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ON JORDAN STRUCTURE OF NILPOTENT
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Abstract. The Jordan structure of matrices of the Lie algebra of
a complex orthogonal group, nilpotent case, is considered. These
matrices have an arbitrarily complicated Jordan structure, under
the known condition that the number of Jordan blocks of even size
is even. A normal form for such matrices is proposed. Gram matrices
of Jordan chains are described.

§1. Introduction

Our ground field is C. We investigate complex groups and algebras and
use the following notations:

GL := GL(N,C), SO := SO(N,C), gl := gl(N,C), so := so(N,C)

We treat elements of the group and its Lie algebra as linear operators
in the auxiliary V ' CN .

Let us equip V with a non-degenerated symmetric scalar product
〈. . . , . . . 〉. The elements of SO and so can be considered as linear transfor-
mations of V satisfying some additional conditions.

Matrix Φ, belongs to SO if it preserves the scalar product

〈ΦX,ΦY 〉 = 〈X,Y 〉 ⇔ Φ>gΦ = g,

where g is the metric tensor.
If 〈ΦX,ΦY 〉 = 〈X,Y 〉,

0 = 〈dΦX,ΦY 〉+ 〈ΦX, dΦY 〉 = 〈dΦΦ−1ΦX,ΦY 〉+ 〈ΦX, dΦΦ−1ΦY 〉.
It takes place for all X,Y and ΦX,ΦY . Let us denote A = dΦΦ−1. We get

A ∈ sl⇔ 〈AX,Y 〉+ 〈X,AY 〉 = 0.

We can see that an element A belongs to the algebra so iff the correspond-
ing operator is antiself-adjoint: A = −A∗ ⊂ End V.

Key words and phrases: Lie algebra of complex orthogonal group, Jordan normal
form, cyclic chains of vectors.

79



80 M. V. BABICH

We need it in the coordinate form. Let e = (e1, . . . , eN ) be a basis of V,
and g be its metric tensor: 〈ei, ej〉 = gij , X = eix

i, Y = eiy
i:

〈X,Y 〉 == trx>gy = xigijy
j .

The matrix of the adjoint operator is similar to the transposed matrix:

〈AX,Y 〉 = tr (Ax)>gy = trx>A>gy, 〈X,A∗Y 〉 = tr x>gA∗y,

consequently A>g = gA∗, or A∗ = g−1A>g:

A ∈ so⇔ gA+A>g = 0.

We need one more transposing, namely the transposing with respect to
the antidiagonal. We call it a `-transposing:

A` := τA>τ, or (A`)ij = A−j−i ,

where τ is the matrix of the inversion (the units on the antidiagonal).
We treat the change of the index sign as the counting of the coordinates

from the opposite side:

{a, b, c, d, e, . . . , v, w, x, y, z}
– the elements a and z, b and y, c and x etc. have the opposite indexes.

The `-transposing interchange raws and columns, but states them in
the special order. For example:

x` = x>τ =

 a
b
c

` = (c, b, a) = (a, b, c)τ,

or  a d
b e
c f

` =

(
f e d
c b a

)
= τ

(
a b c
d e f

)
τ

Let us denote τg =: %. The adjoint-operation using `-transposing can
be written as follows

%A∗ = A`%, A∗ = %−1A`%,

consequently A∗ = −A is equivalent to A`%+ %A = 0 or A` = −%A%−1.
We get two versions of the formulas, for example:

〈X,Y 〉 = trx>gy = trx`%y,
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where x and y are the columns of the coordinates of the vectors X and Y .

We will use different bases on V. Let us consider the operation of the
change of the basis. Let index 〈e〉 corresponds to the values in the basis e
and the index 〈f〉 corresponds to the values in the basis f, the bases are
connected by matrix ϑ:

X = ex〈e〉 = fx〈f〉 = eϑ(ϑ−1x〈e〉),

consequently
f = eϑ⇒ x〈f〉 = ϑ−1x〈e〉.

Let us consider the metric tensor:

〈X,Y 〉 = x>〈e〉g〈e〉y〈e〉 = x`〈e〉%〈e〉y〈e〉

= x>〈f〉ϑ
>g〈e〉ϑy〈f〉 = x`〈f〉τϑ

>ττg〈e〉ϑy〈e〉 = x`〈f〉ϑ
`%〈e〉ϑy〈f〉,

consequently

f = eϑ⇒ g〈f〉 = ϑ>g〈e〉ϑ, %〈f〉 = ϑ`%〈e〉ϑ, A〈f〉 = ϑ−1A〈e〉ϑ.

Let us fix so called hyperbolic basis in V. Its Gram-matrix (the metric
tensor) is the inversion matrix τ . It means that 〈ei, ej〉 = δi,−j .

The connection between the hyperbolic and the orthonormal bases can
be chosen in different ways. We fix one of them:(

e
〈h〉
−k , e

〈h〉
+k

)(
1 i
1 1/i

)
/
√

2 =
(
e
〈o〉
2k , e

〈o〉
2k+1

)
,

where e〈h〉−k , e
〈h〉
+k is a couple of the conjugated vectors (〈e〈h〉−k , e

〈h〉
+k 〉 = 1) from

the hyperbolic basis, and e〈o〉2k , e
〈o〉
2k+1 are two orthogonal unit vectors.

§2. Normal form in hyperbolic basis.

The base of our construction is the classical theorem that states: “Two
similar skew-symmetrical matrices are orthogonally similar” (see [1]). It
means that the parameters of the conjugation classes in the case of the
orthogonal group are the same as for the general linear group, namely the
number of the Jordan (cyclic) chains of vectors and the lengths of the
chains. A length is the number of the segments of the chain. There is only
one special restriction, that is the number of the Jordan chains with the
even lengths must be even for each length.
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Let us choose the “normal form” of the `-skew-symmetrical matrix as
follows

J〈h〉 =



. . . . . . . . .
0 0 −P`r

0 0 σ

0 0 Pr

0 0 κ
0 0 κ

0 0 κ
0 0 κ

0 0
. . .

0
. . .
. . .



,

(1)

where we use the notations σ :=

(
−I 0

0 I

)
, κ :=

(
I
0

)
, κ := 0

I
0

. Matrix Pr we define later. The sizes of the blocks have differ-

ent values depending on their positions. Let us explain the construction
carefully.

The matrix J〈h〉 has the block structure. The blocks correspond to the
splitting of the basis on the subsets. We numerate the subsets by the index
“k”: k ∈ {−M, 1−M, . . . ,M − 1,M}. So we have 2M + 1 block-rows and
block-columns, numerated from −M to +M . The central block-line and
block-column are marked by the index zero. Zero row and column are
placed between the couples of lines.

We will use the tensor notations. The first index corresponds to this
block structure, i.e. (J〈h〉)k1;

k2;
is the block in the row k1 and column k2. For

example (J〈h〉)0;2; = Pr, (J
〈h〉)2;4; = κ etc.. The next indexes like (J〈h〉)k1;j1;i1

k2;j2;i2

will correspond to a finer structure. The block (J〈h〉)k1;j1;
k2;j2;

is the block in
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the j1-s row and j2-s column of the partition of the block (J〈h〉)k1;
k2;

. These
partitions will be described later.

Let us denote the sizes of the partition that we are discussing now by
mk. It means that the size of (J〈h〉)±k1;

±k2;
is mk1 × mk2 . If some mk = 0,

then the block-rows and block-columns with numbers ±k are absent.
The number mk is defined in the following way. The difference mk −

mk+2 is the number of the Jordan chains with k + 1 units. The number
m0 is the total number of the chains with the odd lengths, the number m1

is the total number of the chains with the even lengths. I remind that all
the values mk with the odd k are even.

The numbers of the Jordan chains and their lengths can be calculated
using the ranks of the powers of the matrix, see formulas (4),(5) and the
speculations after them.

From the definition of mk follows, particularly, that the dimension of
ker J〈h〉 is equal to m0 +m1 and the dimension N = dimV of the matrices
from our Lie algebra so is m0 + 2

∑M
k=1mk.

The sequence of pairs (κ , κ ) in the matrix (1) repeats periodically up
to the right border of the matrix, their sizes depend on their positions in
J〈h〉.

The elements over anti-diagonal are `-antisymmetric to the elements
that we have already described, matrix J〈h〉 is `-antisymmetric: (J〈h〉)` =
−J〈h〉.

All we need to define now is m0 ×m2 matrix Pr. Let us define square
m0 ×m0 matrix P first:

P :=
1√
2

(
iI τ
τ/i I

)
,m0 is even; P :=

1√
2

 iI 0 τ

0
√

2 0
τ/i 0 I

,m0 is odd.

(2)
Matrix Pr, consists of the first m2 columns of the matrix P.

From the property
P`P = τ (3)

follows1 that P`r Pr = τ , and we see that the rank of the products of the
blocks

(J〈h〉)s+2;
s; (J〈h〉)s+4;

s+2; . . . (J
〈h〉)

s+2(n−1);
s+2(n−2);(J

〈h〉)s+2n;
s+2(n−1);

1The sizes of the matrices I, τ and 0 depend on the context.
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is equal to the minimal size of these block-factors. The products are the
only non-zero blocks of (J〈h〉)n. All these blocks stay in different rows and
columns, consequently the rank of (J〈h〉)n is equal to the sum of their
ranks:

mn + 2

M∑
k=n+1

mk = rank(J〈h〉)n. (4)

All values mn can be calculated from this function because the second
difference of rank(J〈h〉)n is

rank(J〈h〉)n−1 + rank(J〈h〉)n+1 − 2 rank(J〈h〉)n = mn−1 −mn+1, (5)

and mn = 0 if n > M .
From the other hand the difference rank(J〈h〉)n − rank(J〈h〉)n+1 is the

number of the Jordan chains of the lengths n+ 1 and longer. The number
of the chains of the length n is equal to the second difference of the ranks of
(J〈h〉)n that ismn−1−mn+1. We can make these values arbitrary, choosing
the sizes mk of the blocks.

It proves that any matrix from so can be brought into the form (1) in
the hyperbolic basis.

Note that we used only ranks of the blocks and their products. Conse-
quently the following “stability property” takes place:

Any `-antisymmetric matrix A from the algebraically open set belongs to
one conjugation class if (i+ 2 > j ⇒ Ai;

j; = 0), mn−1 > mn+1, m2k+1 = 0

mod 2. This class contains J〈h〉.

§3. Jordan normal form of matrix from so.

It follows from the structure of J〈h〉, that its action is very similar to
the action of a matrix in the Jordan normal form that either interchanges
the basic vectors or annihilates them. Matrix J〈h〉 acts in the same way
for all subsets of the basic vectors (up to a sign) except the basic vectors
marked indexes “2;” and “0;”.

Let us call the subsets of the basic vectors with the same first index
sectors. How J〈h〉 acts in the sectors “2;” and “0;”? It follows from the
equality P`r Pr = τ , that J〈h〉 sends a basic vector from the sector “2;” to
some non-basic vector (it is a column of Pr), and sends just this vector-
columns of Pr back to the basic set.
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Note that P`P = τ can be treated as the Gram matrix of the set of
vector-columns of P. Consequently the images of the basic vectors from
the sector “2;” form the orthonormal set of vectors. Moreover, we can see
that the last m0 −m2 vector-columns of P that complete Pr to P are an
orthonormal set of vectors from the kernel of J〈h〉, and these m0 − m2

vectors do not belong to the image of J〈h〉.

Let us choose the columns of P as a new basis of the subspace enveloping
the basic vectors from the “0;”-sector. We can see that the total space V '
CN is split on the direct sum of two orthogonal subspaces the dimensions of
which are N−m0 and m0. The first subset is equipped with the hyperbolic
basis and the second one is equipped with the orthonormal basis. The
action of J〈h〉 on this basis is “Jordan-like”, that means that the action is
cyclic up to a sign. Let us formulate it more carefully as a Theorem.

Theorem 1. The space V where matrix A ∈ so acts as a linear transfor-
mation, can be split on the mutually orthogonal subspaces equipped with the
non-degenerated scalar product induced from the ambient V. Such subspaces
“reduce” the transformation A, i.e. the transformation can be contracted on
the subspaces.

The hyperbolic bases can be chosen on these subspaces in such a way
that

• If the subspace has odd dimension, there is a hyperbolic basis ek
that is cyclic up to the sign: Aek = ±ek−1, Ae−kmax = 0, the
dimension of the subspace is equal to 2kmax + 1.

• If the subspace has even dimension, it is enveloping a pair of cyclic
chains of the same even length. These cyclic (up to a sign) vectors
form a hyperbolic basis of the subspace. The conjugated vectors of
this hyperbolic basis belong to the different chains.

We can see that the hyperbolic basis is very similar to the Jordan basis.
The only problem is that the “central vector” of each lattice with the odd
length is not isotropic, consequently there are several non-isotropic vectors
in the Jordan basis. Their number is the number of the lattices with the
odd lengths, we denoted this number by m0.

Let us collect all these vectors to one coordinate subspace labelled index
“0;”. This subspace is equipped with the orthonormal basis formed by the
columns of P. The orthogonal complement to the subspace is equipped
with the hyperbolic basis.
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The transformation of the initial hyperbolic basis where matrix from so
has form (1) to the Jordan basis, collected from the cyclic vectors of the
matrix can be made by matrix ϕ:

e〈j〉 :=e〈h〉



. . .
σ

τ
−σ

−τ
σ

P

I
I

I
I

. . .



=:e〈h〉ϕ.

(6)
We call basis e〈j〉 “a Jordan basis” for the element of so. Matrix J〈h〉

becomes J = ϕ−1J〈h〉ϕ:

J :=



. . . . . . . . .
0 0 κ

0 0 κ
0 0 κ

0 0 κ

0 0 κ

0 0 κ
0 0 κ

0 0
. . .

0
. . .
. . .



(7)
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We remind of the notations: κ =

(
I
0

)
, κ =

 0
I
0

 ,κ = (I|0),

κ = (0|I|0), and κ is the unit matrix.
The metric tensor %〈j〉 := ϕ`%〈h〉ϕ in this basis looks more complicated

of course:

%〈j〉 :=



. . .
σ

τ
−σ

−τ
σ

τ

−σ
−τ

σ
τ
−σ

. . .


(8)

The quartet (−σ,−τ, σ, τ) repeats periodically from the central “τ ” to the
right-lower corner. The quartet (σ,−τ,−σ, τ) = (−σ,−τ, σ, τ)` repeats
periodically from the central “τ ” to the left-upper corner. Let us consider
the fine structure of basis e〈j〉 for the separation and describing the Jordan
chains.

The non-trivial blocks of J are Ji;
i+2;, consequently the iterations of J ∈

End V preserve the parity of the indexes and we can consider the subsets
of the basis e〈j〉 with the even and the odd indexes separately. Let us start
from the even indexes that correspond to the lattices of odd lengths.

Consider the biggest even value of the index that is k′′ = 0 mod 2. The
subset of the basic vectors e

〈j〉
k′′; will be moved by J to the subset e

〈j〉
k′′−2;

by mk′′−2×mk′′ matrix κ =

(
I
0

)
. It means that the images of all mk′′

basic vectors from e
〈j〉
k′′; form the first part of the set e

〈j〉
k′′−2; preserving
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their order. We can see from the structure of J that the vectors e
〈j〉
k′′; do

not belong to the image of J. So all the set e
〈j〉
k′′; consists of the starting

vectors of the Jordan lattices. We will see later that they are the longest
lattices with the odd lengths.

Consider the next pair of the sectors e〈j〉k′′−2; and e
〈j〉
k′′−4;. Matrix κ the

size of which is mk′′−4×mk′′−2 moves all the vectors of e〈j〉k′′−2; to the first

part of e〈j〉k′′−2; preserving their order.
We see that there are three kinds of vectors in this sector. Those that

are the images of the images of e〈j〉k′′;, the images of the vectors from e
〈j〉
k′′−2;

that do not belong to the image of J and the vectors that are not in the
image of J.

We can continue the process. As a result the sector e
〈j〉
0; , the largest

one, will be split on k′′/2 + 1 parts that we call districts. The next sectors
will be smaller and smaller if their numbers decrease from “0” to “−k′′”.
This decreasing is made by matrix κ = (I|0). This matrix sends to zero
the rightest district of the sector “−k” and shifts basic vectors from other
districts to the sector “−k − 2”.

We can see that the step from e
〈j〉
0; to e

〈j〉
−2; annihilates the vectors from

the “most fresh” district of e〈j〉0; , these are such vectors from the ker J that
do not belong to the image of J, the vectors of the Jordan lattices of the
unit length. The next step annihilates the vectors that appear at the sector
e
〈j〉
2; , these are the lattices of the length three and so on.
The splitting on the districts is the next, fine level of the splitting of the

basis e〈j〉. We numerate the districts by the positive even numbers in such
a way that the iteration of J does not change the number of the district,
it decreases the number of the sector on two units.

The vectors in e
〈j〉
k′′; and their J-images belong to the district number k′′.

The sector e
〈j〉
k′′−2; consists of vectors of two districts, namely the district

k′′ that is the image of e〈j〉k′′; and the district k′′ − 2 that consists of the
starting vectors of the lattices of the lengths k′′ − 1.

The number of the district has the constant value for all the chains of
the same length in all sectors. It is equal to the number of the generalized(!)
eigenvectors in the lattice.

The minimum value of the district number in the sector coincides with
the absolute value of the number of sector.
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Consider the sectors with the odd indexes. The sectors contain the vec-
tors of the lattices with even lengths. The action of the matrices κ = 0

I
0

 ,κ = (0|I|0) is very similar to the previous ones. The difference

between this case and the previous ones is that now the increasing and
decreasing of sectors occur simultaneously on both sides. Let us numerate
the districts in the same manner:

The number of the district does not change during the J-iterations and up
to a sign coincides with the number of the generalized eigenvectors in the
chain.

For example. Let the number k′ be the biggest odd number of the sec-
tors. Then the last three sectors (we wrote them in brackets) consist of the
following districts:

(e
〈j〉
k′−4;−k′+4e

〈j〉
k′−4;−k′+2e

〈j〉
k′−4;−k′e

〈j〉
k′−4;k′e

〈j〉
k′−4;k′−2e

〈j〉
k′−4;k′−4)

(e
〈j〉
k′−2;−k′+2e

〈j〉
k′−2;−k′e

〈j〉
k′−2;k′e

〈j〉
k′−2;k′−2)(e

〈j〉
k′;−k′e

〈j〉
k′;k′).

The sectors e
〈j〉
+1; and e

〈j〉
−1; have the same (the maximal) number of

districts numbered as follows:

−1,−3,−5, . . . , 2− k′,−k′, k′, k′ − 2, . . . ,+5,+3,+1.

The action of J decreases the number of sector on two units and does
not change the other indexes such as the numeration of the districts and
the number inside a district that numbers the chains of the same lengths
(we did not write that index). Let us describe the Gram matrix (8) of this
basis.

§4. Scalar products of vectors of Jordan basis.

Consider the chains with the odd units first. The vectors that belong to
the different chains are orthogonal. The non-vanishing products belong to
the sectors with the opposite numbers and the same numbers of districts.
The non-vanishing scalar products of the basic vectors are:

〈e〈j〉4k;s, e
〈j〉
−4k;s〉 = +1, 〈e〈j〉4k−2;s, e

〈j〉
2−4k;s〉 = −1.

We have the orthonormal basis in the zero sector, particularly. We do not
write the index counting the chains of the same lengths.
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Consider the chains with the even number of units. The vectors that
belong to the different couples of chains are orthogonal. Consider the cou-
pled chains. The non-vanishing products belong to the sectors with the
opposite numbers and the opposite numbers of districts. Sometimes the
non-vanishing products of the basic vectors are equal to “+1”, sometimes
they are equal to “−1”, namely

〈e〈j〉4k−1;+s, e
〈j〉
1−4k;−s〉 = +1, 〈e〈j〉4k−1;−s, e

〈j〉
2−4k;+s〉 = −1, s > 0

〈e〈j〉4k−3;+s, e
〈j〉
3−4k;−s〉 = −1, 〈e〈j〉4k−3;−s, e

〈j〉
3−4k;+s〉 = +1, s > 0.

We do not write the index counting couples of the chains of the same
lengths again.
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