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AN ACTION OF THE KLEIN 4-GROUP ON THE
ANGULAR VELOCITY

Abstract. Expressing the angular velocity via Euler angles is a key
step, linking kinematics with rigid body dynamics. Once the com-
ponents of angular velocity are found in a rotating frame, they are
(simultaneously) found in an inertial (non-rotating) frame. And once
the components are found for successive intrinsic rotations, they are
just as readily found for successive extrinsic rotations. The action of
the Klein 4-group on the angular velocity, which we describe in this
paper, provides further insight into the kinematic relations of rigid
body motion, including the critical motion of Dzhanibekov flipping
wingnut.

Motivation

Consider the (rotational) motion of a rigid body about a fixed point O.
Denote by ω the pseudovector of its angular velocity. We shall, from now
on, distinguish taking the “total” (time) derivative (d/dt), in an “absolute”
(inertial) frame, from taking the “partial” (time) derivative (∂/∂t) in a
rotating (body-fixed) frame. And we shall use the adjectives “absolute” and
“rotating” in order to distinguish two corresponding coordinate systems,
which origins are assumed to coincide with the point O.

In accordance with such notation, “Newton’s second law for rotational
motion” would be written as

τ = dm/dt = ∂m/∂t+ ω ×m,

where τ and m are, respectively, the pseudovectors of torque (that is, the
moment of external forces) and angular momentum, both measured about
the point O, with the binary operation “×” denoting the cross product.
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The transition matrix

Let T denote the “transition matrix” from an (ordered) basis f1, f2, f3
of the absolute coordinate system to an (ordered) basis e1, e2, e3 of the
rotating coordinate system. The matrix T determines a linear operator,
acting on the Euclidean space E3. Such an action might be represented via
a (formal) multiplication by T (on the right):(

f1 f2 f3
)
T =

(
e1 e2 e3

)
.

The columns of the matrix T are the coordinates of the rotating basis
e1, e2, e3, relative to the absolute basis f1, f2, f3, whereas, upon assuming
orthonormality of both bases,1 the rows of the same matrix T are coordi-
nates of the absolute basis f1, f2, f3, relative to the rotating basis e1, e2, e3.

Adopting Einstein summation convention,2 we might express a given
vector u as

u = αifi = βiei,
where the absolute coordinate αi is the dot product u · fi, whereas the
rotating coordinate βi is the dot product u · ei, i ∈ {1, 2, 3}.
We point out that the same matrix T transforms, via a multiplication
(on the left) the rotating coordinates of the vector u into its absolute
coordinates, whereas the inverse S of the matrix T , transforms the absolute
coordinates of the vector u into its rotating coordinates, that is,

T

β1

β2

β3

 =

α1

α2

α3

 , S

α1

α2

α3

 =

β1

β2

β3

 .

Thus, denoting the (linear) action of T on the vector u by T · u, we have

T · u =
(
f1 f2 f3

)
T

α1

α2

α3

 =
(
e1 e2 e3

)α1

α2

α3

 =
(
e1 e2 e3

)
T

β1

β2

β3

 .

The inverse of the action of T is the action of S:

S · u =
(
e1 e2 e3

)
S

β1

β2

β3

 =
(
f1 f2 f3

)β1

β2

β3

 =
(
f1 f2 f3

)
S

α1

α2

α3

 .

1The orthonormality of the bases implies the orthonormality of the matrix T , that
is, the inverse of T coincides with its transpose.

2According to which the summation sign over a repeated index is omitted.
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The rotating coordinates of T ·u coincide with the absolute coordinates of
the vector u, whereas the absolute coordinates of S · u coincide with the
rotating coordinates of the vector u.

The coordinates of the angular velocity

Assume that the vector u is fixed in the absolute frame and put v :=
T · u = αiei. The (rotating) vector v is fixed in the rotating frame. Its
velocity vector is

v̇ =
(
f1 f2 f3

)
Ṫ

α1

α2

α3

 =
(
e1 e2 e3

)
S Ṫ

α1

α2

α3

 = ω × v, 3

and we emphasize, that the indicated angular velocity ω is precisely the
angular velocity of the rotating frame. Thus, denoting the rotating coor-
dinates of ω by ωi, i ∈ {1, 2, 3}, we must have

W := SṪ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (1)

In a rotating coordinate system, the coordinates of the (fixed) vector u
do not, of course, remain constant. In accordance with our notation, the
following identity

u̇ = ∂u/∂t+ ω × u = 0

holds and might be be rewritten as

u̇ =
(
f1 f2 f3

)
(T Ṡ + Ṫ S)

α1

α2

α3


=
(
e1 e2 e3

)
ṠT

β1

β2

β3

+
(
f1 f2 f3

)
Ṫ S

α1

α2

α3

 .

Note that the matrix Ṫ S (from which we might “extract” the absolute
coordinates of ω) is orthogonally similar to the matrix W : Ṫ S = TWS.

3The dot (above) denotes time derivative.
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Euler angles kinematics

We introduce the Euler angles ψ (precession), θ (nutation) and φ (spin)
via three successive “intrinsic” rotations, bringing the basis f1, f2, f3 to the
basis e1, e2, e3. The first rotation, about f3 by the angle ψ, brings f1 to
the vector n, which lies along the so-called “line of nodes”. The second
rotation, about n by the angle θ, brings f3 to e3. The third rotation,
about e3 by the angle φ, brings n to e1. Thereby, these three (elementary)
rotations (eventually) bring f2 to e2. Note that, alternatively, we might
have arrived at the same basis e1, e2, e3 via three “extrinsic” rotations,
successively about f3 by the angle φ, then about f1 by the angle θ and,
lastly, about f3 by the angle ψ.4

Put

W (χ1, χ2, χ3) := R(−χ3,−χ2,−χ1) Ṙ(χ1, χ2, χ3),

R(χ1, χ2, χ3) := R3(χ
1)R1(χ

2)R3(χ
3),

R3(χ) :=

cosχ − sinχ 0
sinχ cosχ 0
0 0 1

 , R1(χ) :=

1 0 0
0 cosχ − sinχ
0 sinχ cosχ

 ,

where the variables χ1, χ2 and χ3 are presumed to be time-dependent.

As before, we denote the transition matrix from the absolute basis to the
rotating basis by T , and denote its inverse, which is the transition matrix
from the rotating basis to the absolute basis, by S. Thus,

T = R(ψ, θ, φ)

=

 cc(φ, ψ)− ss(φ, ψ) cos θ −cs(ψ, φ)− cs(φ, ψ) cos θ ss(ψ, θ)
cs(φ, ψ) + cs(ψ, φ) cos θ −ss(φ, ψ) + cc(φ, ψ) cos θ −cs(ψ, θ)

ss(φ, θ) cs(φ, θ) cos θ

 ,

where cc(φ, ψ) := cosφ cosψ, cs(χ1, χ2) := cosχ1 sinχ2, ss(χ1, χ2) :=
sinχ1 sinχ2, and

S = R(−φ,−θ,−ψ).5

4Hence, the Euler angles ψ, θ, φ reappear in a reversed order.
5Note that the function cs(·, ·) is an odd function, unlike the functions cc(·, ·) and

ss(·, ·) which are even.
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We might also calculate the rotating coordinates ωi, i ∈ {1, 2, 3}, of the
angular velocity ω since

W (ψ, θ, φ) = SṪ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


and so

ω = ωi ei = (ψ̇ ss(φ, θ)+θ̇ cosφ)e1+(ψ̇ cs(φ, θ)−θ̇ sinφ)e2+(ψ̇ cos θ+φ̇)e3.

An action of the Klein 4-group

The Klein 4-group acts on the rotating coordinates ωi, i ∈ {1, 2, 3},
viewed as functions of the Euler angles ψ, θ, φ. The two generating inver-
sions are

σ01 : ω ↔ −ω, 6 σ10 : (ψ, θ, φ)↔ (−φ,−θ,−ψ).

Note that the action of σ10 on Euler angles induces the transposition
T ↔ S and further induces the transformation W (ψ, θ, φ) = SṪ ↔ T Ṡ =
W (−φ,−θ,−ψ). Thus, σ10 transforms the rotating coordinates of the pseu-
dovector ω to the absolute coordinates of the pseudovector −ω. The ac-
tion of σ01 is induced by the transpositions W (ψ, θ, φ) = SṪ ↔ ṠT =

−W (ψ, θ, φ) and −W (−φ,−θ,−ψ) = Ṫ S ↔ T Ṡ =W (−φ,−θ,−ψ).7

Denote by σ11 the (commutative) product of σ01 and σ10. The action of
σ11 upon the rotating coordinates of the angular velocity ω is induced
by the transformation W (ψ, θ, φ) = SṪ ↔ Ṫ S = −W (−φ,−θ,−ψ), so it
sends them to the absolute coordinates of the (same) pseudovector ω:

ω = (φ̇ ss(ψ, θ) + θ̇ cosψ)f1 − (φ̇ cs(ψ, θ)− θ̇ sinψ)f2 + (φ̇ cos θ + ψ̇)f3.

Discussion and conclusion

The group Z3
2 acts naturally on the (directed) principal axes of inertia.

Its factor group, acting on two principal axes, corresponding to the two
extreme moments of inertia is a Klein 4-group.8 Two of the (non-trivial)

6Note that the instanteneous axis of rotation does not depend upon the sign of ω,
whereas the direction of the axis does depend upon the sign of ω, as well as, it depends
upon the orientation (that is, the handedness) of the coordinate system.

7Note that the two antisymmetric matrices Ṫ S and T Ṡ (which sum to zero) are
simultaneously orthogonally similar to the two matrices SṪ and ṠT .

8This Klein 4-group arises upon factoring the group Z3
2 by its (2-element) subgroup,

which fixes the principal axis, corresponding to the intermediate moment of inertia.
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elements of this factor group are orientation reversing: the element which
reverses the direction of the axis, corresponding to the major moment of
inertia and the element which reverses the direction of the axis, corre-
sponding to the minor moment of inertia. The (commutative) product of
these two (generating) elements is the non-trivial, orientation preserving
element which reverses the direction of both axes, corresponding to the
two extreme moments of inertia. The action of the Klein 4-group upon
the angular velocity (which we have described) might also be viewed as
either orientation preserving or orientation reversing. The orientation re-
versing elements σ01 and σ10 might be further distinguished as “spatial”
and “temporal”, respectively. The product of σ01 and σ10 is the orientation
preserving element σ11.

The Klein 4-group acts as well on the (directed) Galois axis, which was
introduced in [1] and further described in [2–5]. It “naturally” general-
izes the concept of the “axis of symmetry” without requiring the mo-
ments of intertia of a rigid body to adhere to any equality. A reflec-
tion across an (undirected) principal axis, corresponding to an extreme
moment of inertia, is an element of this group. We might choose the
two reflections across the principal axes, corresponding to the two ex-
treme moments of inertia (major and minor), as two generating elements.
Then the composition of these two reflections becomes the element flip-
ping the direction of the Galois axis. The latter non-trivial element, along
with the trivial element, preserves the orientation (whether clockwise or
counterclockwise) of the (dual) rotary motion of the Dzhanibekov flip-
ping wingnut, as exhibited via a 3D-animation, by E. A. Mityushov and
N. E. Misura, available at https://www.youtube.com/watch?v=e9wGPh-iiRw&
list=PLvKkSzWgY7KUUSYDqHVdv0mst4nBnLe64. The two (coplanar) herpolho-
des,9 corresponding to two opposing directions of a single Galois axis are
“mirror-images” of each other.
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