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Abstract. Sparre Andersen discovered a celebrated distribution-
free formula for the probability of a random walk remaining posi-
tive up to a moment n. Kabluchko et al. expanded on this result by
calculating the absorption probability for the convex hull of multi-
dimensional random walks. They approached this by transforming
the problem into a geometric one, which they then solved using Za-
slavsky’s theorem. We propose a completely different approach that
allows us to directly derive the generating function for the absorp-
tion probability. The cornerstone of our method is the Gauss–Bonnet
formula for polyhedral cones.

§1. Introduction

The beautiful and groundbreaking result of Sparre Andersen [6, 7]
states that for the random walk

Sk = X1 + · · ·+Xk, k = 1, . . . , n, (1)

with the symmetric absolutely continuous i.i.d. increments, the probability
of staying positive equals

P[S1 > 0, . . . , Sn > 0] =
(2n− 1)!!

(2n)!!
. (2)

In terms of generating functions, we have
∞∑
n=1

P[S1 > 0, . . . , Sn > 0] tn =
1√
1− t

, |t| < 1. (3)

Since the probability in (2) is distribution-free, it seems natural that
at the heart of this formula lies a deterministic combinatorial statement.
Indeed, Sparre Andersen, in fact, proved the following.
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Lemma 1.1 ([7, Lemmas 1, 2]). Let S(n) denote the symmetric group of
order n. For σ ∈ S(n), ε = (ε1, . . . , εn) ∈ {−1, 1}n, and arbitrary real
x1, . . . , xn, define

sk(σ, ε) = ε(1)xσ(1) + · · ·+ ε(k)xσ(k), k = 1, . . . , n.

If for any σ ∈ S(n), ε ∈ {−1, 1}n and k = 1, . . . , n we have sk(σ, ε) 6= 0,
then1 ∑

σ∈S(n)
ε∈{−1,1}n

1[s1(σ, ε) > 0, . . . , sn(σ, ε) > 0
]
= (2n− 1)!!. (4)

This statement has been generalized to higher dimensions in [2]. In
probabilistic language, it states the following. First of all, to avoid trivial-
ities, we always assume that n > d+ 1. Next, suppose that a sequence of
partial sums {S1, . . . , Sn} defined as in (1) forms a d-dimensional sym-
metrically exchangeable random walk in general position. It means that the
increments X1, . . . , Xn are random vectors in Rd satisfying the following
two properties:
(SE) for any σ ∈ S(n), ε ∈ {−1, 1}n,(

ε1Xσ(1), . . . , εnXσ(n)

) d
=
(
X1, . . . , Xn

)
;

(GP) for any indices 1 6 i1 < i2 < · · · < id 6 n,

P[Xi1 , . . . , Xid are linearly dependent] = 0.

Then

P[0 6∈ conv(S1, S2, . . . , Sn)] = 2
P

(n)
d−1 + P

(n)
d−3 + · · ·

2nn!
, (5)

where conv( · ) denotes the convex hull and P
(n)
i ’s are the coefficients of

the polynomial

(t+ 1)(t+ 3) · · · (t+ 2n− 1) =

n∑
i=0

P
(n)
i ti. (6)

The idea of the proof is as follows. First, the original problem was reduced
to counting the number of the Weil chambers of type Bn in Rn, which
are non-trivially intersected by a generic linear subspace of codimension d.

1In fact, Sparre Andersen did more: he proved that the number of (σ, ε) for which∑n
k=1 1[sk(σ, ε) > 0] = m equals (2n)!!

(2m−1)!!
(2m)!!

(2n−2m−1)!!
(2n−2m)!!

. Now this result is known

as the Discrete arcsine law of Sparre Andersen. For its multidimensional version, see [3].
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Then, by means of the Zaslavsky theorem [9], this number was expressed in
terms of the coefficients of the characteristic polynomial of the hyperplane
arrangement induced by the boundaries of the chambers which happened
to be the left-hand side of (6).

In this short note, we give an alternative solution of the problem. Our
main result is the following multidimensional version of (3).

Theorem 1.1. For any d-dimensional random walk {S1, . . . , Sn} satisfy-
ing (SE) and (GP) properties,

∞∑
n=1

P[0 6∈ conv(S1, S2, . . . , Sn)] t
n (7)

=
2√
1− t

(
(− log(1− t))d−1

(2d− 2)!!
+

(− log(1− t))d−3

(2d− 6)!!
+ · · ·

)
,

where |t| < 1 and the right-hand side has bd+1
2 c summands.

Although this result can be directly derived from [2], we present a com-
pletely different straightforward approach, where (7) turns out to be a
corollary from the Gauss–Bonnet formula for polyhedral cones. Applied to
the random walk, this formula readily gives

P[0 6∈ conv(S1, . . . , Sn)] = 2E [υd−1(Cn) + υd−3(Cn) + · · · ] ,

where υk’s are the so-called conic intrinsic volumes (introduced in the next
section) of the conic hull Cn of the random walk. The most technical part
of the proof of the theorem is the derivation of the generating function for
E υk(Cn):

∞∑
n=0

E υk(Cn) tn =
1

(2k)!!

(− log(1− t))k√
1− t

, |t| < 1.

In particular, it has been done with the help of Lemma 1.1 along with its
following bridge version, also due to Sparre Andersen.

Lemma 1.2 ([8, Corollary 2]). Denote by C(n) a subgroup of the symmet-
ric group S(n) consisting of all cyclic shifts. For τ ∈ C(n) and arbitrary
real x1, . . . , xn, let

sk(τ) = xτ(1) + · · ·+ xτ(k), k = 1, . . . , n.
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If

x1 + · · ·+ xn = 0 (the bridge property)

and for any τ ∈ C(n) and k = 1, . . . , n− 1 we have sk(τ) 6= 0, then∑
τ∈C(n)

1[s1(τ) > 0, . . . , sn(τ) > 0
]
= 1.

While Lemma 1.1 is fairly complicated, this one is straightforward.
Among n cyclic shifts τ there is exactly one for which all partial sums
are positive: it corresponds to the moment when the walk

x1, x1 + x2, . . . , x1 + · · ·+ xn−1

achieves its minimum.

Our main result will be proved in Section 3. The following section will
acquaint the reader with key concepts from convex geometry, essential for
understanding the proof.

§2. Conic intrinsic volumes

In this section, we recall the definition of the conic intrinsic volumes and
discuss their basic properties. They are defined for the arbitrary convex
cones; however, it will be convenient for us to use an alternative definition
which makes sense only for the polyhedral cones. For a more detailed and
comprehensive understanding of conic intrinsic volumes and their applica-
tions, the reader is referred to [1] or [5, Chap. 6.5], which offer an in-depth
exploration of the topic.

Let C ⊂ Rd be a polyhedral cone, that is, an intersection of finitely
many closed half-spaces in Rd with boundaries passing through the origin.
By definition, the dimension of C coincides with the dimension of its linear
span denoted by spanC. Denote by relintC its relative interior, that is,
the interior with respect to spanC.

A linear hyperplane H dividing Rd into two half-spaces such that C lies
entirely in one of them is called a supporting hyperplane of C and C ∩H
is called a face of C. Additionally, C itself belongs to the set of its faces,
which we denote by F(C). Every face of C is a polyhedral cone. A face
of dimension k is also called a k-face. Denote by Fk(C) the set of k-faces
of C.
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Denote by α(C) the solid angle of C defined as

α(C) := P[U ∈ C], (8)

where U is a random vector uniformly distributed in Sd−1 ∩ spanC. It
follows from definition that α(C) does not depend on the ambient space
and is always positive. In particular, α({0}) = 1.

The polyhedral cone polar to C is defined as

C◦ = {x ∈ Rd : 〈x,y〉 6 0 for all y ∈ C}. (9)

For a k-face F ∈ Fk(C) consider some x0 ∈ relintF and denote by
TF (C) the tangent cone to C at F defined as

TF (C) = {x ∈ Rd : x0 + εx ∈ C for some ε > 0}.

Clearly, TF (C) does not depend on the choice of x0 ∈ relintF . The cone
polar to TF (C) is called the normal cone to C at F and denoted by NF (C):

NF (C) = (TF (C))
◦. (10)

Let x1, . . . ,xk be some linearly independent vectors in Rd. We have

span(x1, . . . ,xk) ∼= Rk.

Denote by

hx1,...,xk
: Rk → span(x1, . . . ,xk) (11)

an isometry that aligns the standard orthonormal basis of Rk with the
basis in span(x1, . . . ,xk) obtained by applying the Gram–Schmidt process
to x1, . . . ,xk.

Let C be a conic hull of x1, . . . ,xn, that is, an intersection of all convex
cones containing x1, . . . ,xn:

C = cone(x1, . . . ,xn).

Let us also observe that it readily follows from (8), (9), and (10) that
for any face F ∈ F(C) we have

α(NF (C)) = P[〈xi, U〉 6 0, i = 1, . . . , n] (12)
= P[〈xi, U〉 > 0, i = 1, . . . , n],

= P[〈xi, U〉 > 0, i = 1, . . . , n],

where U is a random vector uniformly distributed in (spanF )⊥ ∩ Sd−1.
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The k-th conic intrinsic volume of C can be defined as

υk(C) =
∑

F∈Fk(C)

α(NF (C))α(F ). (13)

In particular, if dimC = k, then, by definition,

υk(C) = α(C).

The conic intrinsic volumes form a probability distribution on {0, 1, . . . , d}
for a fixed cone C:

d∑
k=0

υk(C) = 1. (14)

In particular, if C is a linear subspace of dimension j, then υj(C) = 1
and υk(C) = 0 for k 6= j. The conic intrinsic volumes satisfy the following
version of the Gauss–Bonnet theorem (see [5, Section 6.5]):

d∑
k=0

(−1)kυk(C) =

{
(−1)dimC if C is a linear subspace,
0 otherwise.

If dimC = d, then together with (14) this implies

2 (υd−1(C) + υd−3(C) + · · · ) =

{
0 if C = Rd,
1 otherwise.

(15)

Let us finish this section by a simple observation, which we will need in
the proof of Theorem 1.1: for an arbitrary set K in Rd we have

coneK = Rd if and only if 0 ∈ int convK. (16)

§3. Proof of Theorem 1.1

It follows from the (GP) property that

P[0 ∈ conv(S1, . . . , Sn)] = P[0 ∈ int conv(S1, . . . , Sn)],

which together with (16) leads to

P[0 6∈ conv(S1, . . . , Sn)] = P[Cn 6= Rd], (17)

where Cn = cone(S1, . . . , Sn). Since n > d, and due to the (GP) property
we have that dimCn = d almost surely. Therefore (15) implies

P[Cn 6= Rd] = 2E [υd−1(Cn) + υd−3(Cn) + · · · ] . (18)
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Now let us fix some k 6 d − 1 and calculate E υk(Cn). Consider some
indices 1 6 i1 < · · · < ik 6 n. The simplicial cone

Ck = Ck(i1, . . . , ik) = cone(Si1 , . . . Sik)

may or may not be a k-face of Cn. Moreover, with probability one, any
k-face of Cn has this form for some 1 6 i1 < · · · < ik 6 n. Therefore,
according to (13),

E υk(Cn) =
∑

16i1<···<ik6n

E
[
α(NCk

(Cn))α(Ck)1[Ck ∈ Fk(Cn)]
]
. (19)

Fix some 1 6 i1 < · · · < ik 6 n. Let V ∈ Rk be a random vector
uniformly distributed in Sk, independent of the random walk. Define

U = hSi1
,...,Sik

(V ),

where hSi1
,...,Sik

is the isometry between Rk and span⊥(Si1 , . . . , Sik) de-
fined in (11).2

Applying (12) to α(NCk
(Cn)) leads to

E
[
α(NCk

(Cn))α(Ck)1[Ck ∈ Fk(Cn)]
]

(20)

= E
[
1[〈Si, U〉 > 0, i = 1, . . . , n] · α(Ck)

]
,

where we also used the observation that

1[〈Si, U〉 > 0, i = 1, . . . , n] = 0 for Ck 6∈ Fk(Cn).

Now we aim to calculate the right-hand side of (20). Consider

Y1 = 〈X1, U〉, . . . , Yn = 〈Xn, U〉, (21)

which are random variables in R1 such that

Yil+1 + · · ·+ Yil+1
= 0, l = 1, . . . , k. (22)

It follows from the fact that

U ∈ span⊥(Si1 , . . . , Sik).

2This is well-defined only if Si1 , . . . , Sik are linearly independent, which occurs with
probability one. Otherwise, we define hSi1

,...,Sik
as the zero function.
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Now for l = 1, . . . , k + 1 denote

S
(l)
1 = Yil−1+1, (23)

S
(l)
2 = Yil−1+1 + Yil−1+2,

. . . ,

S
(l)
il−il−1

= Yil−1+1 + · · ·+ Yil ,

where we assumed i0 = 0, ik+1 = n.
Given the (GP) property of the original random walk, the increments

of

Sk+1
1 , Sk+1

2 , . . . , Sk+1
n−ik

with probability one satisfy the assumptions of Lemma 1.1. Similarly, ow-
ing to (22), for all l = 1, . . . , k the increments of

Sl1, S
l
2, . . . , S

l
ik−ik−1

.

with probability one satisfy the assumptions of Lemma 1.2. Thus, we ob-
tain two important relations: with probability one,∑

σ∈S(n−ik)
ε∈{−1,1}n

1[S
(k+1))
1 (σ, ε), . . . , S

(k+1)
n−ik (σ, ε) > 0] = (2n− 2ik − 1)!! (24)

and for l = 1, . . . , k,∑
τl∈C(il−il−1)

1[S
(l)
1 (τl), . . . , S

(l)
il−il−1−1(τl) > 0] = 1. (25)

Recalling (21), (22), and (23), we have

E
[
1[〈S1, U〉, . . . , 〈Sn, U〉 > 0] · α(Ck)

]
= E

[
1[S

(k+1)
1 , . . . , S

(k+1)
n−ik > 0]

k+1∏
l=1

1[S
(l)
1 , . . . , S

(l)
il−il−1−1 > 0] · α(Ck)

]
.

Now, by applying the (SE) property and the notation from Lemmas 1.1
and 1.2, we obtain

(2n− 2ik)!!

k∏
l=1

(ik − ik−1)
[
1[〈S1, U〉, . . . , 〈Sn, U〉 > 0] · α(Ck)

]
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=
∑

σ∈S(n−ik)
ε∈{−1,1}n

∑
τ1∈C(i1)

. . .
∑

τk∈C(ik−ik−1)

E
[
1[S

(k+1))
1 (σ, ε), . . . , S

(l)
n−ik(σ, ε) > 0]

×
k∏
l=1

1[S
(l)
1 (τl), . . . , S

(l)
il−il−1−1(τl) > 0] · α(Ck)

]
= E

( ∑
σ∈S(n−ik)
ε∈{−1,1}n

1[S
(k+1)
1 (σ, ε), . . . , S

(k+1)
n−ik (σ, ε) > 0]

)

×
k∏
l=1

( ∑
τl∈C(il−il−1)

1[S
(l)
1 (τl), . . . , S

(l)
il−il−1−1(τl) > 0]

)
· α(Ck)

]

Applying (24) and (25) immediately leads to

E
[
1[〈S1, U〉, . . . , 〈Sn, U〉 > 0] · α(Ck)

]
= pn−ik

k∏
l=1

1

ik − ik−1
E
[
α(Ck)

]
,

where

pm =
(2n− 2m− 1)!!

(2n− 2m)!!
.

Recalling (19) and (20), we arrive at

E υk(Cn) =
∑

16i1<···<ik6n

pn−ik

k∏
l=1

1

ik − ik−1
Eα(cone(Si1 , . . . Sik)) (26)

=

n−k∑
j=0

pj
∑

j1+···+jk=n−j
j1,...,jk>0

1

j1j2 · · · jk
Eα(cone(Sj1 , . . . Sj1+···+jk)),

where in the last step we changed the variables to

j1 = i1, j2 = i2 − i1, . . . , jk = ik − ik−1, j = n− ik.
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Let us calculate the inner sum. We have:∑
j1+···+jk=n−j
j1,...,jk>0

1

j1j2 · · · jk
Eα(cone(Sj1 , . . . Sj1+···+jk)) (27)

=
∑

j′1+···+j
′
k=n−j

0<j′16···6j
′
k

∑
J(j′1,...,j

′
k)

1

j1j2 · · · jk
Eα(cone(Sj1 , . . . Sj1+···+jk)),

where J(j′1, . . . , j′k) is a set of all k-tuples (j1, . . . , jk) such that

(jσ(1), . . . , jσ(k)) = (j′1, . . . , j
′
k)

for some permutation σ ∈ S(k). Fix some j′ = (j′1, . . . , j
′
k) such that j′1 +

· · ·+ j′k = n− j and 0 < j′1 6 . . . 6 j′k. It is notable that J(j′1, . . . , j′k) can
be parametrized by elements of the quotient group

S′(k) = S(k)/S0(k),

where S0(k) is a subgroup of S(k) consisting of permutations that leave j′

unchanged. Therefore, we may think of S′(k) as a group whose actions on
j′ generate the set J(j′1, . . . , j′k). This approach simplifies our analysis by
reducing the permutations to only those that result in distinct tuples. In
particular, we have

σS′(k) = S′(k) for any σ ∈ S(k), (28)

indicating the equivalence of all cosets in S′(k) irrespective of the permu-
tation σ applied.

Let ρ be uniformly chosen from S′(k), independently with the random
walk. Then, we have∑

J(j′1,...,j
′
k)

1

j1j2 · · · jk
Eα(cone(Sj1 , . . . Sj1+···+jk)) (29)

=
|J(j′1, . . . , j′k)|
j1j2 · · · jk

Eα(cone(Sρ(j′1), . . . Sρ(j′1)+···+ρ(j′k))),

where | · | denotes the cardinality of the set. Next, we aim to demonstrate
that

Eα(cone(Sρ(j′1), . . . , Sρ(j′1)+···+ρ(j′k))) =
1

(2k)!!
. (30)

To achieve this, let us first establish that the increments of
Sρ(j′1), . . . , Sρ(j′1)+···+ρ(j′k) are symmetrically exchangeable. This property
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is crucial as exchangeability implies certain symmetries in the random
walk, which are essential for the validity of equation (30).

For a given k-tuple j = (j1, . . . , jk) ∈ J(j′1, . . . , j′k), define the variables

R1(j) = X1 + · · ·+Xj1 ,

R2(j) = Xj1+1 + · · ·+Xj2 ,

. . .

Rk(j) = Xjk−1+1 + · · ·+Xjk ,

which represent the sums of the increments over specific intervals. To
demonstrate that R1(ρ(j

′), . . . , Rk(ρ(j
′) are symmetrically exchangeable,

consider a Borel set B ⊂ Rk and some σ ∈ S(k), ε ∈ {−1,+1}k. We obtain

P
[(
ε1R1(σρ(j

′)), . . . , εkRk(σρ(j
′))
)
∈ B

]
(31)

= P
[(
R1(σρ(j

′)), . . . , Rk(σρ(j
′))
)
∈ B

]
= |S′(k)|−1

∑
σ′∈S′(k)

P
[(
R1(σσ

′(j′)), . . . , Rk(σσ
′(j′))

)
∈ B

]
,

where in the first step we used (SE) property. It follows from (28) that

σJ(j′1, . . . , j
′
k) = J(j′1, . . . , j

′
k),

implying that permuting the indices within the set J(j′1, . . . , j′k) preserves
its structure. This supports the exchangeability of R1(ρ(j

′)), . . . , Rk(ρ(j
′)):

|S′(k)|−1
∑

σ′∈S′(k)

P
[(
R1(σσ

′(j′)), . . . , Rk(σσ
′(j′))

)
∈ B

]
= |S′(k)|−1

∑
σ′∈S′(k)

P
[(
R1(σ

′(j′)), . . . , Rk(σ
′(j′))

)
∈ B

]
= P

[(
R1(ρ(j

′)), . . . , Rk(ρ(j
′))
)
∈ B

]
,

confirming together with (31) that the increments

Z1 = R1(ρ(j
′)), . . . , Zk = Rk(ρ(j

′))

are symmetrically exchangeable. Introducing Z1, . . . , Zk at this stage sim-
plifies our notation and will facilitate future calculations.
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Now we are in a position to prove (30). Symmetric exchangeability
implies that

Eα(cone(Sρ(j′1), . . . , Sρ(j′1)+···+ρ(j′k)))
= Eα(cone(Z1, Z1 + Z2, . . . , Z1 + · · ·+ Zk))

=
1

(2k)!!

∑
σ∈S(n−ik)
ε∈{−1,1}n

Eα(cone(ε1Zσ(1), . . . , ε1Zσ(1) + · · ·+ εkZσ(k))).

Note that the sum in the right-hand side equals 1 with probability one.
This follows from the fact that the (2k)!! cones in this sum do not intersect
by their interiors, and their union is Rk. To see this, consider a linear
transformation mapping Z1, . . . , Zk (which are a.s. linearly independent)
to the standard orthonormal basis e1, . . . , ek in Rk. This transformation
will correspondingly map the cones into the Weil chambers:

cone(ε1eσ(1), ε1eσ(1) + ε2eσ(2), . . . , ε1eσ(1) + · · ·+ εkeσ(k))

= {x = (x1, . . . , xk) ∈ Rk : ε1xσ(1) > ε2xσ(2) > · · · > εkxσ(k)}.

Combining just proved (30) with (29), (27), and (26) gives

E υk(Cn) =
1

(2k)!!

∑
16i1<···<ik6n

pn−ik
i1(i2 − i1) · · · (ik − ik−1)

,

from which summing over n from zero to infinity we obtain
∞∑
n=0

E υk(Cn)tn =
1

(2k)!!

(− log(1− t))k√
1− t

, |t| < 1.

Summing this up over k = d − 1, d − 3, . . . and recalling (17) and (18)
finishes the proof.
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