom of expressing their preferences
(compared to the classical setting of the Stromquist-Woodall-Gale
theorem).

A group of players want to cut a “cake” I = [0, 1] and divide
among themselves the pieces in an envy-free manner. Once the cake
is cut and served in plates on a round table (at most one piece per
plate), each player makes her choice by pointing at one (or several)
plates she prefers. The novelty is that her choice may depend on the
whole allocation configuration. In particular, a player may choose
an empty plate (possibly preferring one of the empty plates over the
other), and take into account not only the content of her preferred
plate, but also the content of the neighbouring plates.

We show that if the number of players is a prime power, in this
setting an envy-free division still exists under standard assumptions
that the preferences are closed.

§1. Overview and an informal introduction

Extending and developing further the ideas from our earlier papers [8,
13, 14], we describe a new framework for applying methods of equivariant
topology to problems of mathematical economics, related to fair and envy-
free division.

In the classical approach, exemplified by Stromquist–Woodall–Gale the-
orem, [4, 17, 21] the “cake” I = [0, 1] is cut into r tiles, each player makes
her choice by pointing at one (or several) tiles. The standard assumptions
are that (1) the preferences are closed, and (2) nobody prefers a degenerate
tile. Then an envy-free division exists for any number of players.
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Offering a fresh perspective on the problem, we build a new narrative,
where the players have more sophisticated preferences, may choose degen-
erate tiles (more precisely, they may choose empty plates), and the proofs
rely on new configuration spaces and equivariant topology.

1.1. Players at a round table and a cake. Assume that there are r
guests at a birthday party, who want to divide a birthday cake in such
a manner that everyone is pleased with their piece of the cake. (More
generally, a group of r players divide a commodity, also referred to as the
“cake”, modeled as the interval I = [0, 1].)

Extending the narrative, we enrich this model by assuming that there is
a round table with r indistinguishable plates on it, so both the table and
the set Π of plates have the symmetry of the cyclic group Zr.

The cake is cut in at most r pieces (that is, in at most r non-degenerate
segments, referred as the “tiles”), and the tiles are allocated to plates, at
most one tile per plate. In some cases there might be empty plates. We
also do not exclude the case when there is only one tile (the entire cake),
and all the plates except one are empty.

Once a cut and an allocation are fixed, each player makes his choice by
pointing at one of the plates he prefers (or more than one if they are equally
valued and desired). The novelty is that the choice may now depend on
the allocation configuration (allocation function) as a whole. Recall that
in usual models the player would focus on a single (most desired) tile and
completely ignore where the remaining (less desired) tiles are positioned.

The following “chocolate example” illustrates a situation when the pref-
erences depend on the cyclic ordering of the tiles on the table.

A “chocolate example” for a prime number of players, r = p.
Assume that the cake I = [0, 1] is non-uniformly decorated by marzipan,
chocolate, cream, and other tasty ingredients.

Imagine a player wishes to maximize the total amount of chocolate both
on his chosen piece of cake and the two neighboring pieces, taken together.

As a consequence it may happen (Example 1.1), that the chosen plate
is actually empty. Moreover, a player may prefer one empty plate over
another, i.e the empty plates are not necessarily equal!

Observe that the preferences do not change if we rearrange the pieces
of the cake by cyclically permuting the plates on the table.
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The rationale behind the choice of an empty plate may be that a player
anticipates a future cooperation or trade with his immediate neighbors
at the table. Some other players may have similar plan, regarding other
ingredient of the cake, say the cream or the marzipan.

A special case of our Theorem 3.1 states that in this case the envy-free
division is always possible, under some quite natural and mild assumptions
on the preferences.

A “chocolate example” for a prime squared, r = p2. Among the
corollaries of Theorem 3.1 is the following result, addressing the case when
the number of players is a square of a prime.

As in the previous example we assume that the cake I is (non-uniformly)
decorated by marzipan, chocolate, cream, etc. This time there are p round
tables, each having p plates (so the cardinality of the set Π of all plates
is r = p2). The tiles of the cake are allocated to the plates, and a player
again may wish to maximize the total amount of chocolate on his own piece
and the two neighboring pieces taken together. The conclusion is that, no
matter what the other players prefer, the envy-free division always exists.

In the general case the players may have reasonably complex, unknown
or even “irrational” objectives and preferences, from an outside point of
view. What really matters is that the preferences do not change if we
rearrange the pieces of the cake by cyclically permuting the tables and
(again cyclically) permute the plates at each table.

A variation on the theme of “chocolate examples”. Imagine that for
each player j ∈ [r] there is a continuous evaluation function f j , defined
on the collection of all segments [a, b] ⊆ [0, 1], specifying the value of each
segment from the viewpoint of that player. The only condition is that f j
should be constant on all degenerate segments (that is in the case a = b).

Assume that the plates a positioned on the table in a circular order.
The player j chooses a plate number i provided

3f j(segment lying in the plate i)− f j(segment lying in the plate i+ 1)

+ f j(segment lying in the plate i− 1))

attains its maximum. (If the maximum is attained at two more or positions,
he chooses each of them.) Then, as a consequence of Theorem 3.1, an envy-
free division always exists if r = p is a prime number.
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1.2. Novelty of the model. The simple “chocolate examples” illustrate
some of the main features of the proposed new approach to the “cooperative
envy-free division”. The novelty of the methods and ideas used in the paper
might be, for the convenience of a casual or non-expert reader, summarized
as follows.

(1) The preference of a player depends on the whole allocation con-
figuration. In other words the player takes into account the entire
allocation function α : [k] → Π (where k 6 r), which describes
the placement of the pieces in the plates. Recall that in standard
models a player would focus on a single (most desired) tile and
completely ignore where the remaining (less desired) tiles are po-
sitioned.

(2) If empty plates are offered, which happens if the number of pieces
of the cake is strictly smaller than r, then the players are allowed
to choose one of the empty plates. Moreover, an important novelty
is that the empty plates are not necessarily equal, i.e. one empty
plate may be preferred over the other.

Example 1.1. One can easily build a “chocolate example” with two empty
plates, illustrating (2). This happens, for instance, with seven plates having
the following distribution of the chocolate

(100, 0, 100, 1, 1, 0, 1)

where a player prefers one of the empty plates, but not the other.

For comparison, in the classical Stromquist–Woodall–Gale theorem, [4,
17, 21], the players are not allowed, under any circumstances, to choose
empty plates.

In the more recent approach of Avvakumov and Karasev [2], the players
are allowed to choose an empty plate. However, in their approach all empty
plates are considered equal and equally desired (or undesired).

(3) A technical novelty is the use of a new configuration space Cr
(Section 2), as a natural mathematical model for a cooperative
envy-free division. Recall that in usual applications of topological
methods, see for example [2, 4, 5, 12, 15, 17, 21], the model for the
space of cuts of the cake into r pieces is the (r − 1)-dimensional
simplex ∆r−1.
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1.3. Summary of the new results. What is the natural environment
(ecological niche) for all our “chocolate examples”, and other similar “co-
operative envy-free division results”? What is the role of symmetries of
preferences, which “do not change if we cyclically rearrange the pieces of
the cake”, etc.? Is the role of prime numbers essential (intrinsic) or they
appear as an artefact, reflecting the limitations of the methods applied.

Our main new result (Theorem 3.1, Section 3) addresses all these ques-
tions. It guarantees the existence of a cooperative envy-free division under
the following conditions: the number r of players is a prime power, the
preferences are closed, and the preferences respect the action of the p-toral
group on the set Π of plates.

Both the formulation and the proof of Theorem 3.1 reveal that the
symmetries of preferences are indeed “at the heart of the matter”.

In particular it is known that in closely related problems, see [2, Sec-
tion 4.3] and [13, Theorem 4.4], the order of the group of symmetries must
be a prime power. By a similar argument this condition is also unavoidable
in the “cooperative envy-free division problem”.

The proof of Theorem 3.1 is postponed for Section 4, after the intro-
duction of relevant topological tools and ideas, see also the Appendix (Sec-
tion 5) for some auxiliary material and a guide to the literature.

Theorem 3.1 paves the way for other envy-free division results for coop-
erative preferences. This holds, in particular, for the envy-free division in
the presence of a “dragon” [14], where we distinguish two basic scenarios:

(1) There are r − 1 players and a dragon. Once the “cake” is divided
into r pieces the dragon, ignoring all other players, makes his choice and
grabs one of the pieces. After that the players want to divide the remaining
pieces in an envy-free fashion.

(2) There are r+1 players who divide the cake into r pieces. A ferocious
dragon comes and swallows one of the players. The players want to cut the
cake in advance in such a way that no matter who is the unlucky player
swallowed by the dragon, the remaining players can share the tiles in an
envy-free manner.

We show (Theorems 3.2 and 3.3 in Section 3) that in both of these sce-
narios one can guarantee the existence of envy-free division for cooperative
preferences, under similar conditions as in Theorem 3.1.
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§2. Mathematical formalization of the problem via
configuration spaces and cooperative preferences

For r ∈ N, let us describe a topological space C = Cr whose points
correspond to cuts of the cake and allocations of the tiles to r plates.
The space will be called the natural configuration space, or simply the
“configuration space”, for the problem of cooperative envy-free division.

We call it “natural” to emphasize that it records, in simplest mathe-
matical terms, all possible scenarios of cutting the cake and distributing
(allocating) the pieces to the plates (at most one piece per plate).

• A proper cut x (or cut, for short) of length (tile number) k is a
sequence

0 = x0 < x1 < x2 < · · · < xk−1 < xk = 1,

where k 6 r. Each proper cut creates a partition of I into k non-
degenerate segments Ii(x) = [xi−1, xi], called the tiles, which are
numbered in the increasing order, from left to the right. (We do
not exclude the possibility of an “empty cut” with the only one
tile, corresponding to the case when k = 1.)

• For a fixed cut x with the tile number k, an allocation function is
an injective function

α : [k]→ Π

where Π is the set of “plates”, arranged at a round table. For exam-
ple one can imagine that there are r plates numbered by 1, . . . , r
and that the tile Ii = Ii(x) is served in the plate α(i). Note that
some of the plates may remain empty. Injectivity means that the
tiles are allocated to the plates, with the condition “at most one
tile per plate”.

We define the configuration space C = Cr as the set whose ele-
ments are all possible pairs

(x, α) = (a proper cut, an allocation function).

2.1. Topology on the configuration space C. Topology on C is defined
in two natural and equivalent ways.

(A) (Topology via converging sequences)

A sequence (xn, αn)∞n=1 converges to (x, α) if and only if:
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(1) The sequence of proper cuts xn = (xn0 , . . . , x
n
kn

) converges to the
proper cut x = (x0, . . . , xk) in the sense of Hausdorff metric, see
the Appendix (Section 5.2). In light of the “stabilization property”
(Proposition 5.1) this means that for each n there is a subcollec-
tion Tn = {Jni }ki=1 ⊆ Txn (of “essential tiles” of xn) such that
the associated sequences of intervals converge Jni −→ Ii to the
corresponding tiles in Tx, while the lengths of all other tiles from
Txn \ Tn tend to zero when n→ +∞.

(2) The values of αn “stabilize” on essential tiles Tn = {Jni }ki=1 and
coincide with the corresponding values of the allocation function
α. More precisely, there exists n0 such that for each n > n0 and
each i = 1, . . . , k

αn(i) =: αn(Jni ) = α(Ii) := α(i) .

Note that in (1) the sequence (kn)+∞
n=1 of “tile numbers” is not necessarily

convergent (let alone convergent to k). Note also that in (2) the values of
the allocation function αn on inessential tiles Txn \Tn is not relevant at all
for the convergence of (xn, αn)∞n=1 to (x, α).

(B) (Topology via neighborhoods)

Given a proper cut and an allocation function (x, α), let us describe a
neighborhood Oε(x, α) of this point in the configuration space Cr. Set ε to
be much smaller than the length of the minimal tile.

Then (y, β) ∈ Oε(x, α) if and only if
(1) The Hausdorff distance between x and y is less than ε;
(2) If J ∈ Ty such that there exists (necessarily unique) tile I ∈ Tx such

that the length of I ∩ J is much bigger than ε, then β(J) = α(I).

2.2. Group action on Cr. From here on we assume that a group G acts
(from the left) on the set Π of plates, as a group of permutations. By
default this action is free and transitive. This induces a free action on the
configuration space Cr where for (x, α) ∈ Cr,

σ(x, α) := (x, σ ◦ α) .

At this stage we usually assume that Π = [r] = {1, . . . , r} where r = pν

is a prime power and G = (Zp)ν is a p-toral group. In particular, for the
first chocolate example, G = Zp is the cyclic group permuting cyclically
the plates on the round table.
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2.3. Preferences. The natural configuration space Cr is the ambient
space for cooperative preferences Aji where j ∈ [r] is a label of a player and
i ∈ Π is a label of a plate. (In concrete applications usually Π = [r] = [pν ].)

Definition 2.1. The preferences of r players is a collection (matrix) of
subsets (Aji )

j∈[r]
i∈Π of the configuration space Cr, indexed by (i, j) ∈ Π× [r].

The subsets are interpreted as preferences as follows:

f = (x, α) ∈ Aji ⇔ in the cut x and the allocation α the player j

prefers α−1(i), the content of the plate i ∈ Π .
(1)

Definition 2.2. By default all preferences are closed, covering and equi-
variant.

(a) The preferences are closed if Aji are closed subsets of Cr.
(b) The preferences are covering if

⋃
i∈ΠA

j
i = Cr for each j ∈ [r].

(c) The preferences are equivariant if for each σ ∈ G,

(x, α) ∈ Aji ⇔ σ(x, α) ∈ Ajσ(i) . (2)

Let us take a closer look at the condition (2). As a consequence of (1),
(x, σ ◦ α) ∈ Ajσ(i) if and only if in the cut x and the allocation σ ◦ α the
player j prefers the content of the box σ(i). Since (σ ◦α)−1(σ(i)) = α−1(i)
the condition (2) expresses the idea of “invariance of preferences” with
respect to the group action. Informally, the players make their decisions
on the basis of the “inner structure” of the whole allocation function and
the equivariance condition guarantees that this inner structure is preserved
by the group action.

Example 2.3. In our “chocolate examples”, reviewed in the Introduction,
the set Π was interpreted as a set of plates distributed around circular
tables. The invariance of preferences with respect to the circular action
of the group G on Π has a clear geometric meaning, clarifying what is in
this case meant by the “inner structure” of an allocation function. A more
general interpretation would involve an abstract “table” Π with an associ-
ated G-invariant graph (hypergraph) on Π, encoding possible patterns of
cooperation between players.

The following definition formalizes, in the language of the matrix of
preferences, the precise meaning of the cooperative envy-free division.
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Definition 2.4. Let (Aji )
j∈[r]
i∈Π be a matrix of preferences. A point (x, α)∈C

provides a cooperative envy-free division for preferences (Aji )
j∈[r]
i∈Π if there

exists a bijection σ : [r]→ Π such that

(x, α) ∈
r⋂
j=1

Ajσ(j) . (3)

§3. Statements of the main results

Our main result is the following “cooperative envy-free division theo-
rem”.

Theorem 3.1. Suppose that r = pν is a prime power. Let G = (Zp)ν
be a p-toral group which acts on the set of “plates” Π ∼= [r] by a free
and transitive action. Let (Aji )

j∈[r]
i∈Π be a matrix of subsets of the natural

configuration space Cr, defining the preferences of the players. Assume
that these preferences are closed, covering and equivariant in the sense of
Definition 2.2. Then there exists a cooperative envy-free division of the
cake satisfying the preferences of all players (Definition 2.4).

The following two theorems extend Theorem 3.1 to the case when one of
the players, called the dragon, is greedy and non-cooperative, which makes
the envy-free division even more difficult.

There are two basic scenarios. In the first scenario after the cake is
divided into at most r pieces and distributed in r plates Π (at most one
piece per plate) the dragon, ignoring all other players, grabs one of the
plates. After that the remaining players should be given the rest of the
plates so that there is no envy between them (dragon included!).

Theorem 3.2. (The dragon takes a piece of the cake) Let r be a prime
power. Let

(Aji )
j∈[r−1]
i∈Π , Aji ⊆ Cr

be a Π × (r − 1)-matrix of preferences which are closed, covering, and
equivariant. Then one can choose for each j ∈ [r−1] two distinct elements
uj and vj in Π such that

(a) The collection E = {ej}j∈[r−1] of two element sets ej = {uj , vj}
is the edge-set of a tree T = (V,E) on V = [r].



COOPERATIVE ENVY-FREE DIVISION 125

(b) ⋂
v incident to e

Aev =
⋂

j∈[r−1]

(Ajuj
∩Ajvj ) 6= ∅. (4)

In the second scenario there are r+1 players who divide the cake into r
pieces. A ferocious dragon comes and swallows one of the players. The
players want to cut the cake in advance, and put them in plates in such
a way that no matter who is the unlucky player swallowed by the dragon,
the remaining players can share the pieces in an envy-free manner. The
following theorem says that is always possible, under the same assumptions
on the preferences as in Theorem 3.1.

Theorem 3.3. (The dragon takes a player) Let r be a prime power. Let

(Aji )
j∈[r+1]
i∈Π , Aji ⊆ Cr

be a Π×(r+ 1)-matrix of preferences which are closed, covering, and equi-
variant.

Then one can choose for each i ∈ Π two distinct elements ui and vi in
[r + 1] such that

(1) The collection E = {ei}i∈π of two element sets ei = {ui, vi} is the
edge-set of a tree T = (V,E) on vertices V = [r + 1].

(2) ⋂
v incident to e

Ave =
⋂
i∈[r]

(Aui
i ∩A

vi
i ) 6= ∅. (5)

§4. Proofs via new configuration spaces, equivariant
topology, chessboard complexes and the Birkhoff

polytope

Following the main idea of [13] (which originally evolved from [8]), we
change the basic setup and modify the narrative, by allowing more cut
points, which are allowed to coincide and create degenerate tiles.

More explicitly, an improper cut of the segment I = [0, 1] by n − 1
cut-points is recorded as x = (0 6 x1 6 · · · 6 xn−1 6 1). The tiles
Ii = Ii(x) = [xi−1, xi] are automatically labeled by i ∈ [n], from left to the
right. The novelty, compared to Section 2, is that the inequalities in the
cut are no longer strict and, as a consequence, some of the tiles Ii may be
degenerate.
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The introduction of degenerate tiles (albeit unnatural from the view
point of cutting a real cake) has the advantage that the configuration space
of all improper cuts is the standard (n− 1)-dimensional simplex ∆n−1.

Recall that in the more realistic model, where we used the space I(r) of
all proper cuts of tile number at most r (Sections 2 and 5.2), the degenerate
tiles are not permitted. However, it is well known [1,18] that the topological
structure of symmetric powers I(r) is in general much more complex and
less transparent than the simple geometry of a simplex.

This observation motivates us to replace proper by improper cuts in the
definition of the natural configuration space Cr, introduced in Section 2,
hoping that the new “auxiliary configuration space” C′r is simpler and easier
to handle.

4.1. Auxiliary configuration space C′r.

Definition 4.1. Given an improper cut x = (0 6 x1 6 · · · 6 xn−1 6 1) of
the segment into n tiles {Ii(x)}ni=1, an allocation function of the tiles into
a set Π of plates is an “essentially injective” map

α : [n]→ Π .

Essential injectivity of α means that not more than one non-degenerate
tile is allocated to a single plate. In particular, if n > r := |Π|, not every
cut allows an allocation function.

A pair (x, α) is called an (improper) partition/allocation of the “cake”
[0, 1]. Two such pairs (x, α) and (x, α′), with the same improper cut x, are
called equivalent if they differ only by allocations of degenerate tiles. We
write [(x, α)] for the corresponding equivalence class.

Remark 4.2. The last part of the definition formalizes (on the level of
configuration spaces) the property “all degenerate tiles are equal” having
the “zero value”.

Example 4.3. Let n = 6 and assume that the cut-points (with repeti-
tions) are (1/4, 1/3, 1/3, 2/3, 2/3). There are altogether six tiles {Ii}6i=1

and two of them, the tiles I3 and I5, are degenerate. Let Π = {Πi}6i=1 be
a set of six plates.

Then the following three allocations are equivalent:
Π1 = {1},Π2 = {6},Π3 = {5},Π4 = {4},Π5 = {3},Π6 = {2}
Π1 = {1},Π2 = {6},Π3 = {3},Π4 = {4},Π5 = {5},Π6 = {2}
Π1 = {1, 3, 5},Π2 = {6},Π3 = ∅,Π4 = {4},Π5 = ∅,Π6 = {2}.
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It is instructive to think that for an equivalence class [(x, α)] only
non-degenerate tiles are allocated, whereas degenerate ones are ignored
(and put in the “trash”). So the equivalence class of the above parti-
tion/allocation is recorded as

Π1 = {1},Π2 = {6},Π3 = ∅,Π4 = {4},Π5 = ∅,Π6 = {2}.

Definition 4.4. Assume that the set of plates is Π = {Πi}ri=1
∼= [r] and

choose n = 2r − 1. Define the auxiliary configuration space C′ = C′r =
{[(x, α)]} as the set of all (equivalence classes of) partitions/allocations
(x, α), where x ∈ ∆n−1 is an improper partition (cut) of [0, 1] and α : [n]→
Π a corresponding allocation function.

C′r is, according to Definition 4.4, just a set. However, it is not difficult
to see that it has a natural topology. Indeed, for a fixed allocation function
α : [n]→ [r] the set ∆α ⊂ C′r of all classes [(x, β)] ∈ C′r such that β = α is
naturally isomorphic to the simplex ∆n−1.

Therefore C′r = ∪α∆α is just the union of these simplices, glued to-
gether. In order to see this gluing more clearly, we associate to the parti-
tion/allocation (x, α) a (r × n)-matrix M(x,α) with real entries

M(x,α) = (x1−x0)E1,α(1) +(x2−x1)E2,α(2) + · · ·+(xn−xn−1)En,α(n) (6)

where Ei,j is the (r × n)-matrix having zeros everywhere, except at the
position (i, j) where the corresponding entry is 1.

It is not difficult to see that M(x,α) depends only on the equivalence
class of (x, α) and thatM(x,α) = M(y,β) if and only if y = x and (x, α) and
(x, β) are equivalent.

It follows from the faithfulness of representation (6) that C′r is homeo-
morphic to (the geometric realization of) a simplicial complex, piecewise
linearly embedded in the linear space MatRr×n of all (r × n)-matrices. It
turns out that this simplicial complex is a well-studied object in topologi-
cal combinatorics, known under the name “chessboard complex” [3,22], see
also Section 5.4 for a short overview.

The following proposition is of fundamental importance in the theory
of chessboard complexes.

Proposition 4.5. The configuration space C′r is isomorphic to the geo-
metric realization of the chessboard complex ∆r,2r−1.
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Proof. Indeed, the chessboard complex ∆r,n is described [22] as the com-
plex of all non-attacking configurations of rooks on a (r × n)-chessboard.
The graph Γ(α) ⊂ [n] × [r] of each allocation function α : [n] → [r] de-
scribes such a configuration of rooks. Conversely, each maximal simplex
(arrangement of rooks) in ∆r,n arises uniquely from such an allocation
function. �

A permutation group G, acting on the set Π ∼= [r] of plates, acts on
the natural configuration space Cr. A similar action exists on the auxiliary
configuration space C′r where σ(x, α) = (x, σ ◦α) for each σ ∈ G. From the
view point of the complex ∆r,2r−1, this is the action arising from permuting
the rows of the chessboard [r]× [n].

The auxiliary configuration space C′r ∼= ∆r,2r−1 is introduced to mimic,
for technical purposes, the natural configuration space Cr. For the same
reason we introduce special sets (“ghost preferences”) Bji ⊆ C′r, mimicking
the role of actual preferences Aji ⊆ Cr, as arbitrary subsets of C′r which are
closed, covering and equivariant in the sense of Definition 2.2.

The ultimate justification for introducing the auxiliary configuration
space C′r is the following result, originally proved in [13].

Theorem 4.6. Let r = pν be a prime power. Let

(Bji )
r
i,j=1, Bji ⊆ C

′
r

be a matrix of closed, covering sets which are equivariant with respect to
the group G = (Zp)ν . Then there exists a bijection σ : [r] → [r] ∼= Π such
that ⋂

j∈[r]

Bjσ(j) 6= ∅. (7)

Proof. Although a detailed proof can be found in [13] we repeat, for the
sake of completeness, some of the central steps. Moreover, an alert reader
will see (at the end of the proof) where exactly the use of the auxiliary
configuration space C′r ∼= ∆r,2r−1 was important.

Assume, for the sake of contradiction, that the intersection (7) is empty.
Construct an (equivariant) test map F : C′ → Rr which records the infor-
mation provided by the preferences Bji .

Initially we replace the collection of sets Bji by a collection of slightly
larger open sets Oji and choose (for each j ∈ [r]) an equivariant partition
of unity {f ji }ri=1 subordinated to the cover {Oji }ri=1. Since the preferences
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are equivariant, we can make these functions also equivariant:

f jσ(i)(σ(x, α)) = f ji (x, α) . (8)

By averaging Fi = 1
r

r∑
j=1

f ji we obtain a vector-valued Sr-equivariant func-

tion
F = (F1, F2, . . . , Fr) : C′ → Rr.

Let F̂ : C′ → Rr/D be the (equivariant) map obtained by composing the
map F with the projection Rr → Rr/D, where D = {(y, . . . , y)}y∈R ⊂ Rr
is the diagonal subset of Rr. This map must have a zero.

Indeed, in the opposite case there arises an equivariant map C′ → Sr−2,
which contradicts Volovikov’s theorem [19], in light of the fact that the
chessboard complex ∆r,2r−1 is (r − 2)-connected.

The proof is completed by an application of the original idea of D. Gale,
exploiting the fact the vertices of the Birkhoff polytope of bistochastic
matrices are permutation matrices. �

4.2. Proof of Theorem 3.1. There is a natural map

π : C′ → C
defined as follows. A cut together an allocation of its non-degenerate tiles
induces a proper cut (by forgetting degenerate tiles) with the same alloca-
tion function.

Lemma 4.7. The map π is well-defined. Moreover, it is a non-injective
epimorphism, which is both continuous and equivariant.

The proof is quite straightforward, for example the continuity follows
by checking that for each sequence zn → z, convergent in C′, the sequence
π(zn) converges to π(z) in the sense of Section 2.1.

Assuming the lemma the proof of Theorem 3.1 is finished as follows.
Given the matrix of preferences (Aji ), where A

j
i ⊆ C, let B

j
i = (π)−1(Aji ) be

the corresponding family of subsets of the auxiliary configuration space C′.
By Theorem 4.6, there is an envy-free division for (Bji ), that is a bijec-

tion σ : [r]→ Π and an element

(x, α) ∈
⋂
j∈[r]

Bjσ(j) .

The image π((x, α)) ∈ C is clearly an envy-free division for (Aji ). �
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The dragon versions are routine in view of [14].

§5. Appendix: Spaces of finite sets

5.1. Hausdorff metric. The Hausdorff metric dH(A,B) measures the
distance between two (non-empty) closed sets A and B in a metric space
(X, d).

If A = {a} is a point than (by definition)

dH(a,A) := dH({a}, A) := inf
x∈A
{d(a, x)}

and by symmetry, dH(A, a) = dH(a,A). In general,

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)} .

If A and B are finite (more generally compact) subsets of X then, in these
formulas, we are allowed to write max instead of sup and min instead of
inf.

If (X, d) is the interval [0, 1] with the usual distance function d(a, b) =
|a− b|, then dH(a,B) (respectively dH(A, b)) is the distance from a to its
nearest (left or right) neighbour in B (similarly the nearest neighbour of
b in A), and dH(A,B) is simply the largest of all these distances.

An alternative definition describes the Hausdorff distance dH(A,B) (for
compact A and B) as the smallest ε > 0 such that both B ⊆ Oε(A) and
A ⊆ Oε(B), where Oε(A) = {x ∈ X | (∃a ∈ A) d(x, a) 6 ε} is the closed
ε-neighborhood of A in X.

5.2. Symmetric power. The nth symmetric power of a metric space
X [1,18], denoted by [X]6n, is the space of all non-empty subsets of X of
cardinality at most n. We assume that [X]6n is metrized with the Haus-
dorff metric. The following closely related space

I(r) := {A ⊂ [0, 1] | {0, 1} ⊆ A and |A| 6 r + 1} ,
where I = [0, 1] and r > 1, is also referred to as a symmetric power (of
order r).

Elements of I(r) can be also described as strictly increasing sequences

x : 0 = x0 < x1 < · · · < xk−1 < xk = 1 (9)

of the length (tile number) k, where 1 6 k 6 r. Such a sequence is often
referred to as a proper cut of the tile number k, where T = Tx = {Ij(x)}kj=1

is the associated set of x-tiles, Ij(x) := (xj−1, xj).
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The following elementary proposition records (for future reference) an
important property of the Hausdorff convergence of cuts, which is referred
to as the “stabilization property” of the corresponding sets of tiles.

Proposition 5.1. Let xn = (xni )kni=0 be a sequence of proper cuts (n =
1, 2, . . . ), with the associated sequences (kn) of tile numbers and sets (Txn)
of tiles. Suppose that xn −→ x converges in Hausdorff topology to a cut
x = (xi)

k
i=0, with the tile number k and the set of tiles Tx = {Ii(x)}ki=1.

Then Txn converges essentially to Tx
Txn

ess−→ Tx
in the following sense. For each n there is a subcollection Tn = {Jni }ki=1 ⊆
Txn (of “essential tiles”) such that the associated sequences of intervals
converge Jni −→ Ii(x) to the corresponding tiles in Tx. As a consequence
the lengths of all other tiles from Txn \ Tn tend to zero when n→ +∞.

5.3. Topological configuration space Cr.

5.4. Chessboard complexes. The chessboard complex ∆m,n is an ab-
stract simplicial complex defined on an m × n chessboard with m rows
and n columns. More precisely, the vertices of ∆m,n are the squares of the
chessboard, while (k − 1)-dimensional faces of ∆m,n are all configurations
of k non-taking (non-attacking) rooks, meaning that two rooks are not
allowed to be in the same row or the same column.

The chessboard complex appears in different areas of mathematics and
in many incarnations (as a coset complex of the symmetric group, the
matching complex in a complete bipartite graph, the complex of all injec-
tive functions, etc.). Its topological properties (high connectivity and the
structure of an orientable pseudomanifold) have played a fundamental role
in the proof of some deep results of topological combinatorics and discrete
geometry (colored Tverberg theorems), see [22] for a survey.

Proposition 5.2 ([3, 22, 23]). The chessboard complex ∆m,n is (m − 2)-
connected, (m− 1)-dimensional simplicial complex for n > 2m− 1.
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