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Abstract. In 1964, German mathematician E. Thoma published
the complete list of extreme characters of the infinite symmetric
and alternating groups; the translation of this work and the com-
mentary on it have been published in the current volume. Thoma
has deduced the classification of extreme characters of the infinite al-
ternating group AN from the corresponding result for the symmetric
group and general properties of countable groups that he has shown
in another work. We suggest another, more direct proof of this result
using different technique, – we consider the graph (Bratelli diagram),
which may be viewed as a quotient of the Young graph by its natural
involution. The branching graph of the infinite alternating group is
not determined by the definition of a quotient graph over an invo-
lution. In particular, the branching graph of the infinite alternating
group differs from the quotient of the branching graph of the infinite
symmetric group. We are going to explore this connection later.

Effectively, we prove a general result, namely, given the set of
ergodic measures on a graph with an involution, we explain how to
describe the set of ergodic central measures on the quotient graph.
The problems of how the traces (the characters) change after various
changes of a graph, have not been sufficiently explored.

§1. N-graded quotient graphs

In this paper, we assume that N is the set of positive integers. We will
begin by recalling the definition of N-graded graphs.

Definition 1.1. Suppose that the set of vertices of an oriented graph Γ
can be represented as a disjoint union

Γ =
⊔
n∈N

Γn (1.1)

such that the following conditions hold:
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(1) The set Γ1 consists of a single vertex e1;
(2) The set Γn is finite for every n ∈ N;
(3) If the number m(v, u) of edges going from a vertex v to a vertex u

does not equal zero then v ∈ Γn, u ∈ Γn+1 for some n ∈ N,
(4) for every vertex v ∈ Γ there exists a path that goes from e1 to v,

then Γ is called a locally finite N-graded graph. Next, we are going to call
them N-graded graphs for short.

Definition 1.2. A map ω : Γ → Γ is called an involution (on the set of
vertices) of the N-graded graph Γ if the following conditions hold:

(1) ω(Γn) = Γn, ∀n > 1;
(2) ω2 = Id;
(3) m(ω(v), ω(u)) = m(v, u), ∀v ∈ Γn, u ∈ Γn+1, n > 1.

Definition 1.3. For an N-graded graph Γ with an involution ω we define
an N-graded quotient graph mod the action of the involution Γ/ω by the
following rule. Its set of vertices of the n-th floor (Γ/ω)n consists of two
types:
1) A pair {v, ω(v)} if ω(v) 6= v, v ∈ Γn;
2) A one-element set {v} if ω(v) = v, v ∈ Γn.

The multiplicity of an edge of Γ/ω depends on the types of vertices
v ∈ Γn and u ∈ Γn+1 it connects:

(1) m({v, ω(v)}, {u, ω(u)}) := m(v, u) +m(v, ω(u))
= m(v, u) +m(ω(v), u) for the case ω(v) 6= v, ω(u) 6= u;

(2) m({v, ω(v)}, {u}) := m(v, u) for the case ω(v) 6= v, ω(u) = u;
(3) m({v}, {u, ω(u)}) := 2m(v, u) for the case ω(v) = v, ω(u) 6= u;
(4) m({v}, {u}) := m(v, u) for the case ω(v) = v, ω(u) = u.

Next, we are going to call those N-graded graphs quotient graphs for short.

As we see from the definition, a quotient graph is unlikely to have
multiplicity-free edges even when the initial graph is multiplicity-free.

Remark 1.4. There are different ways to define the multiplicities of a quo-
tient graph. For example, consider the Pascal graph, which has multiplicity-
free edges, with the natural involution. Then on the quotient graph, we
may define multiplicity-free edges, see [8], or (according to our definition)
we may put that the multiplicities of some edges equal 2. Both quotient
graphs have their applications but the sets of central measures on those
graphs are different.
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Definition 1.5. Consider the canonical projection proj : Γ→ Γ/ω on the
set of vertices:

proj(v) :=

{
{v, ω(v)} if ω(v) 6= v,

{v}, otherwise.
(1.2)

Definition 1.6. A map ϕ : Γ → R+ ∪ {0} is called a normed harmonic
function if it satisfies the equalities

(1) ϕ(e1) = 1;
(2)

ϕ(v) =
∑

u∈Γn+1

m(v, u)ϕ(u), ∀v ∈ Γn. (1.3)

Denote this set of normed harmonic functions on Γ by Har(Γ). Next, we
are going to consider only the harmonic functions that are normed. So we
will call them harmonic functions for short.

Proposition 1.7. Suppose that Γ is an N-graded graph with an involution
ω and ϕ is a harmonic function on Γ. Define the function proj(ϕ) on Γ/ω
by the following formula:

proj(ϕ)({v, ω(v)}) :=
ϕ(v) + ϕ(ω(v))

2
for the case ω(v) 6= v; (1.4)

proj(ϕ)({v}) := ϕ(v) for the case ω(v) = v. (1.5)

Then proj(ϕ) is a harmonic function on Γ/ω.

Proof. Let us show that the equality (1.3) holds for proj(ϕ) and an ar-
bitrary vertex y ∈ Γ/ω. Consider the two cases depending on the type of
the vertex y ∈ (Γ/ω)n.

If y = {v} then
m(v, ω(u)) = m(v, u), ∀u ∈ Γn+1. (1.6)

Therefore,

(proj(ϕ))({v}) = ϕ(v) =
∑

u∈Γn+1

m(v, u)ϕ(u)

=
∑

{u,ω(u)}∈(Γ/ω)n+1

ω(u)6=u

2m(v, u)

(
ϕ(u) + ϕ(ω(u))

2

)
+

∑
u∈Γn+1

ω(u)=u

m(v, u)ϕ(u)

=
∑

z∈(Γ/ω)n+1

m(y, z)(proj(ϕ)(z)). (1.7)
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If y = {v, ω(v)} then

(proj(ϕ))({v, ω(v)}) =
ϕ(v) + ϕ(ω(v))

2

=
1

2

∑
u∈Γn+1

m(v, u)ϕ(u) +
1

2

∑
u∈Γn+1

m(ω(v), u)ϕ(u)

=
∑

{u,ω(u)}∈(Γ/ω)n+1

ω(u) 6=u

((m(v, u) +m(ω(v), u))

(
ϕ(u) + ϕ(ω(u))

2

)

+
∑

u∈Γn+1

ω(u)=u

m(v, u) +m(ω(v), u)

2
· ϕ(u)

=
∑

z∈(Γ/ω)n+1

m(y, z)(proj(ϕ)(z)). (1.8)

�

Proposition 1.8. The map proj : Har(Γ)→ Har(Γ/ω) is surjective.

Proof. Suppose that ψ ∈ Har(Γ/ω). We define a function ψ on the set of
vertices of Γ by the formula

ψ(v) :=

{
ψ({v, ω(v)}) if ω(v) 6= v,

ψ({v}), otherwise.
(1.9)

Clearly, proj(ψ) = ψ. Let us show that ψ ∈ Har(Γ). Note that

ψ(ω(v)) = ψ(v), ∀v ∈ Γ. (1.10)

Consider two cases.
First, assume that ω(v) = v ∈ Γn. Because m(ω(v), u) = m(v, u) we get

ψ(v) = ψ({v}) =
∑

{u,ω(u)}∈(Γ/ω)n+1

ω(u)6=u

2m(v, u)ψ({u, ω(u)})+
∑

u∈Γn+1

ω(u)=u

m(v, u)ψ({u})

=
∑

{u,ω(u)}∈(Γ/ω)n+1

ω(u)6=u

2m(v, u)ψ(u)+
∑

u∈Γn+1

ω(u)=u

m(v, u)ψ(u) =
∑

u∈Γn+1

m(v, u)ψ(u).

(1.11)
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Now let us consider the case ω(v) 6= v. Then we obtain a similar chain
of equalities

ψ(v) = ψ({v, ω(v)})

=
∑

{u,ω(u)}∈(Γ/ω)n+1

ω(u)6=u

(m(v, u)+m(v, ω(u)))ψ({u, ω(u)})+
∑

u∈Γn+1

ω(u)=u

m(v, u)ψ({u})

=
∑

{u,ω(u)}∈(Γ/ω)n+1

ω(u) 6=u

(m(v, u) +m(v, ω(u)))ψ(u) +
∑

u∈Γn+1

ω(u)=u

m(v, u)ψ(u)

=
∑

u∈Γn+1

m(v, u)ψ(u). (1.12)

�

Definition 1.9. A normed harmonic function ϕ on an N-graded graph is
called extreme (undecomposable) if it can’t be represented in the form

ϕ = a · ϕ1 + (1− a)ϕ2, (1.13)

where ψ1 and ψ2 are two distinct normed harmonic functions, and 0 <
a < 1.

Proposition 1.8 and the formula (1.9) imply the following result.

Proposition 1.10. If a harmonic function ϕ on an N-graded graph Γ is
extreme then proj(ϕ) is also an extreme harmonic function on Γ/ω.

Proof. It follows from the fact that the map defined by the equality (1.9)
is linear. �

We can also formulate a statement close to the reverse of the Proposi-
tion 1.10.

Proposition 1.11. Suppose that Γ is an N-graded graph with an involu-
tion, and ψ is an extreme harmonic function on the quotient graph Γ/ω.
Then there exists an extreme harmonic function ϕ on the N-graded graph
Γ such that proj(ϕ) = ψ.

Proof. By Proposition 1.8 the preimage (proj)−1(ψ) is not an empty set.
On the other hand, as a preimage under a continuous map, it is a closed
subset of a compact set of harmonic functions on Γ. Therefore, (proj)−1(ψ)
is a non-empty convex compact set. By Krein–Milman Theorem it has an
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extreme point ϕ. Then Proposition 1.8 implies that ϕ is also undecompos-
able as a harmonic function on Γ. �

From Proposition 1.10 and Proposition 1.11 we obtain the following
result.

Theorem 1.12. The map proj surjectively maps the set of extreme har-
monic function on Γ onto the set of extreme harmonic function on Γ/ω.

Notice that Definitions 1.6 and 1.9 and subsequent statements hold if
we do not require that the multiplicities m(v, u) are integers. Now let us
consider the case when all multiplicities m(v, u) are non-negative integers.

Definition 1.13. For an N-graded graph Γ we define the topological space
Paths(Γ) as the projective limit as n→∞ of discrete spaces of paths that
go from e1 to the n-th floor Γn. Note that depending on the multiplicities
of the edges there may be multiple paths determined by the same sequence
of vertices

(e1, t2, t3, . . . ), ti ∈ Γi. (1.14)
Denote by dim(v) the number of paths that connect the vertices e1 and v.
Equivalently,

dim(v) =
∑
t

n∏
j=2

m(tj−1, tj), ∀v ∈ Γn (1.15)

where the sum is taken over all possible n-tuples such that tk ∈ Γk, ∀2 6
k 6 n, and t1 := e1.

Remark 1.14. If Γ is an N-graded graph with an involution ω then

dim(ω(v) = dim(v), ∀v ∈ Γ, (1.16)

and

dim(proj(v)) =

{
dim(v) + dim(ω(v)) if ω(v) 6= v,

dim(v), otherwise,
, ∀v ∈ Γ. (1.17)

The proof is similar to the proof of Proposition 1.7. Note that the equality
(1.17) determines the multiplicities of the quotient graph.

Definition 1.15. We are going to consider Borel measures on the space
Paths(Γ) such that M(Paths(Γ) = 1. For a vertex v ∈ Γn denote by
Cyl(n, v) the subset of all infinite paths such that they go through the vertex
v. Now let us fix a path t from the vertex e1 to the vertex v and consider
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a subset of the set Cyl(n, v) consisting of the paths that repeat the first
n− 1 edges of the path t. A Borel measure on the space Paths(Γ) is called
central if the measure of this subset does not depend on the choice of t. For
a central measure M and v ∈ Γn we put

M(v) := M(Cyl(n, v)). (1.18)

Remark 1.16. For a central measureM on an N-graded graph Γ the ratio

ϕ(v) :=
M(v)

dim(v)
(1.19)

defines a harmonic function on Γ. This formula establishes a one-to-one
correspondence between the set of extreme normed harmonic functions
and the set of ergodic central measures, see, for example, [12, 3].

From Proposition 1.7 we obtain the analogous result for central mea-
sures.

Proposition 1.17. Suppose that Γ is an N-graded graph with an involution
ω and M is a central measure on Γ. Define the measure proj(M) on Γ/ω
by the following formula:

proj(M)({v, ω(v)}) := M(v) +M(ω(v)) for the case ω(v) 6= v; (1.20)
proj(M)({v}) := M(v) for the case ω(v) = v. (1.21)

Then proj(M) is indeed a central measure on Γ/ω.

From Theorem 1.12 we get a similar result for central measures.

Theorem 1.18. The map proj surjectively maps the set of ergodic central
measures on Γ onto the set of ergodic central measures on Γ/ω.

Remark 1.19. One may also consider semifinite measures and harmonic
functions (see, for example, [12]) and define projections for those classes
of measures and functions. Following the approach of this section, we can
obtain results similar to those formulated above.

§2. The branching graph for the infinite alternating
group AN

Definition 2.1. When λ is a partition of the number n we will write
λ ` n. For a partition λ let us denote by λ′ its conjugate partition.

Consider the Young graph Y of partitions. It is easy to check that the
map

λ 7→ λ′ (2.1)
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is an involution of the N-graded graph Y. Denote the corresponding quotient
graph by Y/( · )′.

From the classification of the ergodic measures on the Young graph (see
[6, 11, 3]) and Theorem 1.18, we obtain the classification of ergodic central
measures on the quotient graph.

Figure 1. A part of the quotient graph Y/( · ).
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Theorem 2.2. The central ergodic measures on the quotient graph Y/(·)′
are indexed by unordered pairs (α, β) such that

α = (α1 > α2 > . . . > 0), β = (β1 > β2 > . . . > 0),

and
∞∑
j=1

(αj + βj) 6 1.
(2.2)

The measure Mα,β is defined the following way
(1) For λ 6= λ′ we get

Mα,β({λ, λ′}) = dim(λ)( ̂sλ(α, β) + ̂sλ′(α, β)); (2.3)

(2) For λ = λ′

Mα,β({λ}) = dim(λ) ̂sλ(α, β); (2.4)

where dim(λ) is the dimension on the Young graph (the number of standard
tableaux of the form λ), and ̂sλ(α, β) is the Schur function sλ corresponding
to the specialization of Newton sums

p1 := 1, pk :=

∞∑
j=1

(αkj + (−1)k+1βkj ). (2.5)

Note that from Frobenius’s formula that expresses Schur’s functions via
Newton’s functions, we obtain that

̂sλ′(α, β) = ̂sλ(β, α). (2.6)

Hence, Mα,β = Mβ,α.
The Plansherel measure M0,0 is given by the formula

if λ 6= λ′ then M0,0({λ, λ′}) =
2(dim(λ))2

|λ|!
; (2.7)

if λ = λ′ then M0,0({λ}) =
(dim(λ))2

|λ|!
. (2.8)

Now we are going to recall some well-known properties of alternating
groups An and the infinite alternating group AN = A2 ⊂ A3 ⊂ A4 ⊂ . . . .
Proposition 2.3. The conjugacy class of the symmetric group Sn corre-
sponding to a parition ρ ` n splits into two conjugacy classes in An if and
only if the parts of ρ are pairwise different and odd.

This proposition has been shown in, for example, [2, Lemma 1.2.10].
The next two statements follow from [2, Theorem 2.5.7], see also [1].
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Proposition 2.4. Denote by Tλ, λ ` n the irreducible complex represen-
tation of the group Sn corresponding to a partition λ. Then:

(1) if λ 6= λ′ then the restriction of Tλ to the subgroup An is irre-
ducible. Denote this restriction by Rλ. We also have that

Rλ ' Rλ′ ; (2.9)

(2) if λ = λ′ then the restriction of Tλ to the subgroup An can be
decomposed into the sum of two irreducible non-equivalent repre-
sentations:

Tλ|An = R+
λ ⊕R

−
λ (2.10)

The representations R+
λ and R−λ are conjugate, namely,

R+
λ ((1, 2)x(1, 2)) = R−λ (x), ∀x ∈ An. (2.11)

Proposition 2.5. The restrictions of irreducible representations from
An+1 to An are multiplicity-free. Consider µ, µ ` n and λ, λ ` (n + 1).
The branching rule breaks down into four cases:

(1) λ 6= λ′, µ 6= µ′. Then Rµ enters in the decomposition of the re-
striction of Rλ iff either µ ⊂ λ, or µ ⊂ λ′;

(2) λ 6= λ′, µ = µ′. Then R+
µ enters in the decomposition of the restric-

tion of Rλ iff µ ⊂ λ. Similarly, R−µ enters in the decomposition of
the restriction of Rλ iff µ ⊂ λ;

(3) λ = λ′, µ 6= µ′. Then Rµ enters in the decomposition of the restric-
tion of R+

λ iff µ ⊂ λ. Similarly, Rµ enters in the decomposition of
the restriction of R−λ iff µ ⊂ λ;

(4) λ = λ′, µ = µ′. Then R−µ enters in the decomposition of the restric-
tion of R−λ iff µ ⊂ λ. Similarly, R+

µ enters in the decomposition
of the restriction of R+

λ iff µ ⊂ λ. Also, R−µ does not enter in the
decomposition of the restriction of R+

λ , and R
+
µ does not enter in

the decomposition of the restriction of R−λ .

Remark 2.6. The vertices of the branching graph Γ(AN) for AN can be
represented as a disjoint union

{{λ, λ′} | λ 6= λ′} ∪ {λ+ | λ = λ′} ∪ {λ− | λ = λ′}. (2.12)

The graph should begin on the second floor corresponding to the group
A2, where there is a single vertex {(2), (1, 1)}. To satisfy our definition of
the N-graded graph we will add a vertex e1 to the first level and two edges
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Figure 2. A part of the branching graph Γ(AN).

that go from e1 to {(2), (1, 1)}. That will not change the properties that
we are going to consider.

From Proposition 2.5 we obtain the connection between the N-graded
graphs Γ(AN) and Y/( · )′.

Proposition 2.7. If we replace a pair of representations R+
λ and R+

λ by
their formal linear combination 1

2 (R+
λ + R−λ ) for each λ such that λ′ = λ

then the new “branching graph” will coincide with the quotient Young graph.
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This result allows us to obtain the classification of the central ergodic
measures on the branching graph of the group AN from Thoma’s Theorem.

Proposition 2.8. To describe a central ergodic measures on the branching
graph Γ(AN) of the group AN we still need to pick an unordered pair (α, β)
of sequences such that

α = (α1 > α2 > . . . > 0), β = (β1 > β2 > . . . > 0),

and
∞∑
j=1

(αj + βj) 6 1.
(2.13)

But to describe the value of the measure of the sets Cyl(λ+) and Cyl(λ−)
we will also need to pick a function

θ : {λ is a partition | λ′ = λ} → {−,+}, (2.14)

where θ takes the same values if one Young diagram differs from another
by a single cell with equal coordinates (j, j) (for example, the partitions
(2, 1) and (2, 2)). The measure M̃α,β,θ is defined the following way

(1) For λ 6= λ′ it does not depend on θ

M̃α,β,θ({λ, λ′}) = Mα,β({λ, λ′}); (2.15)

(2) For λ = λ′

M̃α,β,θ(λ
+) =

{
Mα,β({λ}) if θ(λ) = +;

0, otherwise;
(2.16)

M̃α,β,θ(λ
−) =

{
Mα,β({λ}) if θ(λ) = −;

0, otherwise.
(2.17)

Note that
M̃α,β,θ(λ

+) + M̃α,β,θ(λ
−) = Mα,β({λ}). (2.18)

Remark 2.9. The limit shape for Young diagrams distributed according
to the Plansherel measure has been obtained in [9, 4]. The formula (2.7)
shows that the question about the limit shape in the case of the group AN
trivially reduces to the classical result.

§3. Characters of the infinite alternating group AN

Next, we are going to describe the classification of extreme characters of
the infinite alternating group AN obtained by E. Thoma in [5], see also [6].
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Definition 3.1. For a partition ρ of some number n denote by mk(ρ) the
number of its parts that are equal to k, k > 1.

The description of conjugacy classes of the group AN is well known, see,
for example, [5].

Proposition 3.2. The conjugacy classes in the group AN are indexed by
the partitions ρ such that

m1(ρ) = 0, m2k(ρ) is even for all k > 1. (3.1)

For an element g ∈ AN denote by ρ(g) its cycle type.
Now we will repeat the formulation of Thoma’s classification of the

extreme characters of the group AN [5, Satz 6].

Theorem 3.3. The extreme characters of the infinite alternating group
AN are indexed by the sequences such that

α = (α1 > α2 > . . . > 0), β = (β1 > β2 > . . . > 0),

and
∞∑
j=1

(αj + βj) 6 1.
(3.2)

The values of the extreme character χα,β are given by the following formula

χα,β(g) =

∞∏
k=2

 ∞∑
j=1

(αkj + (−1)k+1βkj )

mk(ρ(g))

, ∀g ∈ AN. (3.3)

At the same time the following equality holds

χα,β = χβ,α. (3.4)

In other words, every extreme character of AN is the restriction of an
extreme character of SN. And the restriction of an extreme character of
SN to AN is always extreme.

Remark 3.4. The restriction of the character to the subgroup AN corre-
sponds to the canonical projection described by the equality (1.20).

Also, let us consider the equality (1.9) in our case. For a given character
χ on the subgroup AN we construct a character χ on the group SN by

χ(g) :=

{
χ(g) if g ∈ AN,

0, otherwise.
(3.5)

This allows us to make a shorter proof of Theorem 3.3 than the one we
present below. However, the latter clarifies the connection between the
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ergodic measures on the quotient graph Y/(·)′ and the extreme characters
of the infinite alternating group.

Proof of Theorem 3.3. The results, obtained in [11, 12, 3] imply that
for every extreme characters χ of the group AN there exists an ergodic
measure M̃ on the space of paths of the branching graph Γ(AN) of AN
such that

χ(g) = lim
n→∞

∑
v∈(Γ(AN))n

M̃(v) · χ
v(g)

χv(e)
, (3.6)

where by χv we denote the character of the irreducible complex represen-
tation corresponding to the label v of the branching graph Γ(AN). The
sum is taken over the labels of irreducible complex representations of the
group An, described in Proposition 2.4. It is sufficient to evaluate χ at
representatives of conjugacy classes of the group AN. We may assume that
each representative g leaves the elements 1 and 2 fixed. Then the equality
(2.11) implies that the values of the characters of the representations R+

λ

and R−λ (for λ = λ′) at the element g are equal. Then from the equalities
(2.18) and (3.6) we get that for some unordered pair (α, β)

χ(g) = lim
n→∞

∑
{λ,λ′}

λ`n, λ′ 6=λ

Mα,β({λ, λ′}) · χ
λ(g)

χλ(e)
+

∑
λ

λ`n, λ′=λ

Mα,β({λ}) · χ
λ(g)

χλ(e)
,

(3.7)
where, as usual, χλ stands for the corresponding irreducible character of
the symmetric group Sn, and Mα,β is an ergodic measure on the quotient
graph Y/( · )′. As we know,

χλ
′
(g) = χλ(g), ∀g ∈ An. (3.8)

Hence, from Theorem 2.2 we see that the RHS of the equality (3.7) coin-
cides with the sum that we obtain if evaluate the corresponding expression
for the infinite symmetric group SN. Therefore, the LHS is given by the
equality (3.3). �

Remark 3.5. The character defined by the equalty (3.6) does not depend
on the parameter θ in the classification of Proposition 2.8. Here we see
an example when different ergodic measures on the branching graph may
define the same extreme character.

Remark 3.6. One may construct factor representations of the type II1,
corresponding to the characters of AN similar to the consruction for SN,
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see [10] and also [7]. On the other hand, for every character the restriction
of the factor representation of SN onto the subgroup AN is exactly the
factor representation with that character.
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